

RADIO TEST REPORT

Test Report No. 15274952H-C-R1

Customer	SHIMANO INC.
Description of EUT	Motor Unit
Model Number of EUT	7KX1
FCC ID	WY7-7KX1
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	June 25, 2024
Remarks	-

Representative Test Engineer	Approved By
Tel . coshida	Takayuki . L
Tetsuro Yoshida Engineer	Takayuki Shimada Leader
	IAC-MRA ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15274952H-C-R1 Page 2 of 58

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15274952H-C

This report is a revised version of 15274952H-C. 15274952H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	15274952H-C	June 11, 2024	-
(Original)			
1	15274952H-C-R1	June 25, 2024	SECTION 5: Radiated Spurious Emission Corrected explanatory note *1):
			"The test was performed that which is synchronous the worst duty cycle of ANT+."
			"The test was performed that which is synchronous the worst duty cycle of ANT+ and SHIMANO ORIGINAL."

Test Report No. 15274952H-C-R1 Page 3 of 58

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical

CONTENTS		PAGE
SECTION 1:	Customer Information	5
	Equipment Under Test (EUT)	
	Test Specification, Procedures & Results	
	Operation of EUT during testing	
	Radiated Spurious Emission	
SECTION 6:	Antenna Terminal Conducted Tests	14
	Test Data	
99 % Oc	cupied Bandwidth and 6 dB Bandwidth	15
	n Peak Output Power	
	Output Power	
	Spurious Emission	
Conducte	ed Spurious Emission	46
Power D	ensity	50
	Test Instruments	
APPENDIX 3:	Photographs of Test Setup	56
	Spurious Emission	
	ase Position	
	Terminal Conducted Tests	

Test Report No. 15274952H-C-R1 Page 5 of 58

SECTION 1: Customer Information

Company Name	SHIMANO INC.
Address	3-77 Oimatsu-cho, Sakai-ku, Sakai City, Osaka 590-8577, Japan
Telephone Number	+81-72-223-7019
Contact Person	Osamu Kariyama

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Motor Unit
Model Number	7KX1
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	February 28, 2024 (SHIMANO ORIGINAL)
	May 8, 2024 (Other than SHIMANO ORIGINAL)
Test Date	March 12 to May 17, 2024

2.2 Product Description

General Specification

Rating	DC 8.3 V to 13.5 V
Operating temperature	-10 deg. C to +50 deg. C

Test Report No. 15274952H-C-R1 Page 6 of 58

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

SHIMANO ORIGINAL

Equipment Type	Transceiver
Frequency of Operation	2478 MHz
Type of Modulation	GFSK
Antenna Type	Monopole Antenna
Antenna Gain	-0.53 dBi

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Type	Monopole Antenna
Antenna Gain	0.01 dBi

ANT+

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Type	Monopole Antenna
Antenna Gain	0.01 dBi

^{*}Bluetooth (Low Energy) and ANT+ do not transmit simultaneously.

Test Report No. 15274952H-C-R1 Page 7 of 58

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	2.8 dB	Complied	Conducted
Emission	15.247		2483.5 MHz		(below 30 MHz)/
Restricted	Meas Guidance v05r02		Horizontal, AV		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 15274952H-C-R1 Page 8 of 58

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	Horizontal	dB	4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz		5.0
	6 GHz to 18 GHz		dB	5.2
1 m	10 GHz to 18 GHz		dB	5.3
	18 GHz to 26.5 GHz	18 GHz to 26.5 GHz		5.2
	26.5 GHz to 40 GHz		dB	4.7
0.5 m	26.5 GHz to 40 GHz		dB	4.8

Antenna Terminal Conducted

İtem	Unit	Calculated Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15274952H-C-R1 Page 9 of 58

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15274952H-C-R1 Page 10 of 58

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
Bluetooth Low Energy (BT LE)	1M-PHY Uncoded PHY (1M), Maximum Packet Size, PRBS9
Bluetooth Low Energy (BT LE)	2M-PHY Uncoded PHY (2M), Maximum Packet Size, PRBS9
ANT+	Maximum Packet Size, PRBS9
SHIMANO ORIGINAL	Maximum Packet Size, SCRAMBLED *1)
4	

^{*}The worst condition was determined based on the test result of RF Output Power.

^{*}Power of the EUT was set by the software as follows;

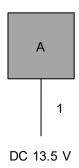
Mode	BT LE	ANT+	SHIMANO ORIGINAL		
Power Setting	0 dBm 4 dBm		0 dBm		
Software	3KR1.4.15.215.7.bin		3KR1.4.15.199.9.bin		
	(Date: May 9, 2024,		(Date: May 9, 2024, (Date: March 12, 2024,		(Date: March 12, 2024,
	Storage location: EUT memory)		Storage location: EUT memory)		

^{*}This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The Details of Operating Mode(s)


Test Item	Operating Mode	Tested Frequency
Radiated Spurious Emission (Below 1 GHz),	Tx BT LE 1M	2480 MHz *1)
Conducted Spurious Emission	Tx BT LE 2M	
	Tx ANT+	2441 MHz *1)
	Tx SHIMANO ORIGINAL	2478 MHz
99% Occupied Bandwidth,	Tx BT LE 1M	2402 MHz
6dB Bandwidth,	Tx BT LE 2M	2440 MHz
Maximum Peak Output Power,		2480 MHz
Radiated Spurious Émission (Above 1 GHz),	Tx ANT+	2402 MHz
Power Density		2441 MHz
		2480 MHz
	Tx SHIMANO ORIGINAL	2478 MHz

^{*1)} Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

^{*1)} Transmitting duty was 100 % on all tests

Test Report No. 15274952H-C-R1 Page 11 of 58

4.2 **Configuration and Peripherals**

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

= 000	.pu.o				
No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Motor Unit	7KX1	7KXVLS30001 *1)	SHIMANO INC.	EUT
			7KXVLS10013 *2)		
			7KXVLS10003 *3)		
			7KXVLS10071 *4)		
			7KXVLS1002E *5)		

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.85 (for RE*) 0.60 (for AT*)	Unshielded	Unshielded	-

^{*1)} for RE* of Mode BT LE and ANT+

^{*2)} for AT* of Mode BT LE and ANT+
3) for RE of Mode SHIMANO ORIGINAL

^{*4)} for AT* of Mode SHIMANO ORIGINAL

^{*5)} for Burst rate confirmation (PK with Duty Factor)

^{*}RE: Radiated Spurious Emission, AT: Antenna Terminal Conducted Tests

Test Report No. 15274952H-C-R1 Page 12 of 58

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

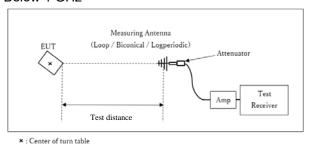
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

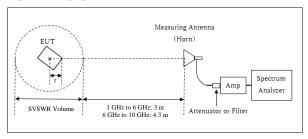
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).


and odiside the restricted band of 1 CC13.2037 Table 6 of 100-Cen 6.10 (IOLD).					
Frequency	Below 1 GHz	Above 1 GHz		20 dBc	
Instrument Used	Test Receiver	Spectrum Analyzer		Spectrum Analyzer	
Detector	QP	PK	AV	PK	
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz	
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz	
			VBW: 3 MHz		
			Detector:		
			Power Averaging (RMS)		
			Trace: 100 traces		
			<u>11.12.2.5.2</u>		
			The duty cycle was less		
			than 98% for detected		
			noise, a duty factor was		
			added to the 11.12.2.5.1		
			results.		
			15.35(c) Peak with Duty		
			factor *1)		

^{*1)} The test was performed that the spurious evaluation as peak with duty factor since the pulse emission which is synchronous the worst duty cycle of ANT+ and SHIMANO ORIGINAL.

Test Report No. 15274952H-C-R1 Page 13 of 58


Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz to 10 GHz

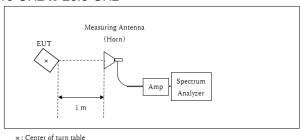
- r: Radius of an outer periphery of EUT
- ×: Center of turn table

[1 GHz to 6 GHz]

Distance Factor: 20 x log (4.0 m / 3.0 m) = 2.50 dB * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m SVSWR Volume : 2.0 m

[6 GHz to 10 GHz]

Distance Factor: 20 x log (5.0 m / 3.0 m) = 4.44 dB * Test Distance: (4.3 + SVSWR Volume /2) - r = 5.0


m

SVSWR Volume: 1.4 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)
r = 0.0m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX
Test Result : Pass

Test Report No. 15274952H-C-R1 Page 14 of 58

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	2 MHz / 3 MHz / 5 MHz / 10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz).

