Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Intertek Accreditation No.: SCS 108 Certificate No: DAE4-358_Sep11 | | PERSONAL PROPERTY. | |-----------------------|--------------------| | CALIBRATION CERTIFICA | the said market | | / | 38 20 20 | Object DAE4 - SD 000 D04 BJ - SN: 358 Calibration procedure(s) QA CAL-06.v23 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 15, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|---------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-10 (No:10376) | Sep-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V1.1 | SE LIMS 006 AB 1004 | 08-Jun-11 (in house check) | In house check: Jun-12 | Calibrated by: Name **Function** Signature Dominique Steffen Technician Approved by: Fin Bomholt **R&D Director** Issued: September 15, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-358_Sep11 Page 1 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 ### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-358_Sep11 Page 2 of 5 ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$ Low Range: $1LSB = 61 \ nV$, full range = $-1......+3 \ mV$ DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.155 ± 0.1% (k=2) | 403.799 ± 0.1% (k=2) | 403.664 ± 0.1% (k=2) | | Low Range | 3.94158 ± 0.7% (k=2) | 3.96912 ± 0.7% (k=2) | 3.94931 ± 0.7% (k=2) | ## **Connector Angle** | Company Apple to be used in DACV suctors | 000 00 1 4 0 | |---|---------------| | Connector Angle to be used in DASY system | 325.5 ° ± 1 ° | Certificate No: DAE4-358_Sep11 ### **Appendix** ### 1. DC Voltage Linearity | High Range | - | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + input | 200001.1 | 1.81 | 0.00 | | Channel X | + Input | 20005.65 | 5.15 | 0.03 | | Channel X | - Input | -19995.95 | 3.75 | -0.02 | | Channel Y | + Input | 199995.2 | -3.14 | -0.00 | | Channel Y | + Input | 19999.72 | 0.62 | 0.00 | | Channel Y | - Input | -19998.58 | 0.82 | -0.00 | | Channel Z | + Input | 200008.2 | 0.83 | 0.00 | | Channel Z | + Input | 20000.06 | -0.14 | -0.00 | | Channel Z | - Input | -20001.25 | -0.65 | 0.00 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2000.1 | 0.24 | 0.01 | | Channel X | + Input | 200.53 | 0.43 | 0.21 | | Channel X | - Input | -199,61 | 0.39 | -0.19 | | Channel Y | + Input | 2000.4 | 0.45 | 0.02 | | Channel Y | + Input | 199.91 | -0.19 | -0.09 | | Channel Y | - Input | -200.79 | -0.79 | 0.39 | | Channel Z | + Input | 2000.0 | -0.02 | -0.00 | | Channel Z | + Input | 199.12 | -0.98 | -0.49 | | Channel Z | - Input | -200.93 | -0.93 | 0.47 | ### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 9.38 | 6.96 | | | - 200 | -5.57 | -7.37 | | Channel Y | 200 | -4.40 | -4.68 | | | - 200 | 3.63 | 3.58 | | Channel Z | 200 | 11.35 | 11.59 | | • | - 200 | -13.61 | -13.29 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.34 | -0.22 | | Channel Y | 200 | 2.58 | - | 2.99 | | Channel Z | 200 | 1.95 | 0.09 | - | Certificate No: DAE4-358_Sep11 ### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16032 | 15528 | | Channel Y | 16126 | 15691 | | Channel Z | 15847 | 13159 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.21 | -1.03 | 0.78 | 0.30 | | Channel Y | -1.48 | -2.16 | -0.84 | 0.29 | | Channel Z | 0.23 | -0.76 | 1.61 | 0.43 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-358_Sep11 Page 5 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Intertek Certificate No: ER3-2216_Sep11 Accreditation No.: SCS 108 ### CALIBRATION CERTIFICATE Object ER3DV4R - SN:2216 Calibration procedure(s) QA CAL-02.v6, QA CAL-25.v4 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: September 16, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used
