

RADIO TEST REPORT

Test Report No. 14946217H-C-R1

Customer	SHIMANO INC.
Description of EUT	Dual Control Lever
Model Number of EUT	0SL1
FCC ID	WY7-0SL1
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	December 4, 2023
Remarks	-

Representative Test Engineer Approved By . Noguchi Lakayuki Takafumi Noguchi Takayuki Shimada Leader Engineer ACCREDITED hilah CERTIFICATE 5107.02 The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation". Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 22.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14946217H-C

This report is a revised version of 14946217H-C. 14946217H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14946217H-C	September 27, 2023	-
(Original)			
1	14946217H-C-R1	December 4, 2023	Clause 4.1
			Added information of software (Date and
			Storage location):
			"Date: 2023.9.4, Storage location: EUT
			memory"
1	14946217H-C-R1	December 4, 2023	Clause 4.2
			Added explanatory note:
			"* Jig battery (DC 7.4 V) was to RF part
			regardless of input voltage."
1	14946217H-C-R1	December 4, 2023	APPENDIX 1: Test Data
			Modified plot data of Spurious Emission

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS		VBW Vert.	Vertical
	Global Positioning System		
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS

PAGE

SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
99 % Occupied Bandwidth and 6 dB Bandwidth	13
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	24
Radiated Spurious Emission	
Worst Case Position	
Antenna Terminal Conducted Tests	

SECTION 1: Customer Information

Company Name	SHIMANO INC.
Address	3-77 Oimatsu-cho, Sakai-ku, Sakai City, Osaka 590-8577, Japan
Telephone Number	+81-72-223-7019
Contact Person	Osamu Kariyama

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Dual Control Lever
Model Number	0SL1
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 3, 2023
Test Date	September 4 to 12, 2023

2.2 Product Description

General Specification

Rating	DC 6.0 V (Battery)
Operating temperature	-10 deg. C to 50 deg. C

Radio Specification

[SHIMANO ORIGINAL]

Equipment Type	Transceiver
Frequency of Operation	2478 MHz
Type of Modulation	GFSK
Antenna Gain	0.09 dBi

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	1.2 dB	Complied	Conducted
Emission	15.247		2483.5 MHz		(below 30 MHz)/
Restricted	Meas Guidance v05r02		Horizontal, AV		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line. *2) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission Measurement **Frequency Range** Unit Calculated distance Uncertainty (+/-) 3 m 9 kHz to 30 MHz dB 3.3 10 m dB 3.1 30 MHz to 200 MHz 3 m Horizontal dB 4.8 Vertical dB 5.0 200 MHz to 1000 MHz dB 5.1 Horizontal dB 6.2 Vertical 30 MHz to 200 MHz 10 m Horizontal dB 4.8 Vertical dB 4.8 200 MHz to 1000 MHz Horizontal dB 4.9 Vertical 5.0 dB 3 m 1 GHz to 6 GHz dB 4.9 6 GHz to 18 GHz dB 5.2 1 m 10 GHz to 26.5 GHz dB 5.5 5.4 26.5 GHz to 40 GHz dB 10 m 1 GHz to 18 GHz dB 5.3

Antenna Terminal Conducted Tests

Item	Unit	Calculated Uncertainty (+/-)
Antenna Terminated Conducted Emission / Power Density / Burst Power	dB	3.28
Adjacent Channel Power (ACP)	dB	2.27
Bandwidth (OBW)	%	0.96
Time Readout (Time span upto 100 msec)	%	0.11
Time Readout (Time span upto 1000 msec)	%	0.11
Time Readout (Time span upto 60 sec)	%	0.02
Power Measurement (Power meter)	dB	1.50
Frequency Readout (Frequency counter)	ppm	0.67
Frequency Readout (Spectrum analyzer frequency readout function)	ppm	1.61
Temperature (Constant temperature bath)	deg. C	0.78
Humidity (Constant temperature bath)	%RH	2.80
Modulation Characteristics	%	6.93
Frequency for Mobile	ppm	0.08

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

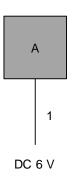
3.6 Test Data, Test Instruments, and Test Set Up

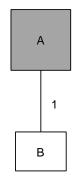
Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode		Remarks*
SHIMANO ORIG	INAL	Maximum Packet Size, SCRAMBLED
*Transmitting du	ty was 100 % on all tests.	
*Power of the EL	JT was set by the software as follow	NS;
Power Setting:	0 dBm	
Software:	0SL1.4.15.249.1	
	(Date: 2023.9.4, Storage location	n: EUT memory)
*This setting of s	oftware is the worst case.	
Any conditions u	nder the normal use do not exceed	the condition of setting.
In addition, end u	users cannot change the settings of	f the output power of the product.