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 15274952H-C-R1 Page 15 of 58

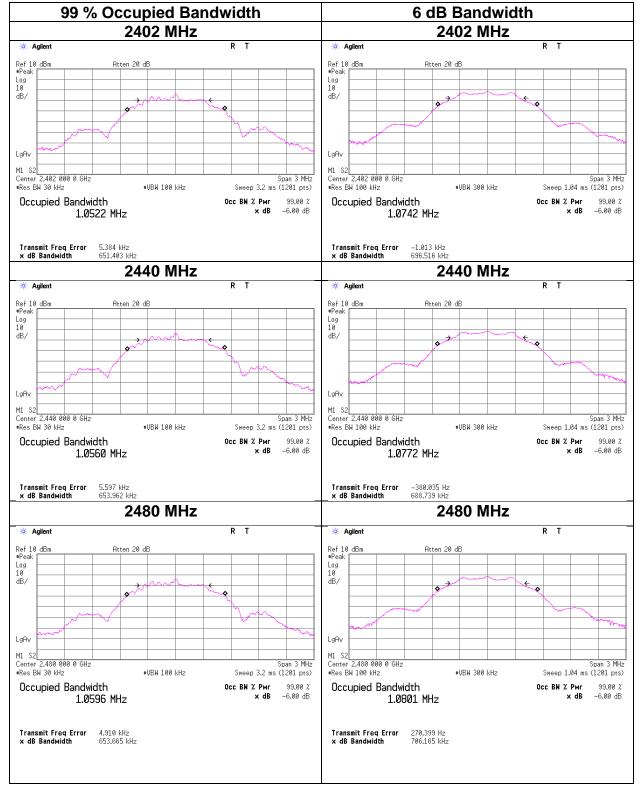
APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab.
Measurement Room No.10

Measurement Room No.10 No.6

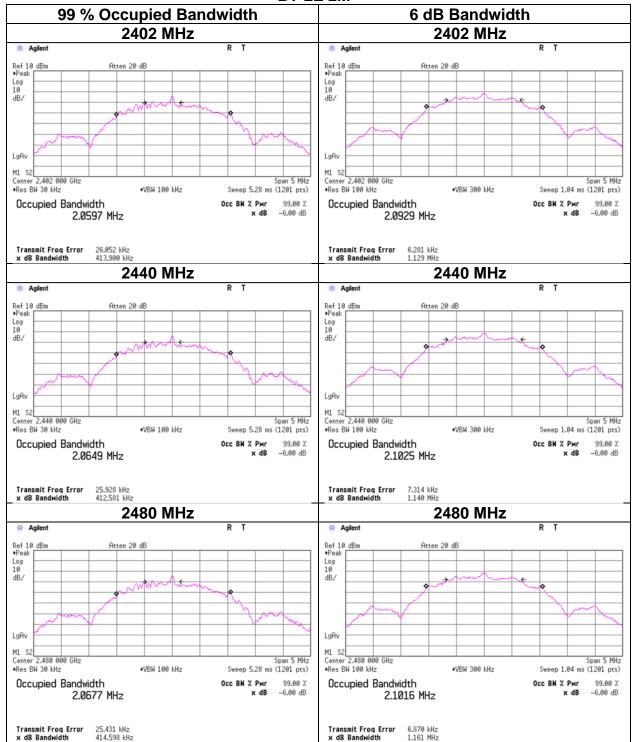
Date March 12, 2024 May 15, 2024


Temperature / Humidity Engineer Z4 deg. C / 35 % RH Shousei Hamaguchi

Mode Tx

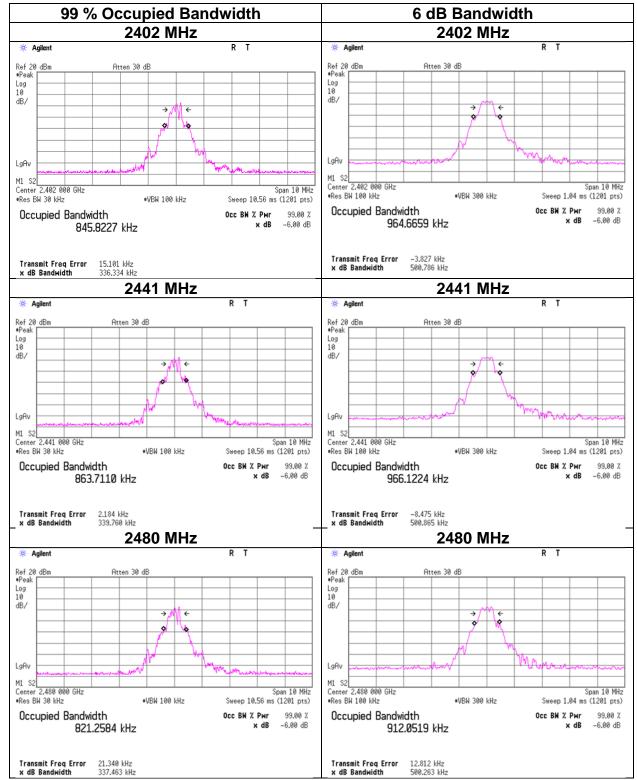
Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
BT LE 1M	2402	1052.2	0.697	> 0.5000
	2440	1056.0	0.689	> 0.5000
	2480	1059.6	0.706	> 0.5000
BT LE 2M	2402	2059.7	1.129	> 0.5000
	2440	2064.9	1.140	> 0.5000
	2480	2067.7	1.161	> 0.5000
ANT+	2402	845.8	0.501	> 0.5000
	2441	863.7	0.501	> 0.5000
	2480	821.3	0.500	> 0.5000
SHIMANO	2478	2102.4	1.400	> 0.5000
ORIGINAL				

99 % Occupied Bandwidth and 6 dB Bandwidth


BT LE 1M

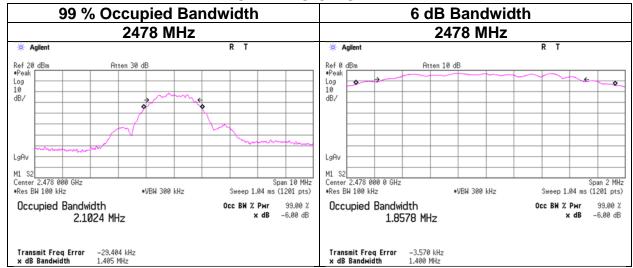
Test Report No. 15274952H-C-R1 Page 17 of 58

99 % Occupied Bandwidth and 6 dB Bandwidth


BT LE 2M

Test Report No. 15274952H-C-R1 Page 18 of 58

99 % Occupied Bandwidth and 6 dB Bandwidth


ANT+

Test Report No. 15274952H-C-R1 Page 19 of 58

99 % Occupied Bandwidth and 6 dB Bandwidth

SHIMANO ORIGINAL

Test Report No. 15274952H-C-R1 Page 20 of 58

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Date May 14, 2024
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Shousei Hamaguchi

Mode Tx BT LE

1M					Con	ducted Po	ower			e.	i.r.p. for F	RSS-247		
Freq.	Reading	Cable	Atten.	Res	sult	Lir	nit	Margin	Antenna	Res	sult	Lir	nit	Margin
		Loss	Loss					Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-11.39	1.89	9.74	0.24	1.06	30.00	1000	29.76	0.01	0.25	1.06	36.02	4000	35.77
2440	-11.22	1.90	9.75	0.43	1.10	30.00	1000	29.57	0.01	0.44	1.11	36.02	4000	35.58
2480	-11.20	1.91	9.75	0.46	1.11	30.00	1000	29.54	0.01	0.47	1.11	36.02	4000	35.55

2M					Con	ducted Po	ower			e.	i.r.p. for F	RSS-247		
Freq.	Reading	Cable	Atten.	Res	sult	Lir	nit	Margin	Antenna	Res	sult	Lir	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-11.44	1.89	9.74	0.19	1.04	30.00	1000	29.81	0.01	0.20	1.05	36.02	4000	35.82
2440	-11.28	1.90	9.75	0.37	1.09	30.00	1000	29.63	0.01	0.38	1.09	36.02	4000	35.64
2480	-11.24	1.91	9.75	0.42	1.10	30.00	1000	29.58	0.01	0.43	1.10	36.02	4000	35.59

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15274952H-C-R1 Page 21 of 58

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Date May 14, 2024
Temperature / Humidity 21 deg. C / 47 % RH
Engineer Shousei Hamaguchi

Mode Tx ANT+

					Con	ducted Po	ower			e.	i.r.p. for F	RSS-247		
Freq.	Reading	Cable	Atten.	Res	Result Limit				Antenna	Res	sult	Lir	nit	Margin
		Loss	Loss					Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.51	1.89	9.74	4.12	2.58	30.00	1000	25.88	0.01	4.13	2.59	36.02	4000	31.89
2441	-7.52	1.90	9.75	4.13	2.59	30.00	1000	25.87	0.01	4.14	2.59	36.02	4000	31.88
2480	-7.59	1.91	9.75	4.07	2.55	30.00	1000	25.93	0.01	4.08	2.56	36.02	4000	31.94

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15274952H-C-R1 Page 22 of 58

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Date May 12, 2024 24 deg. C / 35 % RH Temperature / Humidity Engineer Takafumi Noguchi Tx SHIMANO ORIGINAL Mode

					Cond	ducted P	ower			e.i	.r.p. for l	RSS-247		
Freq.	Reading	Cable	Atten.	Res	Result Limit Margir					Re	sult	Lir	nit	Margin
		Loss	Loss					_	Gain					_
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2478	0.07	2.38	6.13	8.58	7.21	30.00	1000	21.42	-0.53	8.05	6.38	36.02	4000	27.97

Sample Calculation:
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss
e.i.r.p. Result = Conducted Power Result + Antenna Gain

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15274952H-C-R1 Page 23 of 58

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Measurement Room Ise EMC Lab.