(M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|---|-----------------------| | Power meter E4419B | GB41293874 | 31-Mar-11 (No. 217-01372) | Apr-12 | | Power sensor E4412A | MY41498087 | 31-Mar-11 (No. 217-01372) | Apr-12 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 29-Mar-11 (No. 217-01369) | Apr-12 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367) | Apr-12 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 29-Mar-11 (No. 217-01370) | Apr-12 | | Reference Probe ER3DV6 | SN: 2328 | 4-Oct-10 (No. ER3-2328_Oct10) | Oct-11 | | DAE4 | SN: 789 | 6-Apr-11 (No. DAE4-789_Apr11) | Apr-12 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-09) In house check: Oc | | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-10) In house check: Oct | | Calibrated by: Claudio Leubler Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 19, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: NORMx,y,z sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005. ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). - NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open wavequide setup. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ER3-2216_Sep11 Page 2 of 10 # Probe ER3DV4R SN:2216 Manufactured: December 1, 1997 Calibrated: September 16, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ER3DV4R-SN:2216 September 16, 2011 ## DASY/EASY - Parameters of Probe: ER3DV4R - SN:2216 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------------|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) | 2.59 | 2.91 | 4.78 | ± 10.1 % | | DCP (mV) ^B | 100.5 | 97.9 | 98.8 | | ### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |-------|---------------------------|------|---|---------|---------|---------|----------|---------------------------| | 10000 | CW | 0.00 | Х | 0.00 | 0.00 | 1.00 | 112.3 | ±3.0 % | | | | | Υ | 0.00 | 0.00 | 1.00 | 125.5 | | | | | | Z | 0.00 | 0.00 | 1.00 | 144.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ER3-2216_Sep11 Page 4 of 10 B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM,0° f=2500 MHz,R22,0° # Receiving Pattern (ϕ), ϑ = 90° f=600 MHz,TEM,90° f=2500 MHz,R22,90° # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Receiving Pattern (ϕ), ϑ = 90° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(E-field) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Deviation from Isotropy in Air** Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) ER3DV4R-SN:2216 # DASY/EASY - Parameters of Probe: ER3DV4R - SN:2216 ### Other Probe Parameters | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle (°) | 30.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 8 mm | | Probe Tip to Sensor X Calibration Point | 2.5 mm | | Probe Tip to Sensor Y Calibration Point | 2.5 mm | | Probe Tip to Sensor Z Calibration Point | 2.5 mm | | | | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Intertek Certificate No: H3-6220_Sep11 Accreditation No.: SCS 108 ### **CALIBRATION CERTIFICATE** Object H3DV6 - SN:6220 Calibration procedure(s) QA CAL-03.v6, QA CAL-25.v4 Calibration procedure for H-field probes optimized for close near field evaluations in air Calibration date: September 19, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|---|------------------------| | Power meter E4419B | GB41293874 | 31-Mar-11 (No. 217-01372) | Apr-12 | | Power sensor E4412A | MY41498087 | 31-Mar-11 (No. 217-01372) | Apr-12 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 29-Mar-11 (No. 217-01369) | Apr-12 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367) | Apr-12 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 29-Mar-11 (No. 217-01370) | Apr-12 | | Reference Probe H3DV6 | SN: 6182 | 23-Jun-11 (No. H3-6182_Jun11) | Jun-12 | | DAE4 | SN: 789 | 6-Apr-11 (No. DAE4-789_Apr11) | Apr-12 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-10) In house check: 0 | | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 19, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdlenst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: NORMx,y,z sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ σ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1309-2005, "IEEE Standard
for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005. #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). - X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the X_a0a1a2 (no uncertainty required). Certificate No: H3-6220_Sep11 Page 2 of 10 H3DV6 - SN:6220 # Probe H3DV6 SN:6220 Manufactured: September 28, 2006 Calibrated: September 19, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: H3DV6 - SN:6220 #### **Basic Calibration Parameters** | | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-----------------------|----|------------|------------|------------|-----------| | Norm (A/m / √(mV)) | a0 | 2.54E-003 | 2.56E-003 | 2.91E-003 | ± 5.1 % | | Norm (A/m / √(mV)) | a1 | -1.33E-004 | -1.40E-004 | -1.88E-004 | ± 5.1 % | | Norm (A/m / √(mV)) | a2 | 1.27E-005 | 8.50E-006 | -5.43E-005 | ± 5.1 % | | DCP (mV) ^B | | 92.8 | 94.4 | 93.4 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | ປ່ກc ^E
