

RADIO TEST REPORT

Test Report No. 14869862H-C-R1

Customer	SHIMANO INC.
Description of EUT	Dual Control Lever
Model Number of EUT	0MX2
FCC ID	WY7-0MX2
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	December 8, 2023
Remarks	-

Representative Test	Engineer	Approved	I Ву
K.Oka/	Baki	Takayu	ki.L
Kiyoshiro Okaza Engineer	aki	Takayuki Sh Leade	
		lac-MRA	ACCREDITED
The testing in which White areas	aditation II adion leve d'		CERTIFICATE 5107.02
		s outside the accreditation scopes	s in UL Japan, Inc.
There is no testing item of "Nor	n-accreditation".		

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 22.0

Test Report No. 14869862H-C-R1 Page 2 of 26

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14869862H-C

This report is a revised version of 14869862H-C. 14869862H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14869862H-C	August 22, 2023	-
(Original)			
1	14869862H-C-R1	December 8, 2023	Clause 4.1 Added information of software (Date and Storage location): "Date: 2023.7.10, Storage location: EUT memory"
1	14869862H-C-R1	December 8, 2023	Clause 4.2 Added explanatory note: "* Jig battery (DC 7.4 V) was to RF part regardless of input voltage."

Test Report No. 14869862H-C-R1 Page 3 of 26

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
	Horizontal	WLAN	Wireless LAN

CONTENTS		PAGE
SECTION 1:	Customer Information	5
SECTION 2:	Equipment Under Test (EUT)	5
SECTION 3:	Test Specification, Procedures & Results	
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Radiated Spurious Emission	
SECTION 6:	•	
APPENDIX 1 :	Test Data	
99 % O	ccupied Bandwidth and 6 dB Bandwidth	13
	m Peak Output Power	
	Output Power	
	d Spurious Emission	
	ted Spurious Emission	
Power D	Density	22
	: Test Instruments	
	Photographs of Test Setup	
Radiate	d Spurious Emission	24
	ase Position	
	a Terminal Conducted Tests	

Test Report No. 14869862H-C-R1 Page 5 of 26

SECTION 1: Customer Information

Company Name	SHIMANO INC.
Address	3-77 Oimatsu-cho, Sakai-ku, Sakai City, Osaka 590-8577, Japan
Telephone Number	+81-72-223-7019
Contact Person	Osamu Kariyama

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Dual Control Lever
Model Number	0MX2
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	July 7, 2023
Test Date	July 10 to 14, 2023

2.2 Product Description

General Specification

Rating	DC 3.0 V (Battery)
Operating temperature	-10 deg. C to +50 deg. C

Radio Specification

[SHIMANO ORIGINAL]

[
	Equipment Type	Transceiver
	Frequency of Operation	2478 MHz
	Type of Modulation	GFSK
	Antenna Gain	-0.49 dBi

Test Report No. 14869862H-C-R1 Page 6 of 26

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C		
	The latest version on the first day of the testing period		
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators		
	Section 15.207 Conducted limits		
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,		
	and 5725-5850 MHz		

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
-	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	2.1 dB	Complied	Conducted
Emission	15.247		2485.3 MHz		(below 30 MHz)/
Restricted	Meas Guidance v05r02		AV, Vertical		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

The test was performed with the New Battery and the stable voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	=	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.
*2) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 14869862H-C-R1 Page 7 of 26

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement	Frequency Range	Unit	Calculated	
distance			Uncertainty (+/-)	
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	0 MHz to 200 MHz Horizontal		4.8
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Horizontal	dB	5.1
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	4.8
		Vertical	dB	4.8
	200 MHz to 1000 MHz	Horizontal	dB	4.9
		Vertical	dB	5.0
3 m	1 GHz to 6 GHz	dB	4.9	
	6 GHz to 18 GHz	dB	5.2	
1 m	10 GHz to 26.5 GHz	dB	5.5	
	26.5 GHz to 40 GHz	dB	5.4	
10 m	1 GHz to 18 GHz		dB	5.3