Tx

IVICASUI

No.10 No.6

Date

March 14, 2024 22 deg. C / 20 % RH May 14, 2024 21 deg. C / 47 % RH

Temperature / Humidity Engineer

Takafumi Noguchi

Shousei Hamaguchi

Mode

BT LE 1M

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Res	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm] [mW	
2402	-13.82	1.89	9.74	-2.19	0.60	1.97	-0.22	0.95
2440	-13.90	1.90	9.75	-2.25 0.60		1.97	-0.28	0.94
2480	-13.92	1.91	9.75	-2.26 0.59		1.97	-0.29	0.94

BT LE 2M

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Res	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
2402	-16.82	1.89	9.74	-5.19	0.30	4.73	-0.46	0.90
2440	-16.70	1.90	9.75	-5.05 0.31		4.73	-0.32	0.93
2480	-16.71	1.91	9.75	-5.05 0.31		4.73	-0.32	0.93

ANT+

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Res	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
2402	-30.82	1.89	9.74	-19.19	0.01	23.05	3.86	2.43
2441	-30.89	1.90	9.75	-19.24 0.01		23.05	3.81	2.40
2480	-31.00	1.91	9.75	-19.34 0.01		23.05	3.71	2.35

SHIMANO ORIGINAL

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-0.13	2.38	6.13	8.38 6.89		0.00	8.38	6.89

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

Test Report No. 15274952H-C-R1 Page 24 of 58

Burst rate confirmation


Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Date May 10, 2024
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Tomoya Sone

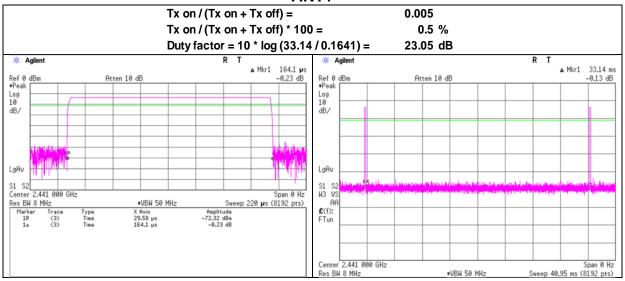
Mode Tx

BT LE 1M

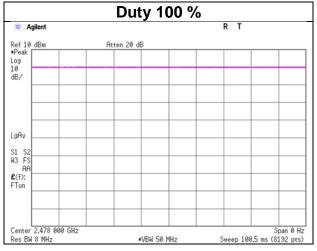
BT LE 2M

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15274952H-C-R1 Page 25 of 58


Burst rate confirmation

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber


Date May 10, 2024
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Tomoya Sone

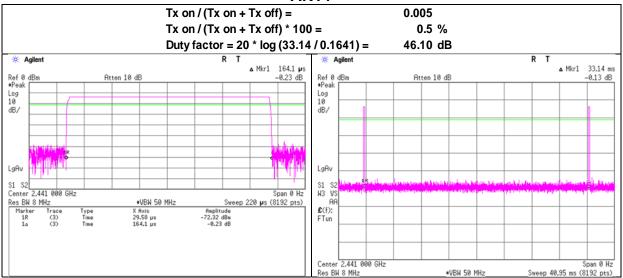
Mode Tx

ANT+

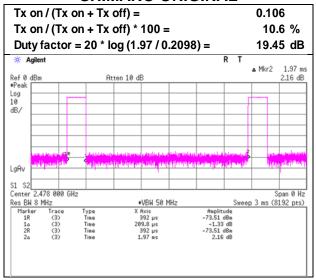
SHIMANO ORIGINAL

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15274952H-C-R1 Page 26 of 58


Burst rate confirmation (Reference data for Peak with Duty factor)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber


Date May 10, 2024
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Tomoya Sone

Mode Tx

ANT+

SHIMANO ORIGINAL

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15274952H-C-R1 Page 27 of 58

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.2

 Date
 May 9, 2024
 May 10, 2024
 May 17, 2024

 Temperature / Humidity
 20 deg. C / 40 % RH
 23 deg. C / 38 % RH
 22 deg. C / 48 % RH

 Engineer
 Tetsuro Yoshida
 Tomoya Sone
 Hiroki Numata

 (6 GHz to 10 GHz)
 (1 GHz to 6 GHz)
 (Above 10 GHz)

(6 GHz to 10 GHz) (1 GHz to 6 GHz)
Mode Tx BT LE 1M 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	44.7	31.2	27.5	5.5	32.2	2.0	45.5	34.0	73.9	53.9	28.4	19.9	*1)
Hori.	4804.0	40.7	32.5	31.4	7.6	31.2	-	48.5	40.3	73.9	53.9	25.4	13.6	Floor noise
Hori.	7206.0	44.5	33.4	35.6	10.7	32.0	-	58.7	47.7	73.9	53.9	15.2	6.2	Floor noise
Hori.	9608.0	43.6	33.2	35.6	11.2	32.6	-	57.8	47.4	73.9	53.9	16.1	6.5	Floor noise
Vert.	2390.0	42.6	31.6	27.5	5.5	32.2	2.0	43.4	34.4	73.9	53.9	30.5	19.5	*1)
Vert.	4804.0	40.6	32.4	31.4	7.6	31.2	-	48.4	40.2	73.9	53.9	25.5	13.7	Floor noise
Vert.	7206.0	44.3	33.6	35.6	10.7	32.0	-	58.6	47.8	73.9	53.9	15.3	6.1	Floor noise
Vert.	9608.0	43.6	33.1	35.6	11.2	32.6	-	57.8	47.3	73.9	53.9	16.1	6.6	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

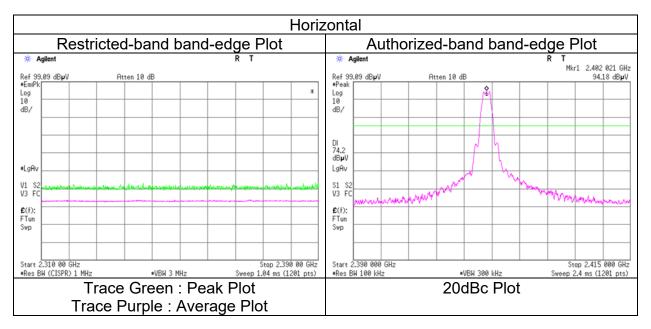
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	94.2	27.5	5.5	32.2	95.0	-	-	Carrier
Hori.	2400.0	45.9	27.5	5.5	32.2	46.7	75.0	28.3	
Vert.	2402.0	92.4	27.5	5.5	32.2	93.2	-	-	Carrier
Vert.	2400.0	44.4	27.5	5.5	32.2	45.1	73.2	28.1	

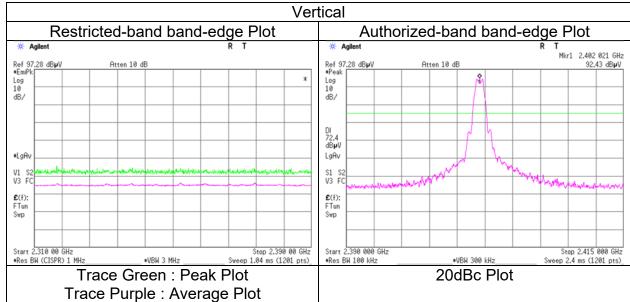
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.


^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. 15274952H-C-R1 Page 28 of 58

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab.
Semi Anechoic Chamber No.3
Date May 10, 2024
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Tomoya Sone
(1 GHz to 6 GHz)

Mode Tx BT LE 1M 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15274952H-C-R1 Page 29 of 58

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.2

May 17, 2024 Date May 9, 2024 May 10, 2024 20 deg. C / 40 % RH 23 deg. C / 38 % RH 22 deg. C / 48 % RH Temperature / Humidity Tomoya Sone Hiroki Numata Engineer Tetsuro Yoshida

(Above 10 GHz) (6 GHz to 10 GHz) (1 GHz to 6 GHz)

Mode Tx BT LE 1M 2440 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	41.3	31.9	31.4	7.6	31.2	-	49.2	39.7	73.9	53.9	24.7	14.2	Floor noise
Hori.	7320.0	43.6	33.4	35.6	10.7	32.1	-	57.8	47.7	73.9	53.9	16.1	6.2	Floor noise
Hori.	9760.0	43.0	33.1	35.9	11.3	32.7	-	57.5	47.6	73.9	53.9	16.4	6.3	Floor noise
Vert.	4880.0	41.5	31.7	31.4	7.6	31.2	-	49.4	39.6	73.9	53.9	24.6	14.3	Floor noise
Vert.	7320.0	43.6	33.1	35.6	10.7	32.1	-	57.9	47.4	73.9	53.9	16.0	6.5	Floor noise
Vert.	9760.0	43.6	33.3	35.9	11.3	32.7	-	58.1	47.8	73.9	53.9	15.8	6.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

20log (5 m / 3.0 m) = 4.44 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

Test Report No. 15274952H-C-R1 Page 30 of 58

Radiated Spurious Emission

Test place

Ise EMC Lab.