(k=2) | |-------|---------------------------|------|---|---------|---------|---------|----------|----------------------------| | 10000 | CW | 0.00 | Х | 0.00 | 0.00 | 1.00 | 106.8 | ±2.7 % | | | | ĺ | Υ | 0.00 | 0.00 | 1.00 | 106.9 | | | | | | Z | 0.00 | 0.00 | 1.00 | 107.5 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # Frequency Response of H-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of H-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM,0° f=2500 MHz,R22,0° Z Tot # Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$ f=600 MHz,TEM,90° f=2500 MHz,R22,90° # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(H-field) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Deviation from Isotropy in Air** Error (ϕ, ϑ) , f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) H3DV6~ SN:6220 # DASY/EASY - Parameters of Probe: H3DV6 - SN:6220 ### **Other Probe Parameters** | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle (°) | -52.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 20 mm | | Tip Diameter | 6 mm | | Probe Tip to Sensor X Calibration Point | 3 mm | | Probe Tip to Sensor Y Calibration Point | 3 mm | | Probe Tip to Sensor Z Calibration Point | 3 mm | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Intertek Accreditation No.: SCS 108 Certificate No: CD835V3-1049_Sep11 ## CALIBRATION CERTIFICATE Object CD835V3 - SN: 1049 Calibration procedure(s) QA CAL-20.v5 Calibration procedure for dipoles in air Calibration date: September 20, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------|-----------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Power sensor HP 8481A | US37292783 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Probe ER3DV6 | SN: 2336 | 29-Dec-10 (No. ER3-2336_Dec10) | Dec-11 | | Probe H3DV6 | SN: 6065 | 29-Dec-10 (No. H3-6065_Dec10) | Dec-11 | | DAE4 | SN: 781 | 20-Apr-11 (No. DAE4-781_Apr11) | Apr-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-10) | In house check: Oct-11 | | Power sensor HP 8482H | SN: 3318A09450 | 09-Oct-09 (in house check Oct-10) | In house check: Oct-11 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-10) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 | | RF generator E4433B | MY 41000675 | 03-Nov-04 (in house check Oct-09) | In house check: Oct-11 | | | Name | Function | Signature \ | | Calibrated by: | Claudio Leubler | Laboratory Technician | VEL | | Approved by: | Fin Bomholt | R&D Director | F. Brulerlf | Issued: September 21, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### References [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna
feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. Certificate No: CD835V3-1049_Sep11 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |---------------------------------------|------------------------|---------| | Extrapolation | Advanced Extrapolation | | | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 10 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|--------------------|---------------------------| | Maximum measured | 100 mW input power | 0.452 A / m ± 8.2 % (k=2) | | E-field 10 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 165.2 V / m | | Maximum measured above low end | 100 mW input power | 156.6 V / m | | Averaged maximum above arm | 100 mW input power | 160.9 V / m ± 12.8 % (k=2) | ### **Appendix** ### **Antenna Parameters with Head TSL** | Frequency | Return Loss | Impedance | |-----------|-------------|---------------------------------------| | 800 MHz | 15.6 dB | 42.6 Ω - 13.8 jΩ | | 835 MHz | 26.4 dB | $49.2 \Omega + 4.7 j\Omega$ | | 900 MHz | 17.3 dB | 57.6 Ω - 12.7 jΩ | | 950 MHz | 19.6 dB | 45.8 Ω + 9.2 jΩ | | 960 MHz | 14.2 dB | $53.3~\Omega + 20.3~\mathrm{j}\Omega$ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. ### Impedance