Antenna Terminal Conducted Tests

Item	Unit	Calculated Uncertainty (+/-)
Antenna Terminated Conducted Emission / Power Density / Burst Power	dB	3.28
Adjacent Channel Power (ACP)	dB	2.27
Bandwidth (OBW)	%	0.96
Time Readout (Time span upto 100 msec)	%	0.11
Time Readout (Time span upto 1000 msec)	%	0.11
Time Readout (Time span upto 60 sec)	%	0.02
Power Measurement (Power meter)	dB	1.50
Frequency Readout (Frequency counter)	ppm	0.67
Frequency Readout (Spectrum analyzer frequency readout function)	ppm	1.61
Temperature (Constant temperature bath)	deg. C	0.78
Humidity (Constant temperature bath)	%RH	2.80
Modulation Characteristics	%	6.93
Frequency for Mobile	ppm	0.08

Test Report No. 14869862H-C-R1 Page 8 of 26

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 14869862H-C-R1 Page 9 of 26

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
SHIMANO ORIGINAL	Maximum Packet Size, SCRAMBLED

*Transmitting duty was 100 % on all tests.

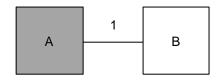
*Power of the EUT was set by the software as follows;

Power Setting: 0 dBm

Software: 0MX2.4.15.229.11

(Date: 2023.7.10, Storage location: EUT memory)

*This setting of software is the worst case.


Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency
99% Occupied Bandwidth, 6 dB Bandwidth,	Transmitting (Tx) SHIMANO ORIGINAL	2478 MHz
Maximum Peak Output Power, Radiated Spurious Emission,		
Conducted Spurious Emission, Power Density		

4.2 Configuration and Peripherals

- * Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.
- * Radiated Emission test was conducted by connecting the jig battery.
- * Jig battery (DC 7.4 V) was used for RE, but it did not affect the test result because this EUT provided the stable voltage constantly to RF part regardless of input voltage.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks	
Α	Dual Control Lever	0MX2	30 for RE*	SHIMANO INC.	EUT	
			4 for AT*			
В	Li-ion battery pack	BT-DN300	7HKSCK00033	SHIMANO INC.	RE* only	

^{*}RE: Radiated emission, AT: Antenna Terminal Conducted

List of cables used

No.	Name	Length (m) Shield		Shield			
			Cable	Connector			
1	DC Cable	1.2	Unshielded	Unshielded	-		

Test Report No. 14869862H-C-R1 Page 10 of 26

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

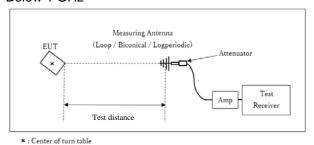
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

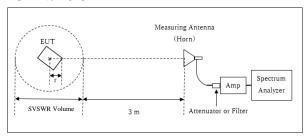
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 6.10 (ISED).									
Frequency	Below 1 GHz	Above 1 GHz	20 dBc						
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer					
Detector	QP	PK	AV	PK					
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz					
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz					
			VBW: 3 MHz						
			Detector:						
			Power Averaging (RMS)						
			Trace: 100 traces						
			<u>11.12.2.5.2</u>						
			The duty cycle was less						
			than 98% for detected						
			noise, a duty factor was						
			added to the 11.12.2.5.1						
			results.						

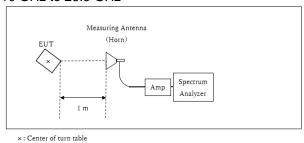
Test Report No. 14869862H-C-R1 Page 11 of 26


Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

1 GHz to 10 GHz


- Distance Factor: $20 \times \log (3.7 \text{ m} / 3.0 \text{ m}) = 1.83 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 3.7 m
- SVSWR Volume : 1.5 m $\,$

(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.05 m

- \boldsymbol{r} : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX

Test Result : Pass

Test Report No. 14869862H-C-R1 Page 12 of 26

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span		VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	2 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

: APPENDIX **Test Data Test Result** : Pass

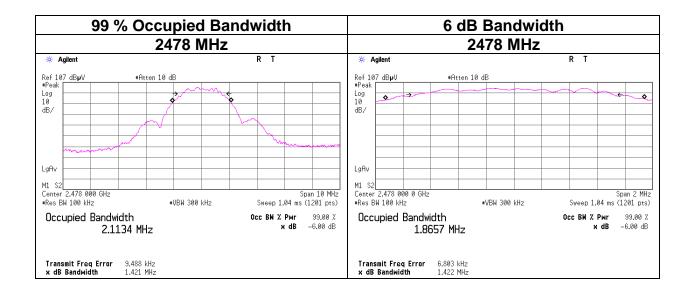
^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

⁽⁹ kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)
*5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 14869862H-C-R1 Page 13 of 26


APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab. No.8 Measurement Room

Date July 10, 2023
Temperature / Humidity 21 deg. C / 53 % RH
Engineer Tetsuro Yoshida
Mode Tx SHIMANO ORIGINAL

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
Tx	2478	2113.4	1.422	> 0.5000

Test Report No. 14869862H-C-R1 Page 14 of 26

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room

July 10, 2023 21 deg. C / 53 % RH Date Temperature / Humidity Engineer Tetsuro Yoshida Tx SHIMANO ORIGINAL Mode

				Conducted Power				e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Result		Limit		Margin	Antenna	Result		Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2478	-2.38	1.16	10.03	8.81	7.60	30.00	1000	21.19	-0.49	8.32	6.79	36.02	4000	27.70

Sample Calculation:
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 14869862H-C-R1 Page 15 of 26

<u>Average Output Power</u> (Reference data for RF Exposure)

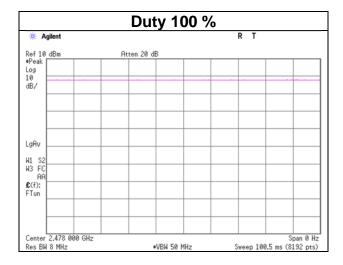
Test place Ise EMC Lab. No.8 Measurement Room

Date July 10, 2023
Temperature / Humidity Engineer Tetsuro Yoshida
Mode Tx SHIMANO ORIGINAL

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst power average)	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2478	-2.84	1.16	10.03	8.35	6.84	0.00	8.35	6.84

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor


^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 14869862H-C-R1 Page 16 of 26

Burst rate confirmation

Test place Ise EMC Lab. No.8 Measurement Room

Date July 10, 2023
Temperature / Humidity 21 deg. C / 53 % RH
Engineer Tetsuro Yoshida
Mode Tx SHIMANO ORIGINAL

Test Report No. 14869862H-C-R1 Page 17 of 26

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

No.2 Date July 13, 2023 July 14, 2023 Temperature / Humidity 24 deg. C / 58 % RH 23 deg. C / 57 % RH Engineer

Junki Nagatomi Keiya Ido (Below 1 GHz) (Above 1 GHz)

Mode Tx SHIMANO ORIGINAL

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	36.7	20.8		12.1	6.7	28.6		11.0		40.0	-	29.0		
Hori.	79.0	20.4	-	9.1	7.2	28.5	-	8.2	-	40.0	-	31.9	-	
Hori.	162.6	19.9	-	12.6	7.8	28.2	-	12.2	-	43.5	-	31.3	-	
Hori.	350.6	19.4	-	15.2	9.0	28.1	-	15.5	-	46.0	-	30.5	-	
Hori.	497.2	20.2	-	17.8	9.8	29.1	-	18.7	-	46.0	-	27.3	-	
Hori.	621.5	20.4	-	19.6	10.3	29.3	-	20.9	-	46.0	-	25.1	-	
Hori.	2390.0	44.0	35.7	27.6	5.0	34.9	-	41.7	33.3	73.9	53.9	32.2	20.6	
Hori.	2483.5	61.0	52.1	27.5	5.1	34.9	-	58.6	49.8	73.9	53.9	15.3	4.1	
Hori.	2485.3	63.0	53.0	27.5	5.1	34.9	-	60.6	50.6	73.9	53.9	13.3	3.3	
Hori.	4956.0	47.4	41.1	31.8	7.3	34.2	-	52.4	46.1	73.9	53.9	21.5	7.8	
Hori.	7434.0	44.1	35.5	36.2	8.6	34.1	-	54.8	46.1	73.9	53.9	19.1	7.8	
Hori.	9912.0	43.4	33.7	39.2	9.5	34.7	-	57.4	47.7	73.9	53.9	16.5	6.2	Floor noise
Vert.	36.7	21.3	-	12.1	6.7	28.6	-	11.5	-	40.0	-	28.5	-	
Vert.	79.0	30.0	-	9.1	7.2	28.5	-	17.8	-	40.0	-	22.3	-	
Vert.	162.6	19.9	-	12.6	7.8	28.2	-	12.2	-	43.5	-	31.3	-	
Vert.	350.6	19.4	-	15.2	9.0	28.1	-	15.5	-	46.0	-	30.5	-	
Vert.	497.2	20.2	-	17.8	9.8	29.1	-	18.7	-	46.0	-	27.3	-	
Vert.	621.5	20.4	-	19.6	10.3	29.3	-	20.9	-	46.0	-	25.1	-	
Vert.	2390.0	43.5	35.3	27.6	5.0	34.9	-	41.2	32.9	73.9	53.9	32.7	21.0	
Vert.	2483.5	64.3	53.6	27.5	5.1	34.9	-	62.0	51.3	73.9	53.9	11.9	2.6	
Vert.	2485.3	63.3	54.1	27.5	5.1	34.9	-	60.9	51.8	73.9	53.9	13.0	2.1	
Vert.	4956.0	46.3	39.0	31.8	7.3	34.2	-	51.3	44.0	73.9	53.9	22.6	9.9	
Vert.	7434.0	44.2	35.9	36.2	8.6	34.1	-	54.9	46.6	73.9			7.3	
Vert.	9912.0	42.9	33.6	39.2	9.5	34.7	-	56.9	47.6	73.9	53.9	17.0	6.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2478.0	102.5	27.5	5.1	34.9	100.2	-	-	Carrier
Hori.	2400.0	35.5	27.6	5.0	34.9	33.2	80.2	47.0	
Vert.	2478.0	103.6	27.5	5.1	34.9	101.3	-	-	Carrier
Vert.	2400.0	36.1	27.6	5.0	34.9	33.8	81.3	47.5	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 10 GHz 20log (3.7 m / 3.0 m) = 1.83 dB