Semi Anechoic Chamber

Date

Temperature / Humidity

Engineer

No.3 May 9, 2024 20 deg. C / 40 % RH Tetsuro Yoshida (6 GHz to 10 GHz) Tx BT LE 1M 2480 MHz

No.3 May 10, 2024 23 deg. C / 38 % RH Tomoya Sone (1 GHz to 6 GHz)

No.2 May 16, 2024 24 deg. C / 58 % RH Hiroyuki Furutaka (Below 1 GHz)

No.2 May 17, 2024 22 deg. C / 48 % RH Hiroki Numata (Above 10 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	38.6	20.4	-	15.3	6.7	28.5	-	13.9	-	40.0	-	26.1	-	
Hori.	63.6	21.8	-	7.0	7.0	28.5	-	7.3	-	40.0	-	32.7	-	
Hori.	84.5	22.1	-	7.5	7.2	28.4	-	8.4	-	40.0	-	31.6	-	
Hori.	89.0	22.5	-	8.3	7.3	28.4	-	9.7	-	43.5	-	33.9	-	
Hori.	118.9	21.3	-	12.7	7.5	28.3	-	13.2	-	43.5	-	30.3	-	
Hori.	208.3	20.3	-	11.6	8.2	27.9	-	12.1	-	43.5	-	31.4	-	
Hori.	2483.5	58.9	44.0	27.4	5.6	32.2	2.0	59.7	46.7	73.9	53.9	14.2	7.2	*1)
Hori.	4960.0	41.0	32.3	31.6	7.6	31.1	-	49.0	40.4	73.9	53.9	24.9	13.5	Floor noise
Hori.	7440.0	43.6	33.5	35.5	10.7	32.1	-	57.7	47.6	73.9	53.9	16.2	6.3	Floor noise
Hori.	9920.0	43.9	33.2	36.1	11.3	32.8	-	58.5	47.9	73.9	53.9	15.4	6.0	Floor noise
Vert.	38.6	21.7	-	15.3	6.7	28.5	-	15.2	-	40.0	-	24.8	-	
Vert.	63.6	22.0	-	7.0	7.0	28.5	-	7.5	-	40.0	-	32.5	-	
Vert.	84.5	22.5	-	7.5	7.2	28.4	-	8.8	-	40.0	-	31.2	-	
Vert.	89.0	22.5	-	8.3	7.3	28.4	-	9.7	-	43.5	-	33.9	-	
Vert.	118.9	21.2	-	12.7	7.5	28.3	-	13.1	-	43.5	-	30.4	-	
Vert.	208.3	20.4	-	11.6	8.2	27.9	-	12.2	-	43.5	-	31.3	-	
Vert.	2483.5	56.5	40.6	27.4	5.6	32.2	2.0	57.3	43.3	73.9	53.9	16.6	10.6	*1)
Vert.	4960.0	40.8	32.3	31.6	7.6	31.1	-	48.9	40.3	73.9	53.9	25.0	13.6	Floor noise
Vert.	7440.0	43.6	33.4	35.5	10.7	32.1	-	57.6	47.5	73.9	53.9	16.3	6.4	Floor noise
Vert.	9920.0	43.7	33.2	36.1	11.3	32.8	-	58.4	47.8	73.9	53.9	15.5	6.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

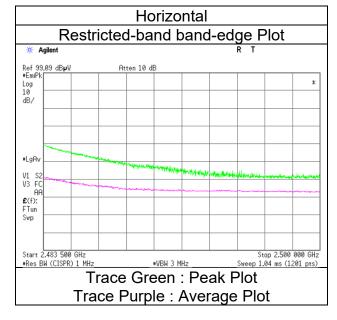
Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

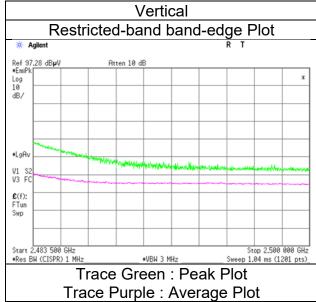
20log (5 m / 3.0 m) = 4.44 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz $20\log (1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. 15274952H-C-R1 Page 31 of 58


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.3 May 10, 2024 23 deg. C / 38 % RH Tomoya Sone (1 GHz to 6 GHz) Tx BT LE 1M 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious

Final result of restricted band edge was shown in tabular data.

Test Report No. 15274952H-C-R1 Page 32 of 58

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.2

Date May 9, 2024 May 10, 2024 May 17, 2024 20 deg. C / 40 % RH 23 deg. C / 38 % RH 22 deg. C / 48 % RH Temperature / Humidity Tomoya Sone Hiroki Numata Engineer Tetsuro Yoshida

(6 GHz to 10 GHz) (1 GHz to 6 GHz) (Above 10 GHz)

Mode Tx BT LE 2M 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	45.1	31.7	27.5	5.5	32.2	4.7	45.9	37.2	73.9	53.9	28.1	16.7	*1)
Hori.	4804.0	40.8	32.5	31.4	7.6	31.2	-	48.6	40.4	73.9	53.9	25.3	13.6	Floor noise
Hori.	7206.0	44.2	33.3	35.6	10.7	32.0	-	58.5	47.6	73.9	53.9	15.4	6.3	Floor noise
Hori.	9608.0	43.5	33.2	35.6	11.2	32.6	-	57.7	47.3	73.9	53.9	16.2	6.6	Floor noise
Vert.	2390.0	42.9	31.4	27.5	5.5	32.2	4.7	43.7	36.9	73.9	53.9	30.2	17.0	*1)
Vert.	4804.0	40.7	32.7	31.4	7.6	31.2	-	48.5	40.5	73.9	53.9	25.4	13.4	Floor noise
Vert.	7206.0	44.2	33.4	35.6	10.7	32.0	-	58.4	47.7	73.9	53.9	15.5	6.2	Floor noise
Vert.	9608.0	43.7	33.3	35.6	11.2	32.6	-	57.9	47.5	73.9	53.9	16.0	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

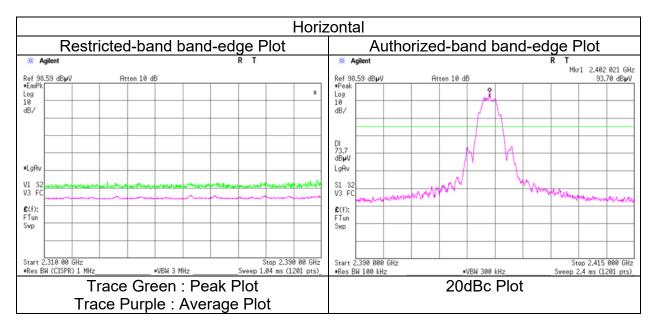
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	93.7	27.5	5.5	32.2	94.5	-		Carrier
Hori.	2400.0	62.2	27.5	5.5	32.2	63.0	74.5	11.5	
Vert.	2402.0	91.7	27.5	5.5	32.2	92.5	-	-	Carrier
Vert.	2400.0	60.0	27.5	5.5	32.2	60.8	72.5	11.7	

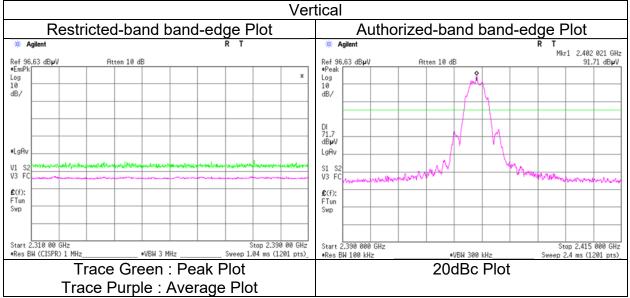
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

20log (4 m / 3.0 m) = 2.5 dB Distance factor: 1 GHz-6 GHz

6 GHz - 10 GHz 20log (5 m / 3.0 m) = 4.44 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)


Test Report No. 15274952H-C-R1 Page 33 of 58

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab.
Semi Anechoic Chamber No.3
Date May 10, 2024
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Tomoya Sone
(1 GHz to 6 GHz)

Mode Tx BT LE 2M 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15274952H-C-R1 Page 34 of 58