Measurement Plot #### **DASY4 H-field Result** Date/Time: 20.09.2011 11:09:35 Test Laboratory: SPEAG Lab2 CD835_1049_H_110920_CL DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1049 Communication System: CW; Communication System Band: CD835 (835.0 MHz) Frequency: 835 MHz; Communication System PAR: 0 dB; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY5** Configuration: Probe: H3DV6 - SN6065; ; Calibrated: 29.12.2010 • Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 20.04.2011 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) # Dipole H-Field measurement @ 835MHz/H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.452 A/m Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.481 A/m; Power Drift = 0.02 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB) #### Peak H-field in A/m | Grid 1 | Grid 2 | Grid 3 | |--------------|--------------|--------------| | 0.382 | 0.400 | 0.377 | | M4 | M4 | M4 | | Grid 4 | Grid 5 | Grid 6 | | 0.427 | 0.452 | 0.432 | | M4 | M4 | M4 | | Grid 7 | Grid 8 | Grid 9 | | 0.378 | 0.400 | 0.381 | | M4 | M4 | M4 | 0 dB = 0.450 A/m Date/Time: 20.09.2011 16:11:46 Test Laboratory: SPEAG Lab2 CD835_1049_E_110920_CL DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1049 Communication System: CW; Communication System Band: CD835 (835.0 MHz) Frequency: 835 MHz; Communication System PAR: 0 dB; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY5** Configuration: Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 20.04.2011 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) # Dipole E-Field measurement @ 835MHz/E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 165.2 V/m Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm Reference Value = 116.6 V/m; Power Drift = -0.01 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB) #### Peak E-field in V/m | Grid 1 | Grid 2 | Grid 3 | |--------|--------|--------| | 159.2 | 165.2 | 159.4 | | M4 | M4 | M4 | | Grid 4 | Grid 5 | Grid 6 | | 80.288 | 84.338 | 83.258 | | M4 | M4 | M4 | | Grid 7 | Grid 8 | Grid 9 | | 148.9 | 156.6 | 154.8 | | M4 | M4 | M4 | 0 dB = 165.2 V/m ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Intertek Accreditation No.: SCS 108 Certificate No: CD1880V3-1042_Sep11 ## **CALIBRATION CERTIFICATE** Object CD1880V3 - SN: 1042 Calibration procedure(s) QA CAL-20.v5 Calibration procedure for dipoles in air Calibration date: September 20, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------|-----------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Power sensor HP 8481A | US37292783 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Probe ER3DV6 | SN: 2336 | 29-Dec-10 (No. ER3-2336_Dec10) | Dec-11 | | Probe H3DV6 | SN: 6065 | 29-Dec-10 (No. H3-6065_Dec10) | Dec-11 | | DAE4 | SN: 781 | 20-Apr-11 (No. DAE4-781_Apr11) | Apr-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-10) | In house check: Oct-11 | | Power sensor HP 8482H | SN: 3318A09450 | 09-Oct-09 (in house check Oct-10) | In house check: Oct-11 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-10) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 | | RF generator E4433B | MY 41000675 | 03-Nov-04 (in house check Oct-09) | In house check: Oct-11 | | | Name | Function | Signature \ | | Calibrated by: | Claudio Leubler | Laboratory Technician | Uph | | Approved by: | Fin Bomholt | R&D Director | F. Bunkell | | | | | | Issued: September 21, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### References [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the
certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. Certificate No: CD1880V3-1042_Sep11 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DA\$Y5 | V52.6.2 | |---------------------------------------|------------------------|---------| | Extrapolation | Advanced Extrapolation | | | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 10 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ### Maximum Field values | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|--------------------|---------------------------| | Maximum measured | 100 mW input power | 0.468 A / m ± 8.2 % (k=2) | | E-field 10 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 