*The Details of Operating Mode(s)


Test Item	Operating Mode	Tested Frequency
99% Occupied Bandwidth, 6 dB Bandwidth, Maximum Peak Output Power, Radiated Spurious Emission, Conducted Spurious Emission, Power Density	Transmitting (Tx) SHIMANO ORIGINAL	2478 MHz

4.2 Configuration and Peripherals

For Antenna Terminal Conducted (AT)

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

* The test was conducted using DC supply or jig battery since they didn't affect the RF characteristics.

* Jig battery (DC 7.4 V) was used for RE, but it did not affect the test result because this EUT provided the stable voltage constantly to RF part regardless of input voltage.

Desc	Description of EUT and Support Equipment						
No.	Item	Model Number	Serial Number	Manufacturer	Remarks		
A	Dual Control Lever		0SLVHA40008 for AT 0SLVHA40020 for RE	SHIMANO INC.	EUT		
В	Li-ion Battery	BT-DN300	7HKVEK079DA	SHIMANO INC.	-		

Description of EUT and Support Equipmen

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.0 for AT 1.2 for RE	Unshielded	Unshielded	-

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

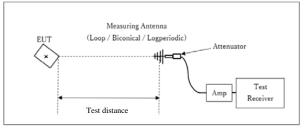
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

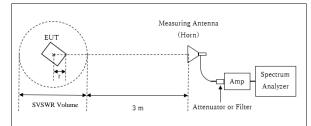
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn


In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

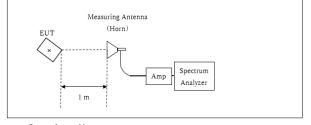

Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

Test Distance: 3 m


Distance Factor: 20 x log (3.95 m / 3.0 m) = 2.39 dB * Test Distance: (3 + SVSWR Volume /2) - r = 3.95 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.05 m

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ *Test Distance: 1 m

× : Center of turn table

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	2 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

*1) Peak hold was applied as Worst-case measurement.

*2) Reference data

*3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

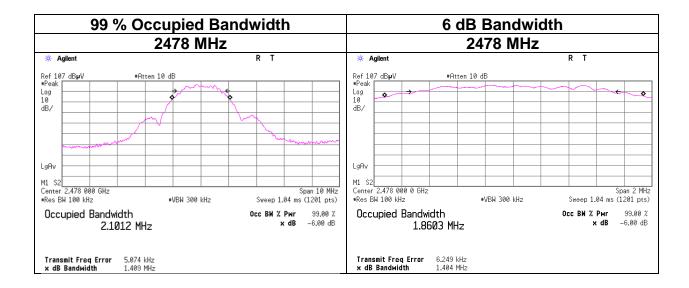
*4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

*5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.


Test Data	: APPENDIX
Test Result	: Pass

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place	Ise EMC Lab. No.6 Measurement Room
Date	September 4, 2023
Temperature / Humidity	24 deg. C / 43 % RH
Engineer	Takafumi Noguchi
Mode	Tx SHIMANO ORIGINAL

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
Тx	2478	2101.2	1.404	> 0.5000

Maximum Peak Output Power

Test place Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.6 Measurement Room September 4, 2023 24 deg. C / 43 % RH Takafumi Noguchi Tx SHIMANO ORIGINAL

					Con	ducted P	ower			e.i	.r.p. for l	RSS-247	•	
Freq.	Reading	Cable	Atten.	Re	Result Limit				Antenna	Re	sult	Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2478	-0.77	0.20	9.52	8.95	7.85	30.00	1000	21.05	0.09	9.04	8.02	36.02	4000	26.98

Sample Calculation:

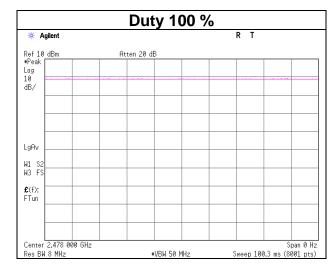
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.6 Measurement Room September 4, 2023 24 deg. C / 43 % RH Takafumi Noguchi Tx SHIMANO ORIGINAL

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result		
		Loss	Loss	(Time a	verage)	factor	(Burst pow	er average)	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
2478	-1.14	0.20	9.52	8.58	7.21	0.00	8.58	7.21	


Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

*The equipment and cables were not used for factor 0 dB of the data sheets.

Burst rate confirmation

Test place	Ise EMC Lab. No.6 Measurement Room
Date	September 4, 2023
Temperature / Humidity	24 deg. C / 43 % RH
Engineer	Takafumi Noguchi
Mode	Tx SHIMANO ORIGINAL

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 September 11, 2023 22 deg. C / 59 % RH Tetsuro Yoshida (Above 1 GHz) Tx SIMANO ÓRIGINAL

No.1 September 12, 2023 22 deg. C / 47 % RH Tetsuro Yoshida (Below 1 GHz)

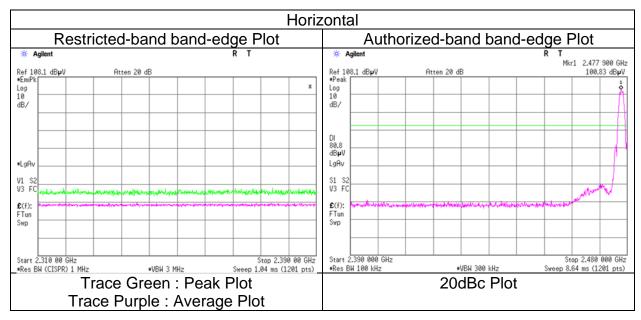
Mode

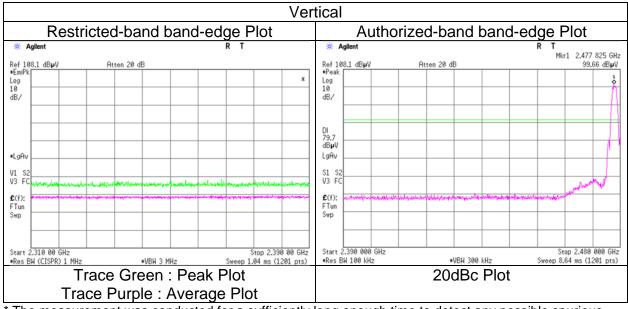
Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	54.8	28.0		9.3	7.7	38.8	-	6.3	-	40.0	-	33.7	-	
Hori.	67.7	28.1	-	6.6	7.9	38.8	-	3.8	-	40.0	-	36.2	-	
Hori.	71.4	28.1	-	6.5	8.0	38.8	-	3.8	-	40.0	-	36.2	-	
Hori.	168.8	28.2	-	15.7	9.2	38.9	-	14.2	-	43.5	-	29.3	-	
Hori.	257.6	27.5	-	12.0	10.0	38.8	-	10.8	-	46.0	-	35.2	-	
Hori.	456.1	27.0	-	16.7	11.6	38.3	-	16.9	-	46.0	-	29.1	-	
Hori.	2390.0	42.4	33.8	27.7	5.4	32.4	-	43.0	34.4	73.9	53.9	30.9	19.5	
Hori.	2483.5	62.6	52.1	27.5	5.4	32.4	-	63.1	52.7	73.9	53.9	10.8	1.2	
Hori.	4956.0	42.1	34.2	31.6	7.5	31.4	-	49.8	41.9	73.9	53.9	24.1	12.0	
Hori.	7434.0	41.7	33.7	36.2	8.7	32.4	-	54.2	46.2	73.9	53.9	19.7	7.7	Floor noise
Hori.	9912.0	41.1	32.5	39.1	9.2	33.1	-	56.4	47.8	73.9	53.9	17.5	6.1	Floor noise
Vert.	55.3	27.9	-	9.1	7.7	38.8	-	6.0	-	40.0	-	34.0	-	
Vert.	67.3	28.2	-	6.6	7.9	38.8	-	3.9	-	40.0	-	36.1	-	
Vert.	71.5	28.1	-	6.5	8.0	38.8	-	3.8	-	40.0	-	36.2	-	
Vert.	168.7	28.3	-	15.7	9.2	38.9	-	14.3	-	43.5		29.2	-	
Vert.	257.6	27.6	-	12.0	10.0	38.8	-	10.9		46.0		35.1	-	
Vert.	456.0	27.1	-	16.7	11.6	38.3	-	17.0		46.0		29.0	-	
Vert.	2390.0	42.2	33.5	27.7	5.4	32.4	-	42.8	34.1	73.9	53.9		19.8	
Vert.	2483.5	61.8	51.1	27.5	5.4	32.4	-	62.4	51.7	73.9	53.9		2.2	
Vert.	4956.0	44.8	38.3	31.6	7.5	31.4	-	52.5	46.0	73.9	53.9		7.9	
Vert.	7434.0	41.7	33.8	36.2	8.7	32.4	-	54.2	46.3	73.9	53.9		7.7	Floor noise
Vert.	9912.0	41.2	32.5	39.1	9.2	33.1	-	56.5	47.8	73.9	53.9	17.5	6.1	Floor noise