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.2

Date May 9, 2024 May 10, 2024 May 17, 2024 20 deg. C / 40 % RH 23 deg. C / 38 % RH 22 deg. C / 48 % RH Temperature / Humidity Tomoya Sone Hiroki Numata Engineer Tetsuro Yoshida

(Above 10 GHz) (6 GHz to 10 GHz) (1 GHz to 6 GHz)

Mode Tx BT LE 2M 2440 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	41.6	31.8	31.4	7.6	31.2	-	49.4	39.6	73.9	53.9	24.5	14.3	Floor noise
Hori.	7320.0	43.8	33.3	35.6	10.7	32.1	-	58.1	47.5	73.9	53.9	15.8	6.4	Floor noise
Hori.	9760.0	43.5	33.3	35.9	11.3	32.7	-	58.0	47.8	73.9	53.9	15.9	6.1	Floor noise
Vert.	4880.0	41.4	31.6	31.4	7.6	31.2	-	49.3	39.5	73.9	53.9	24.6	14.4	Floor noise
Vert.	7320.0	43.3	33.1	35.6	10.7	32.1	-	57.6	47.3	73.9	53.9	16.3	6.6	Floor noise
Vert.	9760.0	43.7	33.2	35.9	11.3	32.7	-	58.2	47.7	73.9	53.9	15.7	6.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

20log (5 m / 3.0 m) = 4.44 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

Test Report No. 15274952H-C-R1 Page 35 of 58

Radiated Spurious Emission

Test place Semi Anechoic Chamber

Temperature / Humidity

Ise EMC Lab.

Date

No.3 May 9, 2024

Tetsuro Yoshida

20 deg. C / 40 % RH

No.3 May 10, 2024 23 deg. C / 38 % RH Tomoya Sone (1 GHz to 6 GHz)

No.2 May 16, 2024 24 deg. C / 58 % RH Hiroyuki Furutaka (Below 1 GHz)

No.2 May 17, 2024 22 deg. C / 48 % RH Hiroki Numata (Above 10 GHz)

Engineer Mode

(6 GHz to 10 GHz) Tx BT LE 2M 2480 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	38.7	20.5	-	15.3	6.7	28.5	-	14.0	-	40.0	-	26.0	-	
Hori.	65.0	21.9	-	6.8	7.1	28.5	-	7.2	-	40.0	-	32.8	-	
Hori.	84.0	22.2	-	7.5	7.2	28.5	-	8.4	-	40.0	-	31.6	-	
Hori.	89.0	22.5	-	8.3	7.3	28.4	-	9.7	-	43.5	-	33.9	-	
Hori.	119.0	21.3	-	12.7	7.5	28.3	-	13.2	-	43.5	-	30.3	-	
Hori.	209.0	20.3	-	11.6	8.2	27.9	-	12.1	-	43.5	-	31.4	-	
Hori.	2483.5	58.4	34.3	27.4	5.6	32.2	4.7	59.1	39.8	73.9	53.9	14.8	14.2	*1)
Hori.	4960.0	39.8	32.3	31.6	7.6	31.1	-	47.9	40.3	73.9	53.9	26.1	13.6	Floor noise
Hori.	7440.0	43.3	33.2	35.5	10.7	32.1	-	57.3	47.3	73.9	53.9	16.6	6.6	Floor noise
Hori.	9920.0	43.7	33.2	36.1	11.3	32.8	-	58.3	47.8	73.9	53.9	15.6	6.1	Floor noise
Vert.	38.7	21.8	-	15.3	6.7	28.5	-	15.3	-	40.0	-	24.7	-	
Vert.	65.0	22.1	-	6.8	7.1	28.5	-	7.4	-	40.0	-	32.6	-	
Vert.	84.0	22.6	-	7.5	7.2	28.5	-	8.8	-	40.0		31.2	-	
Vert.	89.0	22.5	-	8.3	7.3	28.4	-	9.7	-	43.5		33.9	-	
Vert.	119.0	21.2	-	12.7	7.5	28.3	-	13.1	-	43.5		30.4	-	
Vert.	209.0	20.4	-	11.6	8.2	27.9	-	12.2	-	43.5		31.3	-	
Vert.	2483.5	55.1	40.7	27.4	5.6	32.2	4.7	55.8	46.2	73.9			7.7	
Vert.	4960.0	39.9	32.4	31.6	7.6	31.1	-	48.0	40.4	73.9				Floor noise
Vert.	7440.0	43.3	33.4	35.5	10.7	32.1	-	57.3	47.4	73.9				Floor noise
Vert.	9920.0	43.3	33.2	36.1	11.3	32.8	-	57.9	47.8	73.9	53.9	16.0	6.1	Floor noise

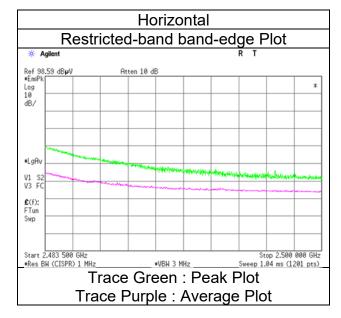
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

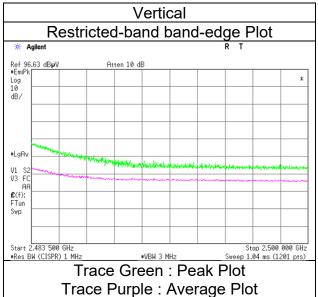
Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

6 GHz - 10 GHz 20log (5 m / 3.0 m) = 4.44 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)


Test Report No. 15274952H-C-R1 Page 36 of 58


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 May 10, 2024 23 deg. C / 38 % RH Tomoya Sone (1 GHz to 6 GHz) Tx BT LE 2M 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15274952H-C-R1 Page 37 of 58

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.2

May 9, 2024 May 10, 2024 May 17, 2024 Date 20 deg. C / 40 % RH 23 deg. C / 38 % RH 22 deg. C / 48 % RH Temperature / Humidity Tomoya Sone Hiroki Numata Engineer Tetsuro Yoshida

(6 GHz to 10 GHz) (1 GHz to 6 GHz) (Above 10 GHz)

Tx ANT+ 2402 MHz Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	51.1	-	27.5	5.5	32.2	-	51.9	-	73.9	-	22.0	-	*1)
Hori.	4804.0	40.6	32.3	31.4	7.6	31.2	-	48.4	40.1	73.9	53.9	25.5	13.8	Floor noise
Hori.	7206.0	44.5	33.4	35.6	10.7	32.0	-	58.8	47.7	73.9	53.9	15.1	6.2	Floor noise
Hori.	9608.0	43.3	33.4	35.6	11.2	32.6	-	57.5	47.5	73.9	53.9	16.4	6.4	Floor noise
Vert.	2390.0	49.5	-	27.5	5.5	32.2	-	50.3	-	73.9	-	23.6	-	*1)
Vert.	4804.0	40.5	32.2	31.4	7.6	31.2	-	48.3	40.0	73.9	53.9	25.6	13.9	Floor noise
Vert.	7206.0	44.3	33.4	35.6	10.7	32.0	-	58.5	47.7	73.9	53.9	15.4	6.2	Floor noise
Vert.	9608.0	43.4	33.3	35.6	11.2	32.6	-	57.6	47.4	73.9	53.9	16.3	6.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

LUGBO Batt	Officer								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	98.4	27.5	5.5	32.2	99.2	-	-	Carrier
Hori.	2400.0	46.3	27.5	5.5	32.2	47.1	79.2	32.1	
Vert.	2402.0	96.8	27.5	5.5	32.2	97.6	-	-	Carrier
Vert.	2400.0	45.1	27.5	5.5	32.2	45.9	77.6	31.6	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

PK with Duty factor

Polarity	Frequency	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
		(PK)	Factor			Factor				
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	51.1	27.5	5.5	32.2	-46.1	5.8	53.9	48.1	*
Vert.	2390.000	49.5	27.5	5.5	32.2	-46.1	4.2	53.9	49.7	*

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor + Dwell time factor (Refer to dwell time data sheet)

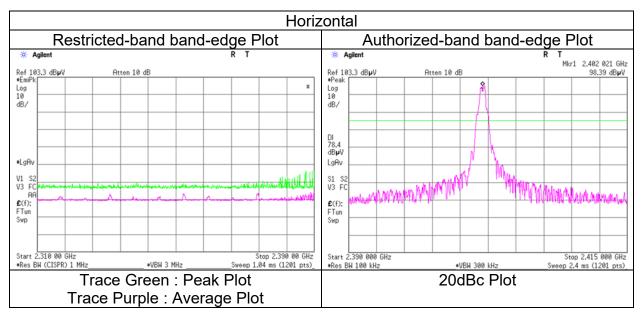
1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

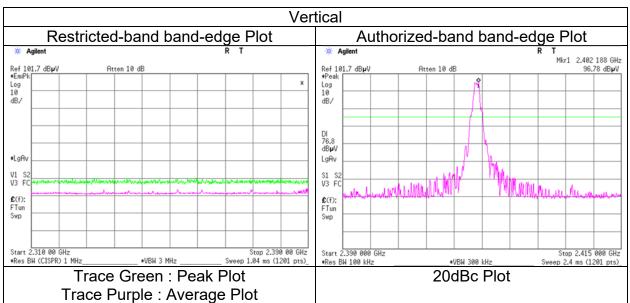
6 GHz - 10 GHz 20log (5 m / 3.0 m) = 4.44 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

^{*}Above noise was synchronized with carrier frequency.


Test Report No. 15274952H-C-R1 Page 38 of 58


Radiated Spurious Emission (Reference Plot for band-edge)

Tx ANT+ 2402 MHz

Test place Ise EMC Lab.
Semi Anechoic Chamber No.3
Date May 10, 2024
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Tomoya Sone
(1 GHz to 6 GHz)

Mode

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15274952H-C-R1 Page 39 of 58

Radiated Spurious Emission

Ise EMC Lab. Test place

Semi Anechoic Chamber No.3 No.3 No.2 No.2

May 9, 2024 May 17, 2024 May 10, 2024 May 16, 2024 Date

Temperature / Humidity 20 deg. C / 40 % RH 23 deg. C / 38 % RH 24 deg. C / 58 % RH 22 deg. C / 48 % RH Tomoya Sone Hiroyuki Furutaka (Below 1 GHz) Tetsuro Yoshida Hiroki Numata Engineer

(1 GHz to 6 GHz) (6 GHz to 10 GHz) (Above 10 GHz) Mode Tx ANT+ 2441 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	55.1	21.5	-	9.3	7.0	28.5	-	9.2	-	40.0	-	30.8	-	
Hori.	64.5	21.6	-	6.8	7.1	28.5	-	7.0	-	40.0	-	33.0	-	
Hori.	93.6	21.9	-	9.0	7.3	28.4	-	9.8	-	43.5	-	33.7	-	
Hori.	103.7	21.4	-	10.7	7.4	28.4	-	11.1	-	43.5	-	32.4	-	
Hori.	212.3	20.3	-	11.5	8.2	27.9	-	12.1	-	43.5	-	31.4	-	
Hori.	223.8	20.6	-	11.6	8.3	27.9	-	12.6	-	46.0	-	33.4	-	
Hori.	4882.0	40.4	31.8	31.4	7.6	31.2	-	48.3	39.7	73.9	53.9	25.6	14.2	Floor noise
Hori.	7323.0	44.1	33.4	35.6	10.7	32.1	-	58.3	47.7	73.9	53.9	15.6	6.2	Floor noise
Hori.	9764.0	43.2	33.1	35.9	11.3	32.7	-	57.7	47.6	73.9	53.9	16.2	6.3	Floor noise
Vert.	55.1	21.5	-	9.3	7.0	28.5	-	9.2	-	40.0	-	30.8	-	
Vert.	64.5	21.7	-	6.8	7.1	28.5	-	7.1	-	40.0	-	32.9	-	
Vert.	93.6	22.0	-	9.0	7.3	28.4	-	9.9	-	43.5	-	33.6	-	
Vert.	103.7	21.5	-	10.7	7.4	28.4	-	11.2	-	43.5	-	32.3	-	
Vert.	212.3	20.4	-	11.5	8.2	27.9	-	12.2	-	43.5	-	31.3	-	
Vert.	223.8	20.7	-	11.6	8.3	27.9	-	12.7	-	46.0	-	33.3	-	
Vert.	4882.0	40.5	31.7	31.4	7.6	31.2	-	48.4	39.6	73.9	53.9	25.5	14.3	Floor noise
Vert.	7323.0	44.2	33.4	35.6	10.7	32.1	-	58.4	47.6	73.9	53.9	15.5	6.3	Floor noise
Vert.	9764.0	43.5	33.1	35.9	11.3	32.7	-	58.0	47.6	73.9	53.9	15.9	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

20log (5 m / 3.0 m) = 4.44 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 15274952H-C-R1 Page 40 of 58

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3 No.2

Date May 9, 2024 May 10, 2024 May 17, 2024 20 deg. C / 40 % RH 23 deg. C / 38 % RH 22 deg. C / 48 % RH Temperature / Humidity Tomoya Sone Hiroki Numata Engineer Tetsuro Yoshida

(6 GHz to 10 GHz) (1 GHz to 6 GHz) (Above 10 GHz)

Mode Tx ANT+ 2480 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	62.9	-	27.4	5.6	32.2	-	63.6	-	73.9	-	10.3	-	*1)
Hori.	4960.0	40.2	32.2	31.6	7.6	31.1	-	48.3	40.2	73.9	53.9	25.6	13.7	Floor noise
Hori.	7440.0	43.4	33.3	35.5	10.7	32.1	-	57.4	47.4	73.9	53.9	16.5	6.5	Floor noise
Hori.	9920.0	43.6	33.1	36.1	11.3	32.8	-	58.2	47.8	73.9	53.9	15.7	6.1	Floor noise
Vert.	2483.5	60.5	-	27.4	5.6	32.2	-	61.3	-	73.9	-	12.6	-	*1)
Vert.	4960.0	40.2	32.1	31.6	7.6	31.1	-	48.2	40.1	73.9	53.9	25.7	13.8	Floor noise
Vert.	7440.0	43.7	33.3	35.5	10.7	32.1	-	57.8	47.3	73.9	53.9	16.1	6.6	Floor noise
Vert.	9920.0	43.2	33.0	36.1	11.3	32.8	-	57.9	47.7	73.9	53.9	16.0	6.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

PK with Duty factor

Polarity	Frequency	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
		(PK)	Factor			Factor				
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	62.9	27.4	5.6	32.2	-46.1	17.5	53.9	36.4	*
Vert.	2483.500	60.5	27.4	5.6	32.2	-46.1	15.2	53.9	38.7	*

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Dutyfactor + Dwell time factor (Refer to dwell time data sheet)

Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB

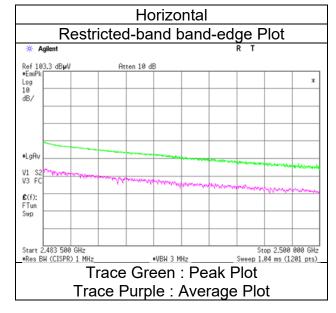
20log (5 m / 3.0 m) = 4.44 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

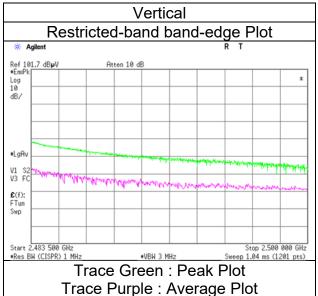
Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

^{*}Above noise was synchronized with carrier frequency.

Test Report No. 15274952H-C-R1 Page 41 of 58


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.3 May 10, 2024 23 deg. C / 38 % RH Tomoya Sone (1 GHz to 6 GHz) Tx ANT+ 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15274952H-C-R1 Page 42 of 58

Radiated Spurious Emission

Test place Ise E

Semi Anechoic Chamber

Date Temperature / Humidity

Engineer

Ise EMC Lab.

No.3

March 12, 2024 20 deg. C / 41 % RH Tomoya Sone

(1 GHz to 6 GHz)

No.3 March 13, 2024

23 deg. C / 41 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz) No.3

March 14, 2024 21 deg. C / 39 % RH Shousei Hamaguchi (Below 1 GHz)