141.6 V / m | | Maximum measured above low end | 100 mW input power | 138.8 V / m | | Averaged maximum above arm | 100 mW input power | 140.2 V / m ± 12.8 % (k=2) | ### **Appendix** #### Antenna Parameters with Head TSL | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 1730 MHz | 24.0 dB | 49.5 Ω + 6.3 jΩ | | 1880 MHz | 21.6 dB | 51.3 Ω + 8.3 jΩ | | 1900 MHz | 21.5 dB | 54.1 Ω + 7.8 jΩ | | 1950 MHz | 27.0 dB | 54.4 Ω - 1.5 jΩ | | 2000 MHz | 21.1 dB | $41.9 \Omega + 0.3 j\Omega$ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD1880V3-1042_Sep11 Page 3 of 6 ### **Impedance Measurement Plot** Date/Time: 20.09.2011 11:51:08 Test Laboratory: SPEAG Lab2 CD1880_1042_H_110920_CL DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1042 Communication System: CW; Communication System Band: CD1880 (1880.0 MHz) Frequency: 1880 MHz; Communication System PAR: 0 dB; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### **DASY5** Configuration: Probe: H3DV6 - SN6065; ; Calibrated: 29.12.2010 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 20.04.2011 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) # Dipole H-Field measurement @ 1880MHz/H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.468 A/m Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.496 A/m; Power Drift = 0.0034 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB) #### Peak H-field in A/m | Grid 1 | Grid 2 | Grid 3 | |--------|-----------|--------| | 0.406 | 0.423 | 0.402 | | M2 | M2 | M2 | | Grid 4 | Grid 5 | Grid 6 | | 0.446 | 0.468 | 0.448 | | M2 | M2 | M2 | | Grid 7 | Grid 8 | Grid 9 | | 0.412 | 0.436 | 0.415 | | M2 | M2 | M2 | 0 dB = 0.470 A/m Date/Time: 20.09.2011 14:40:21 Test Laboratory: SPEAG Lab2 CD1880_1042_E_110920_CL DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1042 Communication System: CW; Communication System Band: CD1880 (1880.0 MHz) Frequency: 1880 MHz; Communication System PAR: 0 dB; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### **DASY5** Configuration: Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010 • Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 20.04.2011 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) Dipole E-Field measurement @ 1880MHz/E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 141.6 V/m Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm Reference Value = 143.9 V/m; Power Drift = 0.0011 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB) Peak E-field in V/m | Grid 1 | Grid 2 | Grid 3 | |-----------|-----------|--------| | 136.3 | 141.6 | 135.5 | | M2 | M2 | M2 | | Grid 4 | Grid 5 | Grid 6 | | 85.700 | 91.280 | 90.270 | | M3 | M3 | M3 | | Grid 7 | Grid 8 | Grid 9 | | 132.6 | 138.8 | 136.5 | | M2 | M2 | M2 | 0 dB = 141.6 V/m Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Intertek Certificate No: AM1DV2-1047_Sep11 # CALIBRATION CERTIFICATE Object AM1DV2 - SN: 1047 Calibration procedure(s) QA CAL-24.v2 Calibration procedure for AM1D magnetic field probes and TMFS in the audio range Calibration date: September 15, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|-------------|---------------------------------|-----------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-10 (No:10376) | Sep-11 | | Reference Probe AM1DV2 | SN: 1008 | 18-Jan-11 (No. AM1D-1008_Jan11) | Jan-12 | | DAEA | SN: 781 | 20-Apr-11 (No. DAE4-781_Apr11) | Apr-12 | | DAE4 | SIV. 761 | 20-Apr-11 (No. DAE4-701_Apr11) | Αρι-12 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | Calibrated by: Approved by: Name Function Laboratory Technician F. Sunla Claudio Leubler Fin Bomholt **R&D Director** Issued: September 19, 2011 This calibration certificate shall not be reproduced except in full