10 GHz - 26.5 GHz 20log (1.0 m/3.0 m) = -9.5 dB

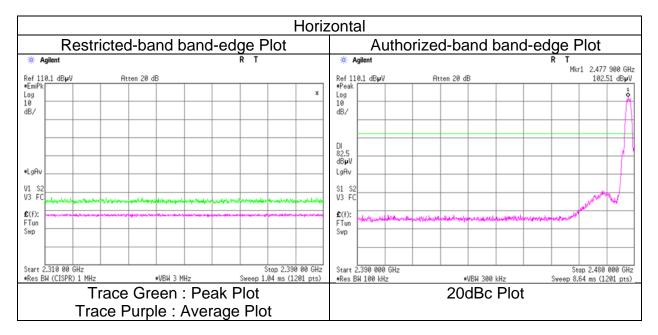
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

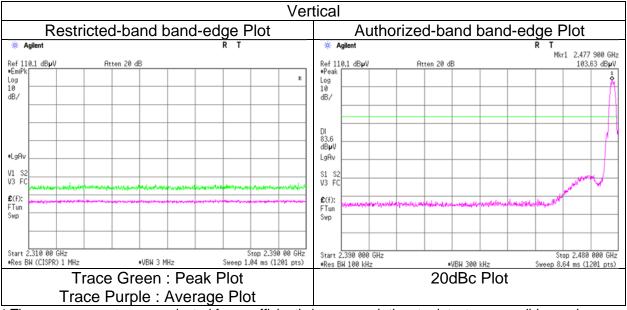
^{*}QP detector was used up to 1GHz.

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date

July 14, 2023 23 deg. C / 57 % RH Temperature / Humidity


Engineer Keiya Ido


(1 GHz to 10 GHz)

Tx SHIMANO ORÍGINAL Mode

Ise EMC Lab.

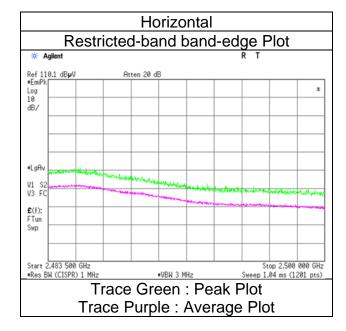
No.2

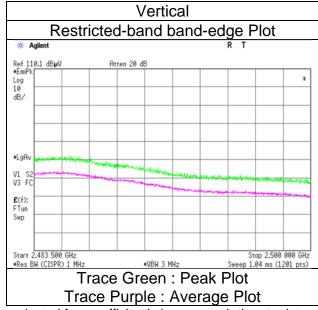
The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14869862H-C-R1 Page 19 of 26

Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date


Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.2 July 14, 2023 23 deg. C / 57 % RH Keiya Ido (1 GHz to 10 GHz) Tx SHIMANO ORIGINAL

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14869862H-C-R1 Page 20 of 26

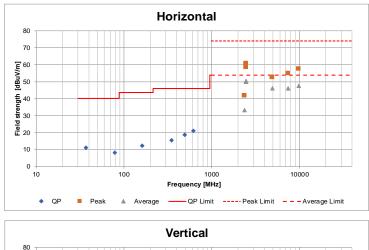
Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