 Vert
 9912.01
 41.2
 32.3
 39.7
 92.7
 33.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.1
 7
 30.2
 31.2
 31.2
 31.2

20dBc Data	Sheet								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2478.0	100.8	27.5	5.4	32.4	101.4	-	-	Carrier
Hori.	2400.0	34.0	27.6	5.4	32.4	34.6	81.4	46.8	
Vert.	2478.0	99.7	27.5	5.4	32.4	100.2	-	-	Carrier
Vert.	2400.0	34.0	27.6	5.4	32.4	34.6	80.2	45.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB Distance factor:


10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

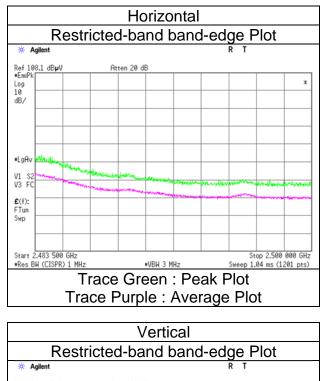

Radiated Spurious Emission (Reference Plot for band-edge)

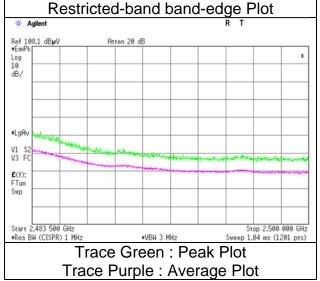
Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 September 11, 2023 22 deg. C / 59 % RH Tetsuro Yoshida (1 GHz to 10 GHz) **Tx SIMANO ORIGINAL**

Mode

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.


Final result of restricted band edge and authorized band edge were shown in tabular data.


Radiated Spurious Emission (Reference Plot for band-edge)

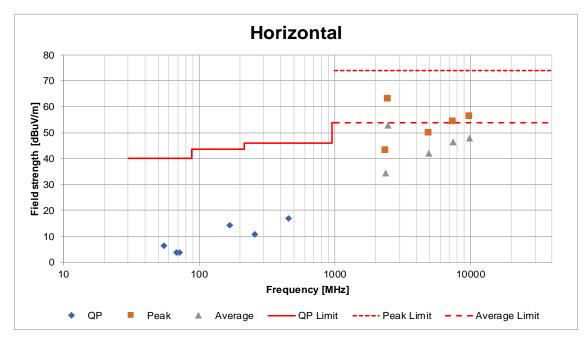
Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

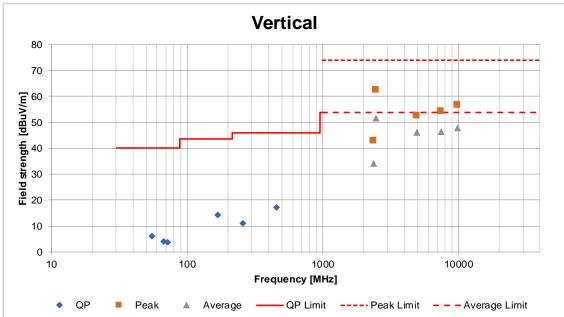
Mode

Ise EMC Lab. No.3 September 11, 2023 22 deg. C / 59 % RH Tetsuro Yoshida (1 GHz to 10 GHz) Tx SIMANO ORIGINAL

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.


Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)


Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 September 11, 2023 22 deg. C / 59 % RH Tetsuro Yoshida (Above 1 GHz) Tx SIMANO ORIGINAL

No.1 September 12, 2023 22 deg. C / 47 % RH Tetsuro Yoshida (Below 1 GHz)

*These plots data contain sufficient number to show the trend of characteristic features for EUT.

Conducted Spurious Emission

Test place Date	Ise EMC Lab. No.6 Measurement Room September 4, 2023
Temperature / Humidity	24 deg. C / 43 % RH
Engineer	Takafumi Noguchi
Mode	Tx SHIMANO ORIGINAL

			9	kHz	to 1	50	kHz							150) kH	z to	30	MH	z		
— — 🔆 A	\gilent							RΤ			¥ A	gilent							RΤ		
	50 dBm		*A	tten 10 c	B					9.94 kHz 18.74 dBm	Ref -5 Peak	-		#A1	ten 10 d	B					349 kHz 0.54 dBm
Log 10 dB/									DI	C Coupled	Log 10 dB/									DC	Coupled
LgAv											LgAv	1 Mirillifanyyak	lthe the terman	etrological agent	earthmate	ngryg//ach.y.fr	way, waaqood	menterstores	fle Marweither,		presented
S1 S2 M3 FS	***MMM	MM water	k dina papag	4. (pytana)	Ypred/India	the state of the s	howwhy	NA MUM	mynulant	himesunyki	S1 S2 M3 FS										
£ (f): f<50k FFT											£(f): FTun Swp										
Start S	9.00 kHz								Ston 1	50.00 kHz	Start 1	.50 kHz								Stop 30	.000 MHz
	3W 200 Hz	Z			#VBW 620	Hz		Sweep 2		1201 pts)		W 10 kH:				#VBW 30	kHz		Sweep 28	5.3 ms (1	

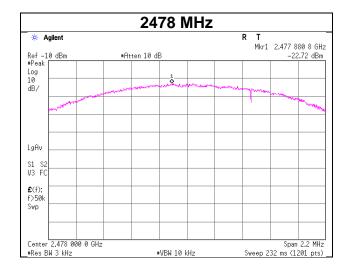
Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.94	-98.7	0.20	9.8	2.0	1	-86.7	300	6.0	-25.4	47.6	73.0	
349.00	-90.5	0.20	9.8	2.0	1	-78.5	300	6.0	-17.2	16.7	33.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Power Density


Test place	Ise EMC Lab. No.6 Measurement Room
Date	September 4, 2023
Temperature / Humidity	24 deg. C / 43 % RH
Engineer	Takafumi Noguchi
Mode	Tx SHIMANO ORIGINAL

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2478	-22.72	0.20	9.52	-13.00	8.00	21.00

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

*The equipment and cables were not used for factor 0 dB of the data sheets.

APPENDIX 2: Test Instruments

Test Equipment

Test Item		LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/10/2022	12
AT	MAT-90	141223	Attenuator	Weinschel Associates	WA56-10	56100306	05/18/2023	12
AT	MMM-18	141558	Digital Tester(TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/29/2023	12
AT	MOS-14	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	01/13/2023	12
AT	MPM-12	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/26/2023	12
AT	MPSE-17	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/26/2023	12
AT	MSA-13	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	KBA-05	141198	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+ BBA9106	2513	06/06/2023	12
RE	LA-17	160924	Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	225	11/12/2022	12
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/28/2022	24
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2023	24
RE	MAT-08	141213	Attenuator(6dB)	Weinschel Corp	2	BK7971	11/19/2022	12
RE	MCC-02	141350	Coaxial Cable	Suhner/storm/Agilent /TSJ	-	-	03/03/2023	12
RE	MCC-265	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/1000M, 5000M	537063/126E / 537074/126E	03/16/2023	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/14/2022	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/04/2023	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	10/03/2022	12
RE	MJM-25	142226	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MMM-03	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	01/18/2023	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/13/2023	12
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/13/2023	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2023	12
RE	MPA-19	141585	Pre Amplifier	L3 Narda-MITEQ	MLA-10K01-B01- 35	1237616	02/02/2023	12
RE	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/13/2023	12
RE	MTR-09	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	10/11/2022	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

- **AT: Antenna Terminal Conducted test**
- **RE: Radiated Emission**