Mode Tx SHIMANO ORIGINAL

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	51.4	21.2	-	9.8	7.3	32.2	-	6.0	-	40.0	-	34.0	-	
Hori.	93.5	20.3	-	9.6	7.8	32.2	-	5.6	-	43.5	-	37.9	-	
Hori.	133.5	20.0	-	11.5	8.3	32.1	-	7.6	-	43.5	-	35.9	-	
Hori.	253.4	19.6	-	11.8	9.3	32.0	-	8.6	-	46.0	-	37.4	-	
Hori.	346.9	19.3	-	15.0	10.0	32.0	-	12.3	-	46.0	-	33.7	-	
Hori.	474.8	19.4	-	17.1	10.8	32.0	-	15.2	-	46.0	-	30.8	-	
Hori.	2390.0	42.2	33.8	27.5	5.5	32.2	-	43.0	34.6	73.9	53.9	30.9	19.3	
Hori.	2483.5	58.7	50.3	27.4	5.6	32.2	-	59.4	51.1	73.9	53.9	14.5	2.8	
Hori.	4956.0	50.0	-	31.6	7.6	31.1	-	58.0	-	73.9	-	15.9	-	
Hori.	7434.0	40.1	32.4	35.5	10.7	33.5	-	52.8	45.1	73.9	53.9	21.1	8.8	Floor noise
Hori.	9912.0	42.1	34.2	36.2	11.3	34.1	-	55.5	47.7	73.9	53.9	18.4	6.2	Floor noise
Vert.	51.4	21.2	-	9.8	7.3	32.2	-	6.0	-	40.0	-	34.0	-	
Vert.	93.5	20.3	-	9.6	7.8	32.2	-	5.6	-	43.5	-	37.9	-	
Vert.	133.5	20.0	-	11.5	8.3	32.1	-	7.6	-	43.5	-	35.9	-	
Vert.	253.4	19.6	-	11.8	9.3	32.0	-	8.6	-	46.0	-	37.4	-	1
Vert.	346.9	19.3	-	15.0	10.0	32.0	-	12.3	-	46.0	-	33.7	-	1
Vert.	474.8	19.4	-	17.1	10.8	32.0	-	15.2	-	46.0	-	30.8	-	
Vert.	2390.0	43.9	33.0	27.5	5.5	32.2	-	44.7	33.8	73.9	53.9		20.1	
Vert.	2483.5	61.0	50.1	27.4	5.6	32.2	-	61.8	50.8	73.9			3.1	1
Vert.	4956.0	52.0	-	31.6	7.6	31.1	-	60.1	-	73.9		13.8	-	1
Vert.	7434.0	40.1	32.4	35.5	10.7	33.5	-	52.8	45.1	73.9				Floor noise
Vert.	9912.0	42.1	34.2	36.2	11.3	34.1	-	55.5	47.7	73.9	53.9	18.4	6.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2478.0	102.4	27.4	5.6	32.2	103.2	-	-	Carrier
Hori.	2400.0	34.2	27.5	5.5	32.2	35.0	83.2	48.2	
Vert.	2478.0	102.9	27.4	5.6	32.2	103.7	-	-	Carrier
Vert.	2400.0	34.4	27.5	5.5	32.2	35.2	83.7	48.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

PK with Duty Factor

Du	.,									
Polarity	Frequency	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
		(PK)	Factor			Factor				
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4956.000	50.0	31.6	7.6	31.1	-19.5	38.6	53.9	15.3	*
Vert.	4956.000	52.0	31.6	7.6	31.1	-19.5	40.6	53.9	13.3	*

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor (Refer to Burst rate confirmation sheet)

Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.50 dB

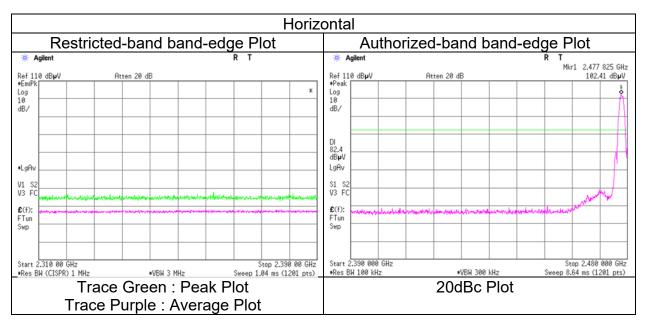
6 GHz - 10 GHz 20log (5 m / 3.0 m) = 4.44 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

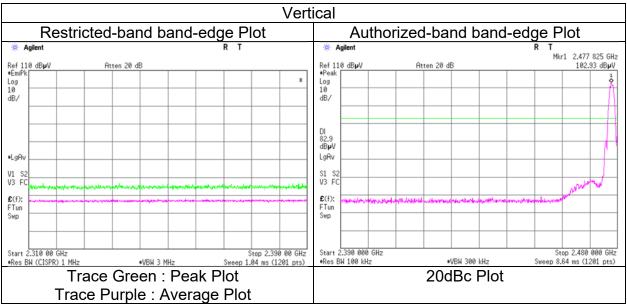
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*}Above noise was synchronized with carrier frequency.

Test Report No. 15274952H-C-R1 Page 43 of 58


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

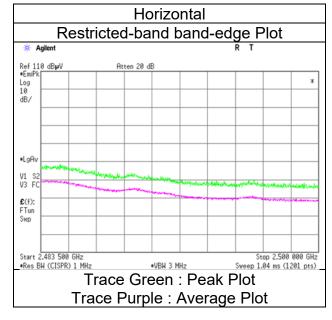
Date March 12, 2024
Temperature / Humidity 20 deg. C / 41 % RH
Engineer Tomoya Sone
(1 GHz to 6 GHz)

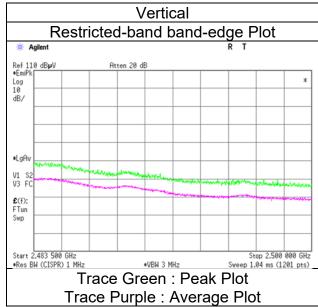
Mode Tx SHIMANO ORIGINAL

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15274952H-C-R1 Page 44 of 58


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

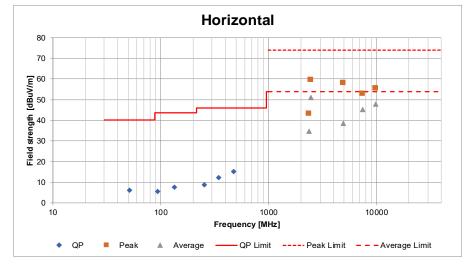
Ise EMC Lab. No.3 March 12, 2024 20 deg. C / 41 % RH Tomoya Sone (1 GHz to 6 GHz) Tx SHIMANO ORIGINAL

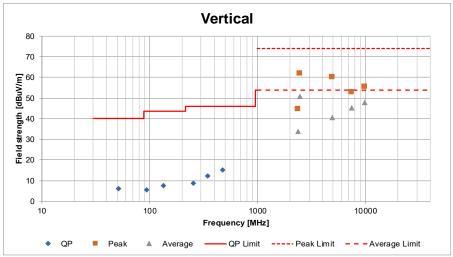
^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15274952H-C-R1 Page 45 of 58

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

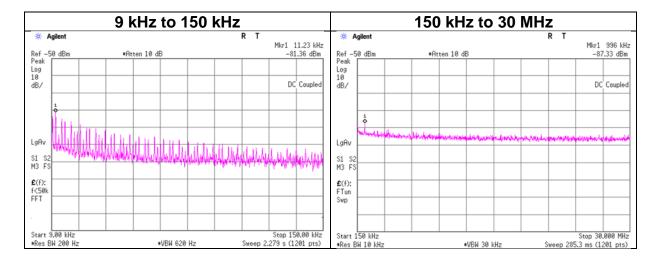

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer


Mode

Ise EMC Lab. No.3 March 12, 2024 20 deg. C / 41 % RH Tomoya Sone (1 GHz to 6 GHz) Tx SHIMANO ORIGINAL

No.3 March 13, 2024 23 deg. C / 41 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz)

No.3 March 14, 2024 21 deg. C / 39 % RH Shousei Hamaguchi (Below 1 GHz)


^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15274952H-C-R1 Page 46 of 58

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Date May 15, 2024
Temperature / Humidity 23 deg. C / 48 % RH
Engineer Shousei Hamaguchi
Mode Tx BT LE 1M 2480 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.23	-81.4	1.00	9.7	2.0	1	-68.7	300	6.0	-7.4	46.5	53.9	
996.00	-87.3	1.02	9.7	2.0	1	-74.6	30	6.0	6.6	27.6	21.0	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15274952H-C-R1 Page 47 of 58

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

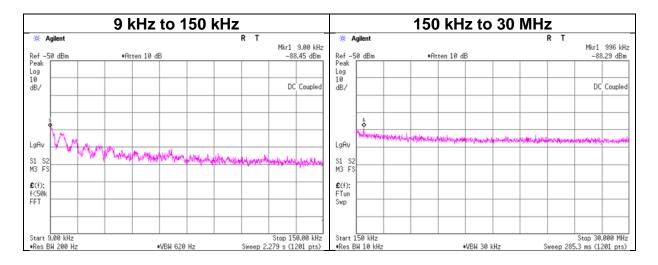
Date May 15, 2024
Temperature / Humidity 23 deg. C / 48 % RH
Engineer Shousei Hamaguchi
Mode Tx BT LE 2M 2480 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	11.23	-82.1	1.00	9.7	2.0	1	-69.5	300	6.0	-8.2	46.5	54.7	
Ī	996.00	-87.7	1.02	9.7	2.0	1	-74.9	30	6.0	6.3	27.6	21.3	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output


^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15274952H-C-R1 Page 48 of 58

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

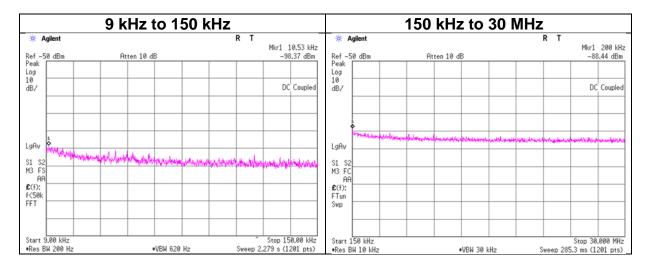
Date May 15, 2024
Temperature / Humidity 23 deg. C / 48 % RH
Engineer Shousei Hamaguchi
Mode Tx ANT 2441 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	9.00	-88.5	1.00	9.7	2.0	1	-75.8	300	6.0	-14.5	48.5	63.0	
Ī	996.00	-88.3	1.02	9.7	2.0	1	-75.6	30	6.0	5.7	27.6	21.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output