without written approval of the laboratory. #### References - [1] ANSI C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. - [2] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension ## Description of the AM1D probe The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface. The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding. # Handling of the item The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter). ## Methods Applied and Interpretation of Parameters - Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to "southwest" orientation. - Functional Test: The functional test preceding calibration includes test of Noise level - RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz. - Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and -120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil. - Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane. - Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil. # AM1D probe identification and configuration data | Item | AM1DV2 Audio Magnetic 1D Field Probe | |-----------|--------------------------------------| | Type No | SP AM1 001 AF | | Serial No | 1047 | | Overall length | 296 mm | | |--------------------|------------------------------------|---------| | Tip diameter | 6.0 mm (at the tip) | | | Sensor offset | 3.0 mm (centre of sensor from tip) | | | Internal Amplifier | 40 dB | • | | Manufacturer / Origin | Schmid & Partner Engineering AG, Zurich, Switzerland | |-----------------------|--| | Manufacturing date | September 15, 2006 | | Last calibration date | April 14, 2010 | ## Calibration data Connector rotation angle (in DASY system) 184.8 ° +/- 3.6 ° (k=2) Sensor angle (in DASY system) -0.56 $^{\circ}$ +/- 0.5 $^{\circ}$ (k=2) Sensitivity at 1 kHz (in DASY system) **0.06517 V / (A/m)** +/- 2.2 % (k=2) S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates **CALIBRATION CERTIFICATE** Accreditation No.: SCS 108 Client Intertek Certificate No: CD2450V3-1043_Sep11 #### Object CD2450V3 - SN: 1043 QA CAL-20.v5 Calibration procedure(s) Calibration procedure for dipoles in air Calibration date: September 20, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# **Primary Standards** Cal Date (Certificate No.) Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Probe ER3DV6 SN: 2336 29-Dec-10 (No. ER3-2336_Dec10) Dec-11 Probe H3DV6 SN: 6065 29-Dec-10 (No. H3-6065_Dec10) Dec-11 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Apr-12 DAE4 ID# Secondary Standards Check Date (in house) Scheduled Check Power meter Agilent 4419B SN: GB42420191 09-Oct-09 (in house check Oct-10) In house check: Oct-11 Power sensor HP 8482H SN: 3318A09450 09-Oct-09 (in house check Oct-10) In house check: Oct-11 Power sensor HP 8482A SN: US37295597 09-Oct-09 (in house check Oct-10) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-10) In house check: Oct-11 RF generator E4433B MY 41000675 03-Nov-04 (in house check Oct-09) In house check: Oct-11 Issued: September 21, 2011 F. Budlane This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Name Claudio Leubler Fin Bomholt Calibrated by: Approved by: Function **R&D Director** Laboratory Technician S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### References [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in
subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. Certificate No: CD2450V3-1043_Sep11 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |---------------------------------------|------------------------|---------| | Extrapolation | Advanced Extrapolation | | | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 10 mm | | | Scan resolution | dx, $dy = 5$ mm | | | Frequency | 2450 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | # Maximum Field values | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|--------------------|---------------------------| | Maximum measured | 100 mW input power | 0.490 A / m ± 8.2 % (k=2) | | E-field 10 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 136.1 V / m | | Maximum measured above low end | 100 mW input power | 133.0 V / m | | Averaged maximum above arm | 100 mW input power | 134.5 V / m ± 12.8 % (k=2) | # **Appendix** ## Antenna Parameters with Head TSL | Frequency | Return Loss | Impedance | |-----------|-------------|---------------------------| | 2250 MHz | 16.4 dB | 56.6 Ω + 15.0 jΩ | | 2350 MHz | 27.9 dB | $54.0~\Omega+1.4~j\Omega$ | | 2450 MHz | 26.7 dB | 54.6 Ω + 1.4 jΩ | | 2550 MHz | 51.8 dB | 49.8 Ω - 0.2 jΩ | | 2650 MHz | 16.9 dB | 62.1 Ω + 10.7 jΩ | ## 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD2450V3-1043_Sep11 Page 3 of 6 # **Impedance Measurement Plot** Date/Time: 20.09.2011 12:41:26 