In Collaboration with Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Morlab **Certificate No:** Z21-60474 # CALIBRATION CERTIFICATE Object D900V2 - SN:1d064 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 17, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | | | | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60474 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", February 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60474 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 900 MHz ± 1 MHz | : / | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.97 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.96 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - 1915 | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-----------------------------------| | SAR measured | 250 mW input power | 2.78 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 11.2 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | 3 1 | | SAR measured | 250 mW input power | 1.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.19 W/kg ± 18.7 % (<i>k</i> =2) | in depth of Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.3Ω+ 1.40jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.5dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | | 1.314 ns | | |----------------------------------|--|----------|--| |----------------------------------|--|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Section of the Property No Certificate No: Z21-60474 Page 4 of 6 to fath a life of Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d064 Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; $\sigma = 0.961$ S/m; $\varepsilon_r = 41.26$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(9.9, 9.9, 9.9) @ 900 MHz; Calibrated: 2021-05-26 Date: 2021-11-17 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.14 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 4.24 W/kg SAR(1 g) = 2.78 W/kg; SAR(10 g) = 1.79 W/kg Smallest distance from peaks to all points 3 dB below = 18 mm Ratio of SAR at M2 to SAR at M1 = 65.3% Maximum value of SAR (measured) = 3.76 W/kg 0 dB = 3.76 W/kg = 5.75 dBW/kg 1,131 操业员 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL s to to the distance of the second se # **Appendix Annual validation for Test Lab.** ### **General calibration information** | Date | 2022.12.15 | |--------------------|---| | Test Laboratory | ShenZhen Morlab Communications Technology Co., Ltd. | | Antenna serial No. | D900V2-SN: 1d064 | ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.406Ω -1.16jΩ | |--------------------------------------|-----------------| | Return Loss | -33.947dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.276 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed point can be measured The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard No excessive force must be applied to the dipole arm, because they might bend or the soldered connections near the feed point may be damaged. Test Laboratory: Shenzhen Morlab Communications Technology Co., Ltd. Date: 2022.12.15 ### System Check_900MHz_Head Communication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL_900 Medium parameters used: f = 900 MHz; $\sigma = 0.981$ S/m; $\epsilon_r = 41.625$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7608; ConvF(9.81, 9.81, 9.81) @ 900 MHz; Calibrated: 2022.01.12 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1643; Calibrated: 2021.12.30 - Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2020 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) CW900/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.96 W/kg CW900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.96 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 4.68 W/kg SAR(1 g) = 2.86 W/kg; SAR(10 g) = 1.88 W/kgMaximum value of SAR (measured) = 3.93 W/kg 0 dB = 3.93 W/kg # **Appendix Impedance Measurement Plot for Head TSL** # **Appendix Annual validation for Test Lab.** ### **General calibration information** | Date | 2023.12.12 | |--------------------|---| | Test Laboratory | ShenZhen Morlab Communications Technology Co., Ltd. | | Antenna serial No. | D900V2-SN: 1d064 | ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49 .181 Ω -1 j Ω | |--------------------------------------|--------------------------------| | Return Loss | -37.703dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.276 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed point can be measured The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard No excessive force must be applied to the dipole arm, because they might bend or the soldered connections near the feed point may be damaged. Test Laboratory: Shenzhen Morlab Communications Technology Co., Ltd. Date: 2023.12.12 ### System Check_900MHz_Head_12.12 Communication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL 900 Medium parameters used: f = 900 MHz; $\sigma = 0.956$ S/m; $\epsilon_r = 41.286$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7608; ConvF(10, 10, 10) @ 900 MHz; Calibrated: 2023.3.15 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1643; Calibrated: 2023.2.22 - Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1464 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) CW900/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.80 W/kg CW900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 62.02 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 4.29 W/kg SAR(1 g) = 2.87 W/kg; SAR(10 g) = 1.79 W/kg Maximum value of SAR (measured) = 3.57 W/kg 0 dB = 3.57 W/kg = 5.53 dBW/kg # **Appendix Impedance Measurement Plot for Head TSL**