^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15274952H-C-R1 Page 49 of 58

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Date March 12, 2024
Temperature / Humidity 24 deg. C / 35 % RH
Engineer Takafumi Noguchi
Mode Tx SHIMANO ORIGINAL

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
ı			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	10.53	-98.4	1.00	9.8	2.0	1	-85.5	300	6.0	-24.3	47.1	71.4	
Ī	200.00	-88.4	1.00	9.8	2.0	1	-75.6	300	6.0	-14.3	21.5	35.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 15274952H-C-R1 Page 50 of 58

Power Density

Test place Ise EMC Lab. No.6 Measurement Room

DateMarch 12, 2024May 15, 2024Temperature / Humidity24 deg. C / 35 % RH23 deg. C / 48 % RHEngineerTakafumi NoguchiShousei Hamaguchi

Mode T:

BT LE 1M

	. ==										
Freq.	Reading Cable		Atten.	Result		Limit	Margin				
		Loss	Loss								
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[mW / 3 kHz]	[dBm / 3 kHz]	[dB]				
2402	-26.90	1.89	9.74	-15.27	0.03	8.00	23.27				
2440	-26.72	1.90	9.75	-15.07	0.03	8.00	23.07				
2480	-26.72	1.91	9.75	-15.06	0.03	8.00	23.06				

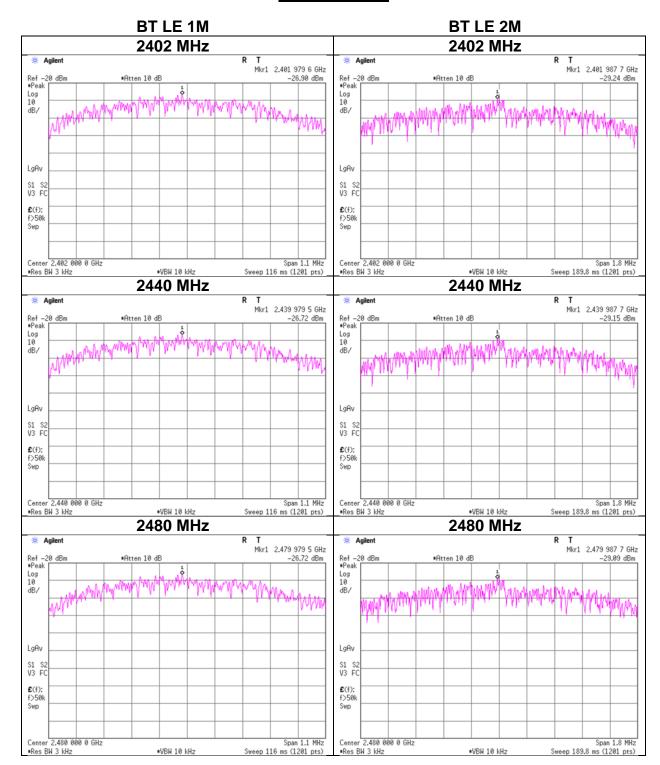
BT LE 2M

Freq.	Reading	Cable	Atten.	Result		Result Limit	
		Loss	Loss				
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[mW / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-29.24	1.89	9.74	-17.61	0.02	8.00	25.61
2440	-29.15	1.90	9.75	-17.50	0.02	8.00	25.50
2480	-29.09	1.91	9.75	-17.43	0.02	8.00	25.43

ANT+

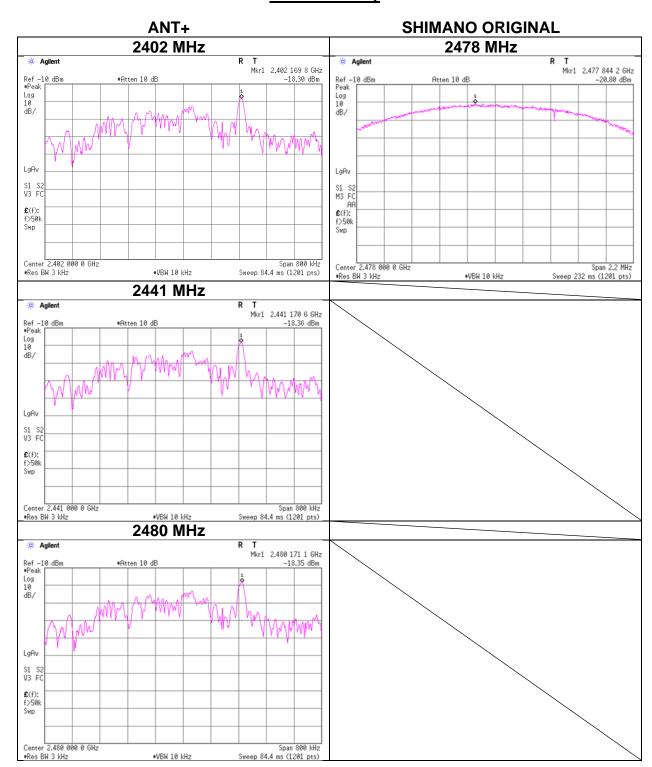
7 (1 4 1 -							
Freq.	Reading	Cable	Atten.	Re	sult	Limit	Margin
		Loss	Loss				
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[mW / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-18.30	1.89	9.74	-6.67	0.22	8.00	14.67
2441	-18.36	1.90	9.75	-6.71	0.21	8.00	14.71
2480	-18.35	1.91	9.75	-6.69	0.21	8.00	14.69

SHIMANO ORIGINAL


ı	Frea.	Reading	Cable	Atten.	Re	Result		Margin
	1104.	rtodding			110	Juit	Limit	Wargin
			Loss	Loss				
	[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[mW / 3 kHz]	[dBm / 3 kHz]	[dB]
	2478	-20.80	2.38	6.13	-12.29	0.06	8.00	20.29

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss


^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Power Density

Test Report No. 15274952H-C-R1 Page 52 of 58

Power Density

Test Report No. 15274952H-C-R1 Page 53 of 58

APPENDIX 2: Test Instruments

Test Equipment used by March 14, 2024

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
ΑT	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/17/2023	12
AT	141172	Attenuator(6dB)(above 1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-106	-	12/11/2023	12
AT	141328	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28636/2	04/01/2024	12
AT	141558	Digital Tester(TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/17/2024	12
AT	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	-	-
AT	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/26/2023	12
AT	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
AT	196430	Microwave Cable	Huber+Suhner	SF102D/11PC24/11 PC24/1000mm	537059/126EA	02/26/2024	12
RE	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/04/2023	12
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12
RE	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/20/2023	12
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	07/19/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/29/2023	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/18/2023	12
RE	142183	Measure	KOMELON	KMC-36	_	10/20/2023	12
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	197990	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHBB 9124 + BBA 9106	01365	11/29/2023	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	688	08/10/2023	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/11P C35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12

Test Report No. 15274952H-C-R1 Page 54 of 58

Test Equipment used on and after May 9, 2024

Test Item		nt used on and af Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/04/2023	12
RE	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-190	07/11/2023	12
RE	141317	Coaxial Cable	UL Japan	-	-	09/12/2023	12
RE	141427	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103B+ BBA9106	08031	07/11/2023	12
RE	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/23/2023	12
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	11/20/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
RE	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/17/2024	12
RE	141580	Microwave System Amplifier	Keysight Technologies Inc		MY39500779	03/08/2024	12
RE	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/17/2024	12
RE	141901	Spectrum Analyzer	Keysight Technologies Inc		MY48250080	01/26/2024	12
RE	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/26/2024	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	05/17/2023	12
RE	142004	AC2_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	12/12/2023	24
RE	142006	AC2_Semi Anechoic Chamber (SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	10/20/2023	12
RE	142013	AC3_Semi Anechoic Chamber (SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/18/2023	12
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	220646	Attenuator	Huber+Suhner	6806 N-50-1	-	03/12/2024	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	688	08/10/2023	12
RE	244707	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202102	01/25/2024	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	245787	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	689	03/06/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/ 11PC35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12
AT	141244	Attenuator (10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/17/2024	12
AT	141327	Coaxial Cable	UL Japan	-	-	02/09/2024	12
AT	141419	Attenuator	Weinschel Associates	WA56-10	56100305	05/18/2023	12
AT	141558	Digital Tester (TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/29/2023	12
AT	141814	Power Meter	Raditeq (Formerly DARE!! Instruments)	RPR3006W	14I00048SNO 082	10/04/2023	12
ΑT	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
AT	197220	Microwave cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	537003/126E	03/14/2024	12
AT	244712	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202106	01/25/2024	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Report No. 15274952H-C-R1 Page 55 of 58

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission

AT: Antenna Terminal Conducted test