Test Laboratory: SPEAG Lab2 CD2450_1043_H_110920_CL DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1043 Communication System: CW; Communication System Band: CD2450 (2450.0 MHz) Frequency: 2450 MHz; Communication System PAR: 0 dB; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: Probe: H3DV6 - SN6065; ; Calibrated: 29.12.2010 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 20.04.2011 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) # Dipole H-Field measurement @ 2450MHz/H Scan - measurement distance from the probe sensor center to CD2450 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.490 A/m Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.521 A/m; Power Drift = -0.02 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB) ## Peak H-field in A/m | Grid 1 | Grid 2 | Grid 3 | |--------------|--------|--------------| | 0.378 | 0.392 | 0.376 | | M2 | M2 | M2 | | Grid 4 | Grid 5 | Grid 6 | | 0.465 | 0.490 | 0.470 | | M2 | M2 | M2 | | Grid 7 | Grid 8 | Grid 9 | | 0.397 | 0.422 | 0.401 | | M2 | M2 | M2 | 0 dB = 0.490 A/m Date/Time: 20.09.2011 14:02:28 Test Laboratory: SPEAG Lab2 CD2450_1043_E_110920_CL DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1043 Communication System: CW; Communication System Band: CD2450 (2450.0 MHz) Frequency: 2450 MHz; Communication System PAR: 0 dB; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### **DASY5** Configuration: Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010 • Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 20.04.2011 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) # Dipole E-Field measurement @ 2450MHz/E Scan - measurement distance from the probe sensor center to CD2450 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 136.1 V/m Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm Reference Value = 81.357 V/m; Power Drift = 0.02 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB) ## Peak E-field in V/m | Grid 1 | Grid 2 | Grid 3 | |-----------|-----------|-----------| | 126.5 | 133.0 | 127.6 | | M2 | M2 | M2 | | Grid 4 | Grid 5 | Grid 6 | | 109.1 | 116.6 | 114.6 | | M3 | M2 | M2 | | Grid 7 | Grid 8 | Grid 9 | | 130.5 | 136.1 | 133.2 | | M2 | M2 | M2 | 0 dB = 136.1 V/m Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S C S Client Intertek Certificate No: TMFS_1028_Sep11 # CALIBRATION CERTIFICATE Object / Identification TMFS - SN: 1028 Calibration procedure(s) QA CAL-24.v2 Calibration procedure for AM1D magnetic field probes and TMFS in the audio range Calibration date Drimon, Ctandarda September 12, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The calibrations have been conducted in the R&D laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 110 # | Cai Date (Calibrated by, Certificate No.) | Scheduled Calibration | |---------------------------------|-------------|---|-----------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-10 (No:10376) | Sep-11 | | Secondary Standards | ID# | Cal / Check Date | Scheduled Calibration Check | | AMCC | 1050 | 15-Oct-09 (in house check Oct-09) | Oct-11 | | Reference Probe AM1DV2 | SN: 1008 | 18-Jan-11 (No. AM1D-1008_Jan11) | Jan-12 | | AMMI Audio Measuring Instrument | 1062 | 20-Sep-10 (in house check Sep-10) | Sep-12 | | Agilent WF Generator 33120A | MY40005266 | 13-Oct-09 (in house check Oct-09) | Oct-11 | Cal Data (Calibrated by Cartificate No.) Calibrated by: Name Function Claudio Leubler Laboratory Technician Signature Cahadulad Calibration Approved by: Katja Pokovic **Technical Manager** Issued: September 12, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### References - [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. - [2] DASY manual, Chapter "Hearing Aid Compatibility (HAC) T-Coil Extension" ## Methods Applied and Interpretation of Parameters - Coordinate System: The TMFS is mounted underneath the HAC Test Arch touching equivalently to a wireless device according to [2] 29.2.2.: In "North" orientation, the TMFS signal connector is directed to the north, with x and y axes of TMFS and Test arch coinciding (see fig. The rotational symmetry axis of the TMFS is aligned to the center of the HAC test Arch. For East, South and West