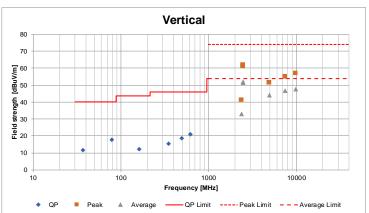
Test place Ise EMC Lab. Semi Anechoic Chamber No.2

Date

Temperature / Humidity

Engineer

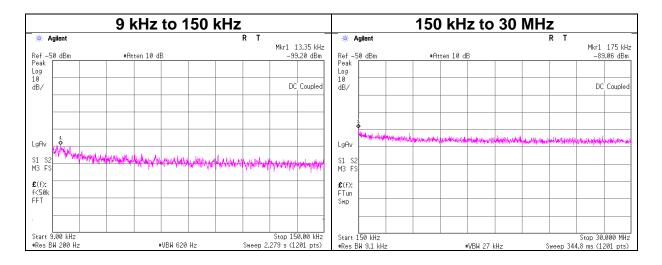

(Below 1 GHz)


No.2 July 13, 2023

July 14, 2023 24 deg. C / 58 % RH 23 deg. C / 57 % RH Junki Nagatomi Keiya Ido

(Above 1 GHz)

Mode Tx SHIMANO ORIGINAL


^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 14869862H-C-R1 Page 21 of 26

Conducted Spurious Emission

Test place Ise EMC Lab. No.8 Measurement Room

Date July 10, 2023
Temperature / Humidity 21 deg. C / 53 % RH
Engineer Tetsuro Yoshida
Mode Tx SHIMANO ORIGINAL

	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
1			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	13.35	-99.2	0.23	9.68	2.0	1	-87.3	300	6.0	-26.0	45.0	71.0	
	175.00	-89.1	0.30	9.72	2.0	1	-77.0	300	6.0	-15.8	22.7	38.5	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

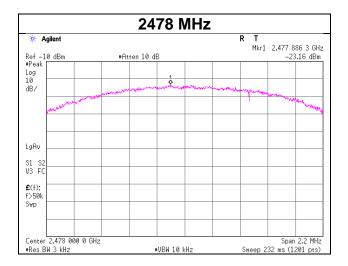
EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test Report No. 14869862H-C-R1 Page 22 of 26

Power Density


Test place Ise EMC Lab. No.8 Measurement Room

Date July 10, 2023
Temperature / Humidity Engineer Tetsuro Yoshida
Mode Tx SHIMANO ORIGINAL

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2478	-23.16	1.16	10.03	-11.97	8.00	19.97

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 14869862H-C-R1 Page 23 of 26

APPENDIX 2: Test Instruments

Test Equipment

	equipment		D	NA (t	NA - 1-1	0	1 4	I 0 - 1
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal
AT	MAT-22	141269	Attenuator(10dB) 1-18GHz	Orient Microwave	BX10-0476-00	-	03/08/2023	12
AT	MAT-26	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/01/2023	12
AT	MCC-244	197219	Microwave cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	536999/126E	03/09/2023	12
AT	MCC-38	141395	Coaxial Cable	UL Japan	-	-	11/18/2022	12
AT	MMM-17	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	70900530	01/18/2023	12
AT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/13/2023	12
AT	MPM-08	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	07/04/2022	12
AT	MPSE-11	141840	Power sensor	Anritsu Corporation	MA2411B	11737	07/04/2022	12
AT	MRENT- 130	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	12/01/2022	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
RE	MAEC-02- SVSWR	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/17/2023	24
RE	MAT-112	220646	Attenuator	Huber+Suhner	6806_N-50-1	-	03/17/2023	12
RE	MCC-12	141317	Coaxial Cable	UL Japan	-	-	09/27/2022	12
RE	MCC-218	141394	Microwave Cable	Junkosha	MWX221	1607S141(1 m) / 1608S264(5 m)	09/12/2022	12
RE	MHA-02	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/23/2023	12
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/20/2022	12
RE	MHF-26	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/08/2022	12
RE	MJM-27	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MLA-23	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/21/2022	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/12/2022	12
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/17/2022	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/14/2023	12
RE	MPA-24	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/02/2023	12
RE	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/16/2023	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	YBA-03	197990	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHBB 9124 + BBA 9106	01365	11/12/2022	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission