#### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 2.00 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.6 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.7 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.4 ± 6 % | 2.18 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 53.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.02 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 W/kg ± 16.5 % (k=2) | ### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.9 Ω - 5.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.6 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.5 Ω - 5.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.152 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-----------------|--| | Manufactured on | August 14, 2012 | | Certificate No: D2600V2-1058\_Dec13 ## **DASY5 Validation Report for Head TSL** Date: 17.12.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1058 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2$ S/m; $\epsilon_r = 38.8$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.46 W/kg Maximum value of SAR (measured) = 18.9 W/kg 0 dB = 18.9 W/kg = 12.76 dBW/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 17.12.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1058 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.18$ S/m; $\varepsilon_r = 51.4$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.24 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 18.2 W/kg 0 dB = 18.2 W/kg = 12.60 dBW/kg ## Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V. ADT China (Auden) Certificate No: D5GHzV2-1133 Sep13 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1133 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: September 02, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe EX3DV4 | SN: 3503 | 28-Dec-12 (No. EX3-3503_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | meu Laboratory Technician Approved by: Calibrated by: Katja Pokovic Technical Manager Issued: September 2, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Israe El-Naouq Certificate No: D5GHzV2-1133\_Sep13 Page 1 of 16 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters". March 2010 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz | | ## Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 4.50 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.00 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.59 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.7 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.3 <b>3</b> W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.80 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.5 ± 6 % | 5.43 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.48 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.7 ± 6 % | 5.53 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.52 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | - | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 19.5 % (k=2) | ## **Body TSL parameters at 5500 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.0 ± 6 % | 5.83 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.97 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 79.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | ## **Body TSL parameters at 5600 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.2 ± 6 % | 5.93 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.0 <b>7</b> W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.24 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1133\_Sep13 Page 7 of 16 # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.5 ± 6 % | 6.25 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.58 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 50.0 Ω - 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 49.4 Ω - 6.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 53.0 Ω - 1.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.4 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 55.1 Ω + 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.0 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 56.2 Ω - 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.9 dB | ### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 48.8 Ω - 4.5 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 26.5 dB | | | | ## Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 48.1 Ω - 5.0 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 25.3 dB | | | | | ## Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | $55.4 \Omega + 2.0 j\Omega$ | | | | |--------------------------------------|-----------------------------|--|--|--| | Return Loss | - 25.3 dB | | | | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 53.0 Ω + 2.6 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 28.4 dB | | | | | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 59.2 Ω - 2.8 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 21.1 dB | | | | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.207 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 07, 2012 | #### **DASY5 Validation Report for Head TSL** Date: 28.08.2013 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1133 Communication System: SDM - GVD; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Communication System Frame Length in ms: 0 Medium parameters used: f = 5200 MHz; $\sigma = 4.5$ S/m; $\epsilon_r = 35$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.59$ S/m; $\epsilon_r = 34.9$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.8$ S/m; $\epsilon_r = 34.6$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\epsilon_r = 34.4$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 34.2$ ; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012; - Sensor-Surface: 1,4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.385 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 8 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 18.4 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan. dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.327 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.9 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.822 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.9 W/kg Certificate No: D5GHzV2-1133\_Sep13 Page 11 of 16 ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.301 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 8.4 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 20.0 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.686 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.8 W/kg 0 dB = 18.8 W/kg = 12.74 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 02.09.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1133 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.43$ S/m; $\epsilon_r=48.5$ ; $\rho=1000$ kg/m³, Medium parameters used: f=5300 MHz; $\sigma=5.53$ S/m; $\epsilon_r=48.7$ ; $\rho=1000$ kg/m³, Medium parameters used: f=5500 MHz; $\sigma=5.83$ S/m; $\epsilon_r=48$ ; $\rho=1000$ kg/m³, Medium parameters used: f=5600 MHz; $\sigma=5.93$ S/m; $\epsilon_r=48.2$ ; $\rho=1000$ kg/m³, Medium parameters used: f=5800 MHz; $\sigma=6.25$ S/m; $\epsilon_r=47.5$ ; $\rho=1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.378 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 17.3 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.748 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 17.6 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.135 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.0 W/kg Certificate No: D5GHzV2-1133\_Sep13 Page 14 of 16 ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.009 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 19.5 W/kg ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.903 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 35.4 W/kg SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 18.5 W/kg 0 dB = 18.5 W/kg = 12.67 dBW/kg ## Impedance Measurement Plot for Body TSL n Collaboration with Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com Client Auden Certificate No: Z14-97002 ### CALIBRATION SE Object EX3DV4 - SN:3661 Calibration Procedure(s) TMC-OS-E-02-195 Calibration Procedures for Dosimetric E-field Probes Calibration date: March 10, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-----------------------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-13 (TMC, No.JW13-044) | Jun-14 | | Power sensor NRP-Z91 | 101547 | 01-Jul-13 (TMC, No.JW13-044) | Jun-14 | | Power sensor NRP-Z91 | 101548 | 01-Jul-13 (TMC, No.JW13-044) | Jun-14 | | Reference10dBAttenuator | BT0520 | 12-Dec-12(TMC,No.JZ12-867) | Dec-14 | | Reference20dBAttenuator | BT0267 | 12-Dec-12(TMC,No.JZ12-866) | Dec-14 | | Reference Probe EX3DV4 | SN 3846 | 03-Sep-13(SPEAG,No.EX3-3846_Sep13) | Sep-14 | | DAE4 SN 777 | | 22-Feb-13 (SPEAG, DAE4-777_Feb13) | Feb -14 | | DAE4 SN 905 | | 11-Jun-13 (SPEAG, DAE4-905_Jun13) | Jun -14 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 62010 <b>5</b> 260 <b>5</b> | 01-Jul-13 (TMC, No.JW13-045) | Jun-14 | | Network Analyzer E5071C | MY46110673 | 15-Feb-14 (TMC, No.JZ14-781) | Feb-15 | Name Function Signature Calibrated by: SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laborator Issued: March †2, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97002 Page 1 of 11 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com #### Glossary: **TSL** tissue simulating liquid NORMx.v.z sensitivity in free space sensitivity in TSL / NORMx.v.z ConvF DCP diode compression point CF crest factor (1/duty\_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis θ rotation around an axis that is in the plane normal to probe axis (at measurement center). Polarization 9 θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)". February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx, y, z; Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the $E^2$ -field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z^*$ frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax.y.z: Bx.y.z: Cx.y.z: VRx.y.z:A.B.C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 # Probe EX3DV4 SN: 3661 Calibrated: March 10, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com DASY – Parameters of Probe: EX3DV4 - SN: 3661 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) <sup>A</sup> | 0.45 | 0.49 | 0.47 | ±10.8% | | DCP(mV) <sup>B</sup> | 102.2 | 100.3 | 100.2 | | ### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc <sup>E</sup> | |-----|---------------|---|-----|------|-----|------|-------|------------------| | | System Name | | ₫B | dBõV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 198.0 | ±2.0% | | | | Y | 0.0 | 0.0 | 1.0 | | 204.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 200.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. <sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5 and Page 6). <sup>B</sup> Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 ## DASY - Parameters of Probe: EX3DV4 - SN: 3661 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.13 | 10.13 | 10.13 | 2.70 | 0.45 | ±12% | | 850 | 41.5 | 0.92 | 9.50 | 9.50 | 9.50 | 0.08 | 1.39 | ±12% | | 900 | 41.5 | 0.97 | 9.73 | 9.73 | 9.73 | 0.09 | 1.72 | ±12% | | 1750 | 40.1 | 1.37 | 8.29 | 8.29 | 8.29 | 0.18 | 1.38 | ±12% | | 1900 | 40.0 | 1.40 | 8.18 | 8.18 | 8.18 | 0.17 | 1.50 | ±12% | | 2000 | 40.0 | 1.40 | 8.21 | 8.21 | 8.21 | 0.14 | 1.68 | ±12% | | 2450 | 39.2 | 1.80 | 7:59 | 7.59 | 7.59 | 0.60 | 0.67 | ±12% | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.58 | 0.67 | ±12% | | 5200 | 36.0 | 4.66 | 5.43 | 5.43 | 5.43 | 0.35 | 1.51 | ±13% | | 5300 | 35.9 | 4.76 | 5.27 | 5.27 | 5.27 | 0.37 | 1.07 | ±13% | | 5500 | 35.6 | 4.96 | 4.90 | 4.90 | 4.90 | 0.39 | 1.27 | ±13% | | 5600 | 35.5 | 5.07 | 4.67 | 4.67 | 4.67 | 0.43 | 1.26 | ±13% | | 5800 | 35.3 | 5.27 | 4.81 | 4.81 | 4.81 | 0.47 | 1.22 | ±13% | <sup>&</sup>lt;sup>c</sup> Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. <sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com ## DASY - Parameters of Probe: EX3DV4 - SN: 3661 ## Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.92 | 9.92 | 9.92 | 0.93 | 0.64 | ±12% | | 850 | 55.2 | 0.99 | 9.45 | 9.45 | 9.45 | 0.20 | 1.21 | ±12% | | 900 | 55.0 | 1.05 | 9.38 | 9.38 | 9.38 | 0.26 | 1.06 | ±12% | | 1750 | 53.4 | 1.49 | 8.06 | 8.06 | 8.06 | 0.13 | 1.83 | ±12% | | 1900 | 53.3 | 1.52 | 7.75 | 7.75 | 7.75 | 0.16 | 1.86 | ±12% | | 2000 | 53.3 | 1.52 | 8.01 | 8.01 | 8.01 | 0.15 | 2.85 | ±12% | | 2450 | 52.7 | 1.95 | 7.47 | 7.47 | 7.47 | 0.45 | 0.83 | ±12% | | 2600 | 52.5 | 2.16 | 7.15 | 7.15 | 7.15 | 0.66 | 0.66 | ±12% | | 5200 | 49.0 | 5.30 | 4.77 | 4.77 | 4.77 | 0.41 | 1.44 | ±13% | | 5300 | 48.9 | 5.42 | 4.52 | 4.52 | 4.52 | 0.43 | 1.59 | ±13% | | 5500 | 48.6 | 5.65 | 4.28 | 4.28 | 4.28 | 0.44 | 1.57 | ±13% | | 5600 | 48.5 | 5.77 | 4.21 | 4.21 | 4.21 | 0.45 | 1.57 | ±13% | | 5800 | 48.2 | 6.00 | 4.30 | 4.30 | 4.30 | 0.47 | 1.69 | ±13% | <sup>&</sup>lt;sup>C</sup> Frequency validity of $\pm 100$ MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to $\pm 50$ MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. <sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm 5\%$ . The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 Huayuanbei Road. Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com # Receiving Pattern (Φ), θ=0° f=600 MHz, TEM f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2) Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com # Dynamic Range f(SAR<sub>head</sub>) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z14-97002 Page 9 of 11 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E/mail: Info@emcite.com Http://www.emcite.com ## **Conversion Factor Assessment** ## f=900 MHz, WGLS R9(H\_convF) ## f=2450 MHz, WGLS R26(H\_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2) Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com # DASY - Parameters of Probe: EX3DV4 - SN: 3661 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 18.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 2mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **BV ADT China (Auden)** Certificate No: EX3-3873\_Sep13 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3873 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 3, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 28-Dec-12 (No. ES3-3013_Dec12) | Dec-13 | | DAE4 | SN: 660 | 31-Jan-13 (No. DAE4-660_Jan13) | Jan-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-15 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 3, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3873 Sep13 Page 2 of 11 # Probe EX3DV4 SN:3873 Manufactured: March 13, 2012 Calibrated: September 3, 2013 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------------------------|----------|----------|----------|-----------| | Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.38 | 0.46 | 0.49 | ± 10.1 % | | DCP (mV) <sup>B</sup> | 100.3 | 97.6 | 96.4 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A | В | С | D | VR | Unc <sup>E</sup> | |-----|---------------------------|---|-----|-------|-----|------|-------|------------------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 189.8 | ±3.0 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 153.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 163.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. <sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do лot affect the E²-field uncertainty inside TSL (see Pages 5 and 6). В Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3873 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 9.80 | 9.80 | 9.80 | 0.35 | 0.91 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.56 | 9.56 | 9.56 | 0.37 | 0.84 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.46 | 9.46 | 9.46 | 0.47 | 0.77 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.27 | 8.27 | 8.27 | 0.47 | 0.73 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.94 | 7.94 | 7.94 | 0.46 | 0.73 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.20 | 7.20 | 7.20 | 0.33 | 0.94 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.05 | 5.05 | 5.05 | 0.25 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.83 | 4.83 | 4.83 | 0.25 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.87 | 4.87 | 4.87 | 0.25 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.51 | 4.51 | 4.51 | 0.30 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.61 | 4.61 | 4.61 | 0.30 | 1.80 | ± 13.1 % | <sup>&</sup>lt;sup>C</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm$ 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. EX3DV4-SN:3873 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|--------------|-------|---------------|----------------------| | 750_ | 55.5 | 0.96 | 9.35 | 9.35 | 9.35 | 0.80 | 0.58 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.21 | 9.21 | 9.21 | 0.25 | 1.19 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.97 | 8.97 | 8.97 | 0.26 | 1.17 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.69 | 7.69 | 7.69 | 0.70 | 0.63 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.40 | 7.40 | 7.40 | 0.25 | 1.09 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.91 | 6.91 | 6.91 | 0.78 | 0.58 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.39 | 4.39 | 4.39 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.20 | 4.20 | 4.20 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.88 | 3.88 | 3.88 | 0.45 | | | | 5600 | 48.5 | 5.77 | 3.85 | 3.85 | | | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.01 | 4.01 | 3.85<br>4.01 | 0.40_ | 1.90<br>1.90 | ± 13.1 %<br>± 13.1 % | <sup>&</sup>lt;sup>c</sup> Frequency validity of $\pm$ 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm$ 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm$ 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm$ 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3873 September 3, 2013 # Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$ Tot Tot ## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4-SN:3873 ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz EX3DV4-SN:3873 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 20 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | ## FCC SAR Test Report ## Appendix D. Photographs of EUT and Setup Report Format Version 5.0.0 Issued Date : Jul. 31, 2014 Report No. : SA140415C32B