configuration, the TMFS has been rotated clockwise in steps of 90°, so the connector looks into the specified direction. The evaluation of the radial direction is referenced to the device orientation equivalent to South direction). - Measurement Plane: In coincidence with standard [1], the measurement plane (probe sensor center) is selected to be at a distance of 10 mm above the the surface of the TMFS touching the frame. The 50 x 50 mm scan area is aligned to the center of the unit. The scanning plane is verified to be parallel to the phantom frame before the measurements using the predefined "Geometry and signal check" procedure according predefined procedures to the described in [2]. Fig. 1 TMFS scanning measurement configurations - Measurement Conditions: Calibration of AM1D probe and AMMI are according to [2]. The 1 kHz sine signal for the level measurement is supplied from an external, independent generator via a BNC cable to TMFS IN and monitored at TMFS OUT with an independent RMS voltmeter or Audio Analyzer. The level is set to 0.5 Vrms and monitored during the scans. - For the frequency response, a higher suppression of the background ambient magnetic field over the full frequency range was achieved by placing the TMFS in a magnetically shielded box. The AM1D probe was fixed without robot positioner near the axial maximum for this measurement. The
background noise suppression was typ. 30 dB at 100 Hz (minimum) and 42 dB at 1 kHz. The predefined multisine signal (48k_multisine_50-10000_10s.wav) was used and evaluated in the third-octave bands from 100 Hz to 10000 Hz ## 1 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 (482) | | |----------------------------------|----------------------------|---|--| | DASY PP Version | SEMCAD | V14.4.5 (3634) | | | Phantom | HAC Test Arch | SD HAC P01 BA, #1002 | | | Distance TMFS Top - Probe Centre | 10 mm | | | | Scan resolution | dx, dy = 5 mm | area = 50 x 50 mm | | | Frequency | for field scans 1 kHz | | | | Signal level to TMFS | for field scans 500 mV RMS | | | | Signal | for frequency response | multisine signal 50-10000 Hz,
each third-octave band | | Table 1: System configuration ## 2 Axial Maximum Field | Configuration | East | South | West | North | Subset Average | Average | |----------------------|--------|--------|--------|----------------|----------------|---------| | | | | | | | | | Axial Max | -20.19 | -20.19 | -20.19 | -20.20 | | -20.19 | | TMFS Y Axis 1st Max | -25.75 | -25.78 | -25.76 | -25.80 | | | | TMFS Y Axis 2nd Max | -25.78 | -25.79 | -25.75 | - 25.76 | | | | Longitudinal Max Avg | -25.77 | -25.79 | -25.76 | -25.78 | -25.77 | | | TMFS X Axis 1st Max | -25.81 | -25.79 | -25.78 | -25.82 | | | | TMFS X Axis 2nd Max | -25.72 | -25.76 | -25.76 | -25.74 | | | | Transversal Max Avg | -25.77 | -25.78 | -25.77 | -25.78 | -25.77 | | | Radial Max | | | | | | -25.77 | Table 2: Axial and radial field maxima measured with probe center at 10mm distance in dB A/m The maximum was calculated as the average from the values measured in the 4 orientations listed in table 2. **Axial Maximum** -20.19 dB A/m (+/- 0.33dB, k=2) ## 3 Radial Maximum Field In addition, the average from the 16 maxima of the radial field listed in table 2 (measured at 10mm) was calculated: Radial Maximum -25.77 dB A/m # 4 Appendix ## 4.1 Frequency response Max. deviation measured, relative to 1 kHz: min. -0.03, max. +0.01 dB | Frequency [Hz] | Response [dB] | |----------------|---------------| | 100 | 0.01 | | 125 | -0.01 | | 160 | -0.02 | | 200 | -0.01 | | 250 | -0.03 | | 315 | -0.01 | | 400 | 0.00 | | 500 | 0.00 | | 630 | -0.01 | | 800 | 0.00 | | 1000 | 0.00 | | 1250 | -0.01 | | 1600 | -0.01 | | 2000 | -0.01 | | 2500 | -0.01 | | 3150 | -0.01 | | 4000 | -0.02 | | 5000 | -0.02 | | 6300 | -0.03 | | 8000 | -0.03 | | 10000 | -0.03 | Table 3: Frequency response Fig. 2 Frequency response 100 to 10'000 Hz Fig. 3: Typical 2D field plots for x (red), y (green) and z (blue) components Fig. 4: Superponed field plots of z (axial), x and y radial magnetic field, 50 x 50 mm, individual scaling: white = max. field level, black = -4dB below max. The lines show the position of the 2D field plot of figure 3.