Test Report

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS

Report No	ES0819-1
Client	Onset Computer Corporation
Address	470 MacArthur Blvd. Bourne, MA 02532
Phone	508-743-3195
Items tested FCC ID IC FRN	MX2501 WXF-ONST7 7936A-ONST7 0009380064
Equipment Type Equipment Code Emission Designator	Digital Transmission System DTS 1M07F1D
FCC/IC Rule Parts	CFR Title 47 FCC Part 15.247, ISED Canada RSS-247 Issue 2
Test Dates	Apr 9,18 and 19, 2018
Results	As detailed within this report
Prepared by	Zachary Johnson – Test Engineer
Authorized by	Yuhus Faziløgiu – Sr. EMC Engineer
Issue Date	6/1/2018
Conditions of Issue	This Test Report is issued subject to the conditions stated in the ' <i>Conditions of Testing</i> ' section on page 27 of this report.

Curtis-Straus LLC is accredited by the American Association for Laboratory Accreditation for the specific scope of accreditation under Certificate Number 1627-01. This report may contain data which is not covered by the A2LA accreditation.

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

page 1 of 28

Contents

Contents	2
Summary	3
Test Methodology	4
Product Tested - Configuration Documentation	5
Clock Frequencies	
Statement of Conformity	
Modifications Required for Compliance	6
Test Results	7
Bandwidth	7
Peak Output Power	
Radiated Spurious Emissions	11
Conducted Spurious Emissions	20
Power Spectral Density	22
Occupied Bandwidth	24
Measurement Uncertainty	26
Conditions of Testing	27

Form Final Report REV 12-07-15

Summary

This test report supports an application for certification of a transmitter operating pursuant to: CFR Title 47 FCC Part 15.247, ISED Canada RSS-247 Issue 2

MX2501 is a Bluetooth Low Energy transmitter operating in the 2402 MHz to 2480 MHz frequency range.

Antenna Type:PCB Mounted ChipGain:1.3dBi Peak

We found that the product met the above requirements without modification.

Test samples were received in good condition.

page 3 of 28

Test Methodology

All testing was performed according to the following rules/procedures/documents; CFR 47 FCC Part 15.247, RSS-247 Issue 2, RSS-Gen Issue 4, FCC KDB 558074 D01 DTS Measurement Guidance v04 and ANSI C63.10-2013.

Radiated emissions were maximized by rotating the device around 3 orthogonal planes (X, Y and Z) as well as varying the test antenna's height and polarity. The device antenna could not be maximized separately.

RF measurements were performed at the antenna port. Three channels were tested as follows:

- Low Channel 2402MHz
- Mid Channel 2440MHz
- High Channel 2480MHz

EUT operating voltage is 1.5VDC from a single AA battery.

The following bandwidths were used during radiated spurious emissions testing.

Frequency	RBW	VBW
30-1000MHz	120kHz	1MHz
1-25GHz	1MHz	3MHz

Product Tested - Configuration Documentation

	I	EUT Configuration	
Work Order:	S0819		
Company:	Onset Computer Corporation		
Company Address:	470 MacArthur Blvd.		
	Bourne, MA, 02532		
Contact:	Jim Corrigan		
	MN	PN	SN
EUT:	MX2501	WXF	20350299
EUT Description:	pH meter with Bluetooth		
EUT Max Frequency:	2480 MHz		
EUT Min Frequency:	0.032768 MHz		
Support Equipment	MN		SN
Apple iPad			
Software Operating Mode D	escription:		
EUT continuously logs pH of	solution in a sample vial and communicates to su	upport tablet/computer via Bluetooth.	
Performance Criteria:			
EUT continuously logs pH of	solution in a sample vial. The reading must rem	ain within 0.1pH of the reference solution, which	h is 4.0pH.

Clock Frequencies

frequencies (MHz) 2480, 32, 0.032768

Clock Frequencies

page 5 of 28

Statement of Conformity

The EUT has been found to conform to the following parts of FCC 15.247 and RSS 247 as detailed below:

RSS-GEN	RSP-100	RSS 247	Part 15	Comments
6.3			15.15(b)	There are no controls accessible to the user that
				varies the output power to operate in violation of the
				regulatory requirements.
	3.1		15.19	The label is shown in the label exhibit.
	3.2		15.21	Information to the user is shown in the instruction manual exhibit.
			15.27	No special accessories are required for compliance.
3, 6.1, 6.5			15.31	The EUT was tested in accordance with the measurement standards in this section.
6.13			15.33	Frequency range was investigated according to this section, unless noted in specific rule section under which the equipment operates.
8.1			15.35	The EUT emissions were measured using the measurement detector and bandwidth specified in this section, unless noted in specific rule section under which the equipment operates.
8.3			15.203	The antenna for this device is a permanently installed PCB mounted chip antenna with 1.3dBi peak gain.
8.10			15.205 15.209	The fundamental is not in a Restricted band and the spurious and harmonic emissions in the Restricted bands comply with the general emission limits of 15.209 or RSS-Gen as applicable
8.8			15.207	Not applicable since the EUT operating voltage is 1.5VDC from battery.
			15.247	The unit complies with the requirements of 15.247
		RSS 247		The unit complies with the requirements of RSS-247
6.6				Occupied Bandwidth measurements were made.

Modifications Required for Compliance

No modifications required for compliance

page 6 of 28

June 1, 2018

Test Results

Bandwidth

Limit: The minimum 6 dB bandwidth shall be at least 500 kHz. [15.247(a) (2)]

MEASUREMENTS / RESULTS

	6dB Bandwidth										
Date: 4/9/2018	Company: Onset			Work Order:	S0819						
Engineer: Zac Johnson	EUT: MX2501		Operating Voltage	/Frequency:	1.5V DC						
Temp: 20.5°C	Humidity: 32%	Pressure: 998mBar									
Frequency Range: 24	102-2480 MHz Mea	surement Type: Conducted									
	Measur	ement Method: FCC KDB 55807	4 D01 DTS Meas Guida	nce V04							
Notes:											
				6dB Bandwi	dth						
Frequency		Reading	Limit	Margin	Result						
(MHz)		(kHz)	(kHz)	(kHz)	(Pass/Fail)						
2402		715.4	≥500	215	Pass						
2440		703.2	≥500	203	Pass						
2480		699.0	≥500	199	Pass						
Test Site: CEMI-1	Cable: 2288 Cbl	Attenuato	r: None								
Analyzer: 1118473 SA				Copyright Cu	tis-Straus LLC 2000						

PLOTS:

6dB Bandwidth - Low Channel

page 7 of 28

🔤 Keysight Spe	ctrum Analyzer - Occupied BV	V			
	RF 50 Ω AC		SENSE:INT Center Freg: 2.4400000	000 GHz	10:49:50 AM Apr 20, 2018 Radio Std: None
Center Fr	req 2.44000000	GHZ	Trig: Free Run	Avg Hold:>10/10	
		#IFGain:Low	#Atten: 16 dB		Radio Device: BTS
					Mkr1 2.440009 GHz
10 dB/div	Ref 6.00 dBm				-7.3302 dBm
Log			↓ 1		
-14.0					
-24.0					
-34.0					
-44.0		~~~			
-54.0	- And a start of the start of t				and a second
-64.0					
-74.0					
-84.0					
Center 2.					Span 3 MHz
#Res BW	100 kHz		#VBW 300 ki	Hz	Sweep 1 ms
0.000	oied Bandwidt	h	Total Power	-0.55 dBm	
Occur			Total Tower	-0.55 0.511	
	1.	0802 MHz			
Transn	nit Freq Error	6.596 kHz	% of OBW Powe	er 99.00 %	
x dB B	andwidth	703.2 kHz	x dB	-6.00 dB	
MSG				STATUS	

6dB Bandwidth – Mid Channel

6dB Bandwidth - High Channel

Peak Output Power

LIMIT: 1 Watt Conducted Output Power [15.247(b) (3)]

MEASUREMENTS / RESULTS

Date: 4/9/2018 ingineer: Zac Johnso Temp: 20.5°C	n	Company: Onset EUT: MX2501 Humidity: 32%		Pressure: 998mBar	Operating	Work Orde Voltage/Frequenc	
Frequency Range:	2402-2480 MHz		Measurer	nent Type: Conducted			
Notes:				1			1
Frequency	Peak Reading	Cable Loss	Attenuator Loss	Peak Output Power	Limit	Margin	Result (Pass/Fail
(MHz) 2402	(dBm) -7.98	(dB) 0.43	(dB) 0.00	(dBm) -7.55	(dBm) 30.0	(dB) -37.55	Pass
2440	-7.18	0.43	0.00	-6.75	30.0	-36.75	Pass
2480	-6.45	0.43	0.00	-6.02	30.0	-36.02	Pass
est Site: CEMI-1		Cable: 2288 Cbl		Atte	enuator: None		

PLOTS

Peak Output Power - Low Channel



page 9 of 28

Peak Output Power - Mid Channel

Peak Output Power - High Channel

Radiated Spurious Emissions

Limits: Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). [15.247(d)]

EUT was tested in worst case laying down orientation. Channels 0, 19, and 39 were tested for radiated emissions. Channels 0 and 39 were tested for band edges.

MEASUREMENTS / RESULTS

Date:	18-Apr-18		Company:	Onset						Work Order	r: S0819
Engineer:						EUT C	Operating	g Voli	age/Frequency	: battery	
Temp:	23°C		Humidity:	23%		Pressure	e: 996mbar				
	Freque	ency Range:	Band Edge	es			Measu	irement	Dista	n ce: 3 m	
Notes:	Peak measure	ements comp	pared to ave	rage limit							
Antenna			Preamp	Antenna		Cable Adjusted	Limit		Margi	n R	Result
Polarization (H/V)	Frequency (MHz)	(dBµV)	Factor (dB)	Factor (dB/m)	Factor (dB)	Reading (dBµV/m)					
Band Edges:	. ,										
Ū.	2483.5	37.0	25.3	28.2	3.1	43.0	54		-11.0		Pass
			25.5	28.0	3.2	42.7	54		-11.3		Pass
					100		0-1			1=0	
Test Site:	EMI Chamber	1	Cable 1:	Asset #2	480		Cab	le 2: Ass	set #2	456	
Analyzer: Ssoft Radiate		Calculator	Preamp: v 1.017.203	Asset #2 3	443	Factor		le 2: Ass nna: Ora		lorn	rtis-Straus LLC 2
Analyzer: Ssoft Radiate djusted Read ev. 4/17/2018 Spectrum A	1168255 ed Emissions C ing = Reading Analyzers / Receiv	Calculator - Preamp Fac vers /Preselect	Preamp: v 1.017.203 ctor + Anter	Asset #2 3 nna Factor Range	443 r + Cable MN	Mfr	Ante	nna: Ora	nge H Cat	lorn Copyright Cur Calibration Due	rtis-Straus LLC 2
Analyzer: Ssoft Radiate djusted Read ev. 4/17/2018 Spectrum A Renta	1168255 ad Emissions C ing = Reading analyzers / Receiv al MXE EMI Receiv	Calculator - Preamp Far vers /Preselect er(1168255)	Preamp: v 1.017.203 ctor + Anter	Asset #2 3 nna Factor Range Hz-8.4GHz	443 r + Cable MN N9038A	Mfr Agilent	Ante SN MY53290009	Asset 1168255	Cat	Copyright Cur Copyright Cur Calibration Due 8/15/2018	Calibrated o 8/15/2017
Analyzer: Ssoft Radiate djusted Read av. 4/17/2018 Spectrum A Renta	1168255 ad Emissions C ing = Reading Analyzers / Receiv al MXE EMI Receiv Radiated Emission	Calculator - Preamp Far vers /Preselect er(1168255) ns Sites	Preamp: v 1.017.203 ctor + Anter ors 20 F	Range Hz-8.4GHz CC Code	443 r + Cable MN N9038A IC Code	Mfr Agilent VCCI Code	Ante SN MY53290009 Range	Asset 1168255 Asset	Inge H Cat I Cat	Copyright Cur Copyright Cur Calibration Due 8/15/2018 Calibration Due	Calibrated 8/15/2017 Calibrated
Analyzer: Ssoft Radiate djusted Read ev. 4/17/2018 Spectrum A Renta	1168255 ad Emissions C ing = Reading analyzers / Receiv al MXE EMI Receiv	Calculator - Preamp Far vers/Preselect er(1168255) ns Sites	Preamp: v 1.017.203 ctor + Anter ors 20 F	Asset #2 3 nna Factor Range Hz-8.4GHz	443 r + Cable MN N9038A	Mfr Agilent	Ante SN MY53290009	Asset 1168255	Cat	Copyright Cur Copyright Cur Calibration Due 8/15/2018	Calibrated (8/15/2017 Calibrated (12/21/2016
Analyzer: Ssoft Radiate djusted Read av. 4/17/2018 Spectrum A Renta	1168255 ad Emissions C ing = Reading Analyzers / Receiv al MXE EMI Receiv Radiated Emission EMI Chamber	Calculator - Preamp Far vers /Preselect er(1168255) ns Sites r 1 r 1	Preamp: v 1.017.203 ctor + Anter ors 20 F	Range Hz-8.4GHz CC Code 719150	443 MN N9038A IC Code 2762A-6	Mfr Agilent VCCI Code A-0015	SN MY53290009 Range 30-1000MHz	Asset 1168255 Asset 1685	Cat Cat Cat	Calibration Due 8/15/2018 Calibration Due 12/21/2018	Calibrated
Analyzer: Ssoft Radiate djusted Read av. 4/17/2018 Spectrum A Renta	1168255 ad Emissions C ing = Reading Analyzers / Receiv al MXE EMI Receiv Radiated Emission EMI Chamber EMI Chamber S /Couplers Atten	Calculator - Preamp Far vers /Preselect er(1168255) ns Sites r 1 r 1	Preamp: v 1.017.203 ctor + Anter ors 20 F	Range Hz-8.4GHz CC Code 719150 Range	443 MN N9038A IC Code 2762A-6 2762A-6 MN	Mfr Agilent VCCI Code A-0015 A-0015 Mfr	Ante SN MY53290009 Range 30-1000MHz 1-18GHz SN	Asset 1168255 Asset 1685 1685 Asset	Cat I Cat I Cat I Cat	Copyright Cur Copyright Cur 8/15/2018 Calibration Due 12/21/2018 12/21/2018 Calibration Due	Calibrated (8/15/2017 Calibrated (12/21/2016 12/21/2016 Calibrated (
Analyzer: Ssoft Radiate djusted Read av. 4/17/2018 Spectrum A Renta	1168255 ad Emissions C ing = Reading Analyzers / Receiv al MXE EMI Receiv Radiated Emission EMI Chamber EMI Chamber s /Couplers Atten 2443 PA	Calculator - Preamp Far vers /Preselect er(1168255) ns Sites r 1 r 1 uators / Filters	Preamp: v 1.017.203 ctor + Anter ors 20 F 94	Asset #2 Anna Factor Range Hz-8.4GHz CC Code 719150 719150 Range KHz-6GHz	443 r + Cable MN N9038A IC Code 2762A-6 2762A-6 2762A-6 BBV9744	Mfr Agilent VCCI Code A-0015 A-0015 Mfr SCWARZBECK	Ante SN MY53290009 Range 30-1000MHz 1-18GHz SN 63	Asset 1168255 Asset 1685 1685 Asset 2443	Cat I Cat I Cat I Cat	Calibration Due 8/15/2018 Calibration Due 12/21/2018 12/21/2018 Calibration Due 2/5/2019	Calibrated a 8/15/2017 Calibrated 12/21/2016 12/21/2016 Calibrated 2/5/2018 Calibrated 0
Analyzer: Ssoft Radiate djusted Read spectrum A Rent Preamp Mete	1168255 ad Emissions C ing = Reading Analyzers / Receiv al MXE EMI Receiv Radiated Emission EMI Chamber S /Couplers Atten 2443 PA Antennas Orange Horr orological Meters	Calculator - Preamp Far vers /Preselect er(1168255) ns Sites 1 1 uators / Filters	Preamp: v 1.017.203 ctor + Anter ors 20 F 94	Asset #2 nna Factor Range Hz-8.4GHz CC Code 719150 Range (Hz-6GHz Range	443 + Cable MN N9038A IC Code 2762A-6 2762A-6 MN BBV9744 MN 3115 MN	Mfr Agilent VCCI Code A-0015 A-0015 Mfr SCWARZBECK Mfr EMCO Mfr	Ante SN MY53290009 Range 30-1000MHz 1-18GHz 1-18GHz SN 63 SN 0004-6123 SN	Asset 1168255 Asset 1685 685 Asset 2443 Asset 390 Asset	Cat I Cat I Cat I Cat I Cat I Cat	Calibration Due 8/15/2018 Calibration Due 12/21/2018 Calibration Due 2/5/2019 Calibration Due 10/13/2018 Calibration Due	Calibrated a 8/15/2017 Calibrated a 12/21/2016 Calibrated a 2/5/2018 Calibrated 10/13/2016 Calibrated
Analyzer: Ssoft Radiate djusted Read ev. 4/17/2018 Spectrum A Rent F Preamp Mete	1168255 ad Emissions C ing = Reading Analyzers / Receiv al MXE EMI Receiv Radiated Emission EMI Chamber EMI Chamber S /Couplers Atten 2443 PA Antennas Orange Horr	Calculator - Preamp Fai vers /Preselect er(1168255) ns Sites 1 uators / Filters v/Chambers sure Only)	Preamp: v 1.017.203 ctor + Anter ors 20 F 94	Asset #2 nna Factor Range Hz-8.4GHz CC Code 719150 Range (Hz-6GHz Range	443 + Cable MN N9038A IC Code 2762A-6 2762A-6 2762A-6 MN BBV9744 MN 3115	Mfr Agilent VCCI Code A-0015 A-0015 Mfr SCWARZBECK Mfr EMCO	Ante SN MY53290009 Range 30-1000HHz 1-18GHz SN 63 SN 0004-6123	Asset 1168255 Asset 1685 1685 Asset 2443 Asset 390	Cat I Cat I Cat I Cat I Cat I	Calibration Due 8/15/2018 Calibration Due 12/21/2018 12/21/2018 Calibration Due 2/5/2019 Calibration Due 10/13/2018	Calibrated a 8/15/2017 Calibrated a 12/21/2016 12/21/2016 Calibrated a 2/5/2018
Analyzer: Ssoft Radiate djusted Read spectrum A Rent Preamp Mete	1168255 ad Emissions C ing = Reading Analyzers / Receiv ad MXE EMI Receiv Radiated Emission EMI Chamber EMI Chamber EMI Chamber S /Couplers Atten 2443 PA Antennas Orange Horr orological Meters pather Clock (Press	Calculator - Preamp Fai vers /Preselect er(1168255) ns Sites 1 uators / Filters v/Chambers sure Only)	Preamp: v 1.017.203 ctor + Anter ors 20 F 94	Asset #2 nna Factor Range Hz-8.4GHz CC Code 719150 Range (Hz-6GHz Range	443 (+ Cable MN N9038A IC Code 2762A-6 2762A-6 2762A-6 MN BBV9744 MN 3115 MN BA928	Mfr Agilent VCCI Code A-0015 A-0015 Mfr SCWARZBECK Mfr EMCO Mfr Oregon Scientific	Ante SN MY53290009 Range 30-1000MHz 1-18GHz 1-18GHz SN 63 SN 0004-6123 SN	Asset 1168255 Asset 1685 1685 Asset 2443 Asset 390 Asset 831	Cat I Cat I Cat I Cat I Cat I Cat	Calibration Due 8/15/2018 Calibration Due 12/21/2018 Calibration Due 2/5/2019 Calibration Due 10/13/2018 Calibration Due 4/28/2018	Calibrated 8/15/2017 Calibrated 12/21/2016 Calibrated 2/5/2018 Calibrated 10/13/2016 Calibrated 4/28/2016

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

	Cond	ucted Bandedge			
Date: 4/9/2018	Company: Onset		N	Nork Order:	S0819
Engineer: Zac Johnson	EUT: MX2501		Operating Voltage	Frequency:	1.5V DC
Temp: 20.5°C	Humidity: 32%	Pressure: 998mBar			
Frequency Range: 240	2-2480 MHz	Measurement Type: Conducted			
	Me	easurement Method: FCC KDB 558	3074 D01 DTS Meas Gu	idance V04	
Notes:					
		Deltas to Peak		Lii	mit
		(dB)		(dB)	(Pass/Fail)
Low Bandedge		52.255		≥ 20	Pass
High Bandedge		59.462		≥20	Pass
Test Site: CEMI-1	Cable: 2288 Cbl	Attenuator: N	lone		
Analyzer: 1118473 SA				Copyright Curtis-	Straus LLC 200


Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

page 11 of 28

Conducted Band Edge - Low

Conducted Band Edge - High

Radiated Spurious Emissions

30-1000/htt / vertical Data Operator: 2/ Notes: Unit: Tengener, at 11:13:18 PM, Thursday, April 19, 2018 Tens at 0, Cars, 10 Augusta d' Correction Adjusta d' Correction Adjust	30-1000MHz Vertical Data Test Site - CH-2 Operator: Zi Conditions - 20.5°C; 32KBH; 998mBar Notes: 0 Luw Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Eutropic test state of te		Work Order - S0819 EUT Power Input - 1.5V DC								Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance							
Operator: ZI Notes: Conditions - 20.5°C; 32%RH; 998mBar O Due Channel EUT Maximum Frequency - 2480MHz EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Imagin for test marks for test	Operator: ZJ: Note:: Conditions - 20.5°C; 32%RH; 998mBar Uw Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Frequency Reading Factor Anglitude 09 (Coss., 8) Umit Verst Verst <td></td> <td colspan="7"></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																	
Notes: Low Channel 0 EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Umain Tegeware, Reading Reading Terms and the field of For Care, State St	Notes: Low Channel 0 ELT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thureday, April 19, 2018 ELT Maximum Frequency - 2480MHz Prequency Rewerky Raw QP Reference Research Correction Adjusted D ECC, pt 5, 1 Margin to ECC, pt 1, 1 Margin to E												Data					
Burt Channel EUT Maximum Frequency - 2480ME Data Taken ett 11:31:8P,M, Thursday, April 19, 2013 Image of the former of	Low Channel EUT Maximum Frequency - 2490MHz Data Taken at 11:13: BPM, Thursday, April 19, 2015 Margin of Cast, B Margin												25					
Raw QP Correction Adjusted QP Umit: Treq. prot. Margin to Fector Test Results Worst Margin to (MH1) Umit: Limit Limit: Limit Limit: Limit Limit: Limit Margin to Gass. Test Results Worst Margin (BBU/W) Margin to (BBU/W) Test Results Worst Margin to (BBU/W) Mar	Raw OP (MH2) Correction (dB)//(dB/m) Adjusted OP (dB)//(dB/m) Limit (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results (dB)//(dB/m) Margin to (dB)//(dB/m) Worst (dB)//(dB/m) Margin to (dB)//(dB/m) Worst (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results (dB)//(dB/m) Margin to (dB)//(dB/m) Margin to (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results/(dB/m) Margin to (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results/(dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) <												nel					
Raw QP Correction Adjusted QP Umit: Treq. prot. Margin to Fector Test Results Worst Margin to (MH1) Umit: Limit Limit: Limit Limit: Limit Limit: Limit Margin to Gass. Test Results Worst Margin (BBU/W) Margin to (BBU/W) Test Results Worst Margin to (BBU/W) Mar	Raw OP (MH2) Correction (dB)//(dB/m) Adjusted OP (dB)//(dB/m) Limit (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results (dB)//(dB/m) Margin to (dB)//(dB/m) Worst (dB)//(dB/m) Margin to (dB)//(dB/m) Worst (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results (dB)//(dB/m) Margin to (dB)//(dB/m) Margin to (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results/(dB/m) Margin to (dB)//(dB/m) Margin to (dB)//(dB/m) Test Results/(dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) <																	
Raw OP Correction Factor Adjuiced OP (Correction (Bluv/) Correction (Bluv/) Adjuiced OP (Correction (Bluv/) Correction (Bluv/) Adjuiced OP (Correction (Bluv/) Correction (Bluv/) Adjuiced OP (Bluv/) Correction (Bluv/) Adjuiced OP (Bluv/) Correction (Bluv/) Adjuiced OP (Bluv/) Correction (Bluv/) Adjuiced OP (Bluv/) Adjuiced O	Raw OP (MH1) Concrection (dBµ// (dBµ// (dB)/// (dB)// (dB)// (dB)// (dB)/// (dB)// (dB)// (dB)									Data Taken at 11:13:18 PM, Thursday, April 19, 2018								
104.472 2.6 -10.7 15.3 43.5 -28.2 PASS - 222 250 200.07 23.4 -9.8 13.6 43.5 -29.9 PASS - 135 -135 135 -135 135 135 135 135 135 135 135 135 135 135 136 135 -20.0 PASS - 107 126 16 107 135 135 135 135 135 135 135 136 135 136 135 136 135 136 135 105 135 643.138 22.2 3 25.3 46 -20.7 PASS 105 135 Curtis Straws - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 00 00 00.5 20.5°C; 32%RH; 998mBar 00	104.472 26 -10.7 15.3 43.5 -28.2 PASS -43.5 -28.2 PASS -22.2 - 200.076 23.4 -9.8 13.6 43.5 -29.9 PASS -28.2 PASS -27.2 PASS -27.2 PASS -27.2 PASS -20.1 26.6 -20.1 PASS -20.1 26.4 -0.6 23.1 46 -20.1 PASS -20.1 26.4 -0.6 23.9 PASS -20.1 26.4 -0.6 23.1 46 -22.9 PASS -46 -22.9 PASS -11.75 0 937.441 22.2 3 25.3 46 -20.7 PASS -46 -20.7 PASS 10.5 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 10.5 10.5 10.5 10.5	EUT Azimutl		Margin		-	FCC_pt15_1	Margin		-	FCC_pt15_1	-		-	Frequency			
200.076 23.4 9.8 13.6 43.5 -29.9 PASS -29.9 PASS -20.1 175 155 701.774 26.4 -0.6 25.9 4.6 -20.1 PASS -20.1 4.6 -20.1 PASS PASS -20.1 PASS PASS PASS -20.1 PASS	200.076 23.4 -9.8 13.6 43.5 -29.9 PASS -43.5 -29.9 PASS -20.1 46 -20.1 PASS -20.1 23.4 -0.6 23.1 46 -20.1 PASS -20.1 46 -20.1 PASS -20.1 24.6 -20.1 PASS -20.1 24.6 -20.1 PASS -20.1 24.6 -20.1 PASS -20.1 24.6 -22.9 PASS -46.6 -22.9 PASS 175 175 937.41 12.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105	(degrees	(cm)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB/m)	(dBµV)	(MHz)			
201.774 26.4 0.6 25.9 46 -20.1 PASS -20.1 46 -20.1 PASS -20.1 216 160 702.694 23.6 -0.6 23.1 46 -22.9 PASS 46 -22.9 PASS 175 204 937.411 22.2 3 25.3 46 -20.7 PASS 46 -22.9 PASS 105 155 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30.100MHz Horizontal Data Operator: ZJ O EUT Power Input: 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar 0 LUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Limi: Low Channel Limi: Work Limi: Umi Limi: Umi Margin Vorst Lim2; Margin Margin Vorst Lim2; Margin Margin Lim2; Margin Margin Lim2; Margin Margin Lim2; Margin Margin Lim2; Margin Margin Lim2; Margin Margin M	701.774 26.4 -0.6 25.9 46 -20.1 PASS -20.1 46 -20.1 PASS -20.1 216 22.9 PASS 175 216 843.138 22.4 1.6 24 46 -22.9 PASS 46 -22.9 PASS 175	250	222		PASS	-28.2	43.5		PASS	-28.2	43.5	15.3	-10.7	26	104.472			
Res Conditions 202 PASS 46 -22.9 PASS 46 -22.9 PASS 175 204 02.694 2.2 3 25.3 46 -20.7 PASS 46 -22.9 PASS 175 144 937.41 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 155 Curtis Straus - a Bureau Veritas Company Work Order - S0819 EUT Power Input - 1.5V DC Tost Straus - a Bureau Veritas Company EUT Power Input - 1.5V DC Tost Straus - 20.5°C; 32%RH; 998mBar 0<	702.694 23.6 -0.6 23.1 46 -22.9 PASS 46 -22.9 PASS 175 843.138 22.4 1.6 24 46 -22 PASS 46 -22.9 PASS 175 175 937.441 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 105 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000MHz Horizontal Data Operator: ZI Work Order - 50819 EUT Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar 0 LUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Limit: Worst Limit: Margin to GlupV/m Test Results Margin to GlupV/m GlupV/m GlupV/m <t< td=""><td>155</td><td>175</td><td></td><td>PASS</td><td>-29.9</td><td>43.5</td><td></td><td>PASS</td><td>-29.9</td><td>43.5</td><td>13.6</td><td>-9.8</td><td>23.4</td><td>200.076</td></t<>	155	175		PASS	-29.9	43.5		PASS	-29.9	43.5	13.6	-9.8	23.4	200.076			
843.138 22.4 1.6 24 46 -22 PAS 46 -22 PAS 175 144 937.41 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 155 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000MHz Horizontal Data Operator: ZJ Notes: Work Order - S0819 EUT Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar 0 Low Channel EUT Maximum Frequency - 2480MHz EUT Maximum Frequency - 2480MHz Margin Margin Margin Margin Margin Attemade EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Work Immit immi	843.138 22.4 1.6 24 46 -22 PASS 46 -22 PASS 175 937.441 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000MHz Horizontal Data Operator: ZJ Notes: Work Order - S0819 EUT Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar O Lum : Conditions - 20.5°C; 32%RH; 998mBar O Lum : Conditions - 20.5°C; 32%RH; 998mBar O Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Work Margin digusted QP FCC pt15_1 Margin to (dBy/m) Margin do Q-Gass_B Um 1 Um 1 (dB) Um 2 (Pass/Fail) Margin to Q-Gass_B Um 2 (Pass/Fail) Height A (dBy/m) Note:: O O Autema (MHz) (dBy/m) Um 1 (dBy/m) Margin to QB_Gass, B Um 2 (Pass/Fail) Margin to Q-Gass_B Um 2 (Pass/Fail) Margin to Q-Gass_B Um 2 (Pass/Fail) Margin to Q-Gass_B Um 2 (Pass/Fail)	160	216	-20.1	PASS	-20.1	46	-20.1	PASS	-20.1	46	25.9	-0.6	26.4	701.774			
937.441 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 155 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000/Hz Horizontal Data Operator: ZI Low Channel Work Order - S0819 EUT Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar 0 0 North Antenna Height North Prequency Moth 40 Correction (dBy/M) Adjusted QP (GBy/M) Umati (dBy/M) Margin to (dBy/M) Test Results Margin to Margin Lim1 Fest Results (dB) Margin to (dB) Test Results Margin to (dB) Antenna (dB) EU 104.489 26.2 10.7 1.5.5 43.5 -2.6 PASS 43.5 -2.6 PASS	937.441 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000/MHz Horizontal Data Operator: ZJ Notes: Low Channel Work Order - 50819 EUT Power Input - 1.5V DC Test Site - CH-1 Operator: ZJ Notes: Low Channel Margin to Factor Frequency Adjusted P (FCC, pt15_1) Margin to (dB/m) Margin to (dB/m) Uma: Imal Imal (dB/m) Worst Margin (dB/m) Margin to (dB/m) Worst Margin to (dB/m) Margin to (dB/m) Worst (dB/m) Margin to (dB/m) Worst (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Margin to (dB/m) Worst Margin (dB) Margin to (dB) Test Results (dB) Margin to (dB) Test Results (dB) Morgin (dB) Margin to (dB) Test Results (dB) Margin to (dB) Test Results (dB) Margin to (dB) Test Results (dB) Margin to (dB) Test Results (dB) Margin to (dB) Test Results (margin to (dB) Margin to (dB) Test Results (mar	204	175		PASS	-22.9	46		PASS	-22.9	46	23.1	-0.6	23.6	702.694			
937.41 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 155 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000/Hz Horizontal Data Operator: ZI Notes: Low Channel Work Order - S0819 EUT Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998/mBar 0 Vort Margin to 1000 Miz Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998/mBar 0 Vort Antema Height EUT Power Input - 1.5V DC Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Work Carrection Raw QP Generation (GBuV/m) Margin to (GBuV/m) Test Results (GBuV/m) <	937.441 22.2 3 25.3 46 -20.7 PASS 46 -20.7 PASS 105 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000/MHz Horizontal Data Operator: ZJ Notes: Low Channel Work Order - 50819 EUT Power Input - 1.5V DC Conditions - 20.5°C; 32%RH; 998mBar Deta Taken at 11:13:18 PM, Thursday, April 19, 2018 Work dig/m) (big/w/m) Work Uma: Limation Test Results Margin to Bin Margin to GB (GB W/m) Vorst Limation Margin to GB (GB W/m) Vorst Limation Vorst Limation Margin to GB (GB W/m) Vorst Limation Vorst Limation <t< td=""><td>144</td><td></td><td></td><td>PASS</td><td></td><td>46</td><td></td><td>PASS</td><td>-22</td><td></td><td>24</td><td>1.6</td><td></td><td></td></t<>	144			PASS		46		PASS	-22		24	1.6					
Curtis Straus - a Bureau Veritas Company Work Order - S0819 Radiated Emissions Electric Field 3m Distance EUT Power Input - 1.5V DC 30-1000/Hz Morizontal Data Test Site - CH-2 Operator: ZJ Conditions - 20.5°C; 32% RH; 998mBar O EUT Power Input - 1.5V DC Data Taken at 11:13:18 PM, Thursday, April 19, 2018 EUT Maximum Frequency - 24800/Hz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 EUT Maximum Frequency - 24800/Hz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 EUT Maximum Frequency - 24800/Hz Margin Gesup Gesup Lim1 Lim1 Lim2 Margin to Test Results Margin to T	Curtis Straus - a Bureau Veritas Company Work Order - S0819 Radiated Emissions Electric Field 3m Distance EUT Power Input - 1.5V DC 30-1000MHz Horizontal Data Test Site - CH-2 Operator: ZJ Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 Lum Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 EUT Maximum Frequency - 2480MHz Margin to (dBy/m) Margin to degree for amplitude of Cass, B Lim1: (MHz) (dBy/m) (dBy/m) (dBy/m) (dBy/m) (dBy/m) (dby/m) (dby/m) 104.489 26.2 -10.7 15.5 43.5 -26 PASS 43.5 -28 PASS 101 184.123 28.8 -11.2 17.5 43.5 -26 PASS 158 158 700.241 22.9 -0.5 22.3 46 -23.7 PASS 265 265 700.241 22.9 -0.5 22.4 46 -23.6 PASS 265 262 262 702.64 22.4 1.6 24 46 -23.6<	155			PASS		46					25.3						
Radiated Emissions Electric Field am Distance 30-1000MHz Horizontal Data Operator: ZI Notes: EUT Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar Duw Channel Data Taken at 11:13:18 PM, Thursday, April 19, 2018 EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Imax Worst Imax Margin to 92, Cass_B Test Results Worst Imax Nargin to 92, Cass_B Antenna EUT Mediated Gaby Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Height Azim Mutzi Gaby/m Gaby/m <t< td=""><td>Radiated Emissions Electric Field 3m Distance EUT Power Input - 1.5V DC 30-1000MHz Horizontal Data Test Site - CH-2 Operator: ZJ Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 Low Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Frequency Raw OP Correction Adjusted OP FCC_pt15_1 Margin to Test Results Margin to Test Results</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td></td></t<>	Radiated Emissions Electric Field 3m Distance EUT Power Input - 1.5V DC 30-1000MHz Horizontal Data Test Site - CH-2 Operator: ZJ Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 Low Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Frequency Raw OP Correction Adjusted OP FCC_pt15_1 Margin to Test Results	•							•	•	•	•	•	•				
Radiated Emissions Electric Field am Distance 30-1000MHz Horizontal Data Operator: ZI Notes: EUT Power Input - 1.5V DC Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar Duw Channel Data Taken at 11:13:18 PM, Thursday, April 19, 2018 EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Imax Worst Imax Margin to 92, Cass_B Test Results Worst Imax Nargin to 92, Cass_B Antenna EUT Mediated Gaby Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Gaby/m Height Azim Mutzi Gaby/m Gaby/m <t< td=""><td>Radiated Emissions Electric Field 3m Distance EUT Power Input - 1.5V DC 30-1000MHz Horizontal Data Test Site - CH-2 Operator: ZJ Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 Low Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Frequency Raw OP Correction Adjusted OP FCC_pt15_1 Margin to Test Results Margin to Test Results</td><td></td><td></td><td></td><td></td><td></td><td></td><td>or C0010</td><td>Mort Ord</td><td></td><td></td><td>Company</td><td>au Varita-</td><td></td><td>Curtic Ctar</td></t<>	Radiated Emissions Electric Field 3m Distance EUT Power Input - 1.5V DC 30-1000MHz Horizontal Data Test Site - CH-2 Operator: ZJ Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 Low Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Frequency Raw OP Correction Adjusted OP FCC_pt15_1 Margin to Test Results							or C0010	Mort Ord			Company	au Varita-		Curtic Ctar			
30-1000MHz Horizontal Data Operator: ZJ Notes: Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 Low Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Ereguency Raw QP Correction Adjusted QP FCC, 2015_1 Margin to QG Cass_B Eut Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Imargin to QG Cass_B Eut Maximum Frequency - 2480MHz Morgin Antenna Eut Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Correction Adjusted QP FCC, 2015_1 Margin to QG Cass_B Eut Maximum Frequency - 2480MHz Morgin Antenna Eut Margin to QG Cass_B Imargin to QG Cass_B	Test Site - CH-2 Conditions - 20.5°C; 32%RH; 998mBar Notes: O EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Margin degreg factor Amplitude 09 Correction (dBµV/m) (dBµV/																	
Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 Low Channel EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Image: State at 11:13:18 PM, Thursday, April 19, 2018 Worst Lim2: Margin to Test Results Margin to Test Results Margin to Cpt15_1 Margin to Test Results Margin to Cpt15_1 Margin to Test Results Margin to Cpt15_1 Margin to Test Results Margin Test	Conditions - 20.5°C; 32%RH; 998mBar Notes: 0 EUT Maximum Frequency - 2480MHz Data Taken at 11:13: RPM, Thursday, April 19, 2018 Frequency Raw QP Correction Adjusted QP FCC_pt15_1 Margin to Test Results Margin to Genes the service of the serv						ov DC	•			nce	ia 3m Dista						
Notes: Low Channel 0 EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 EUT Maximum Frequency - 2480MHz Frequency Raw QP Reading Correction Adjusted QP Eddf Image in to many intervention (dBpv/m) Test Results (dB) Worst (dBpv/m) Margin to (dB) Test Results (dBpv/m) Margin to (dB) Margin to (dBpv/m) Margin to (dB) Test Results (dBpv/m) Margin to (dB) Margin to (dBpv/m) Margin to (dB) Margin to (dBpv/m) Margin to (dB) Margin to (dBpv/m) Margin to (dB) Margin to (dBpv/m) Margin	Notes: Low Channel 0 EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Worst Reading (MHz) Correction Reading (dB,W) Adjusted QP (dB,W) CC,pt15_1 (dB,W/m) Margin to (dB,W/m) Test Results Margin to (dB,W/m) Test Results Margin to (dB,W/m) Margin to (dB,W/m) Margin to (dB,W/m) Margin to (dB,W/m) Margin to (dB,					-							tal Data					
EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Frequency Raw QP Correction Adjusted QP ECC.p115_1 Margin to Uim1 Vorst Lim2: Uim1 Margin to 09_03as_6 Test Results Morgin to Uim2 Vorst Margin to Uim2 Margin to Uim	EUT Maximum Frequency - 2480MHz EUT Maximum Frequency - 2480MHz Data Taken at 11:13:18 PM, Thursday, April 19, 2018 Frequency Raw OP (dBµ/) Correction Adjusted OP (dB/// (dBµ/// (dBµ///) Imin: FCC_pt15_1 (dB) Worst Margin (DG) Korst Margin (dB) Korst Height (dB) Korst (dB) K					nBar	2%RH; 998	s - 20.5°C; 3	Condition					ZJ				
Normalian dependence of the second of	Determine response version of the second se								-									
Frequency (MHz) Raw QP Reading (dBµV) Correction Factor Adjusted QP Amplitude (dBµV/m) Lim1: (dBµV/m) Test Results (dBµV/m) Worst (dBµV/m) Margin to (dBµV/m) M	Frequency (MHz) Raw QP Reading (dBµV) Correction Factor (dB/m) Adjusted QP (dBµV/m) Lim1: Og_Class_B (dBµV/m) Test Results (dB) Worst (dB) Margin to Lim1 (dB) Test Results (dB) Margin to Lim1 (dB) Test Results (dB) Margin to Lim1 (dB) Test Results (dB) Margin to Lim2 (dB) Test Results Lim2 (dB) Margin to					∕IHz	ency - 2480	num Frequ	EUT Maxin					nel	Low Chang			
Raw QP Reading Correction Factor Lim1: Adjusted QP (dB/m) Lim1: Adjusted QP (dB/m) Lim1: (dB) Margin to tim1 Test Results tim1 Margin to QC (ass. B) Margin to tim2 Margin to tim2 Margin to tim2 Margin to tim2 Margin tim2 Margin tim2 <th>Frequency (MHz) Raw QP Reading (dBµV) Correction Factor (dB/m) Adjusted QP Amplitude (dBµV/m) Lim1: PGC_pt15_1 (dB) Margin Lim1 (dB) Lim2: Lim1 (dB) Margin to Lim2 (dB) Margin to Lim2 (dB) Worst Lim2 (dB) Margin to Lim2 (dB) Vorst Lim2 (dB) Margin to Lim2 (dB) Vorst Margin Lim2 (dB) Antenna Height (dB) Antenna Height (dB) 104.489 26.2 -10.7 15.5 43.5 -28 PASS 43.5 -28 PASS (dB) <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>LOW CHAIN</th></t<></th>	Frequency (MHz) Raw QP Reading (dBµV) Correction Factor (dB/m) Adjusted QP Amplitude (dBµV/m) Lim1: PGC_pt15_1 (dB) Margin Lim1 (dB) Lim2: Lim1 (dB) Margin to Lim2 (dB) Margin to Lim2 (dB) Worst Lim2 (dB) Margin to Lim2 (dB) Vorst Lim2 (dB) Margin to Lim2 (dB) Vorst Margin Lim2 (dB) Antenna Height (dB) Antenna Height (dB) 104.489 26.2 -10.7 15.5 43.5 -28 PASS 43.5 -28 PASS (dB) (dB) <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>LOW CHAIN</th></t<>														LOW CHAIN			
Frequency (MHz) Raw QP Reading (dBµV) Correction Factor Adjusted QP Amplitude (dBµV/m) Lim1: (dBµV/m) Test Results (dBµV/m) Worst (dBµV/m) Margin to (dBµV/m) M	Frequency (MHz) Raw QP Reading (dBµV) Correction Factor (dB/m) Adjusted QP (dBµV/m) Lim1: Og_Class_B (dBµV/m) Test Results (dB) Worst (dB) Margin to Lim1 (dB) Test Results (dB) Margin to Lim1 (dB) Test Results (dB) Margin to Lim1 (dB) Test Results (dB) Margin to Lim2 (dB) Test Results Lim2 (dB) Margin to																	
Raq OP Reading Ray OP Factor Adjusted OP Applitud FCC_pt15_1 OP_class_B Margin Lim1 FCC_pt15_1 Lim1 Margin DP_class_B Margin Lim1 Antenna Lim2 Antenna Lim3 Antenna Lim3 Antenna	Raw QP (MHz) Raw QP (adgw) Correction (Adgw) Adjusted QP (Amplitude (Bgw)/m) FCC,pt15-1 (Margin (dB) Margin (MB2) Test Results (MB2) Margin (MB2) M																	
Raq OP Reading Ray OP Factor Adjusted OP Applitud FCC_pt15_1 OP_class_B Margin Lim1 FCC_pt15_1 Lim1 Margin DP_class_B Margin Lim1 Antenna Lim2 Antenna Lim3 Antenna Lim3 Antenna	Raw QP (MHz) Raw QP (adgw) Correction (Adgw) Adjusted QP (Amplitude (Bgw)/m) FCC,pt15-1 (Margin (dB) Margin (MB2) Test Results (MB2) Margin (MB2) M						·				l 19, 2018	rsday, Apri	18 PM, Thu					
(HHz) (dBµ/m) (dBµ/m) (dBµ/m) (dBµ/m) (dBµ/m) (dB) (dB)<	(MH2) (dB/w) (dB/w/m) (dB/w/m) (dB/w/m) (dB) (dB/w/m) (dB/			Worst			Lim2:	Worst				rsday, Apri	18 PM, Thu					
104.489 26.2 -10.7 15.5 43.5 -28 PASS 43.5 -28 PASS 101 227 184.123 28.8 -11.2 17.5 43.5 -26 PASS 43.5 -26 PASS 101 227 184.123 28.8 -11.2 17.5 43.5 -26 PASS 43.5 -26 PASS 158 295 199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 160 700.264 22.9 -0.5 22.4 46 -23.7 PASS 46 -23.6 PASS 262 247 834.054 2.4 1.6 24 46 -22 PASS -22 109 79 Solopote Input - battery Solopote Input - battery <td colspant<="" td=""><td>104.489 26.2 -10.7 15.5 43.5 -28 PASS 43.5 -28 PASS 101 101 184.123 28.8 -11.2 17.5 43.5 -26 PASS 43.5 -26 PASS 101 1 199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 158 700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 265 235 265 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 265 262 2 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 262 SO-1000MHz Low Channel Work Order - S0819 EUT Power Input - battery Tost Site - CH-1 Operator: AKZ Conditions - 23°C; 23%RH; 996mBar <td col<="" td=""><td>EUT</td><td>Antenna</td><td></td><td>Test Results</td><td>Margin to</td><td></td><td></td><td>Test Results</td><td>Margin to</td><td>Lim1:</td><td></td><td></td><td>n at 11:13:1</td><td></td></td></td></td>	<td>104.489 26.2 -10.7 15.5 43.5 -28 PASS 43.5 -28 PASS 101 101 184.123 28.8 -11.2 17.5 43.5 -26 PASS 43.5 -26 PASS 101 1 199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 158 700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 265 235 265 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 265 262 2 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 262 SO-1000MHz Low Channel Work Order - S0819 EUT Power Input - battery Tost Site - CH-1 Operator: AKZ Conditions - 23°C; 23%RH; 996mBar <td col<="" td=""><td>EUT</td><td>Antenna</td><td></td><td>Test Results</td><td>Margin to</td><td></td><td></td><td>Test Results</td><td>Margin to</td><td>Lim1:</td><td></td><td></td><td>n at 11:13:1</td><td></td></td></td>	104.489 26.2 -10.7 15.5 43.5 -28 PASS 43.5 -28 PASS 101 101 184.123 28.8 -11.2 17.5 43.5 -26 PASS 43.5 -26 PASS 101 1 199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 158 700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 265 235 265 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 265 262 2 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 262 SO-1000MHz Low Channel Work Order - S0819 EUT Power Input - battery Tost Site - CH-1 Operator: AKZ Conditions - 23°C; 23%RH; 996mBar <td col<="" td=""><td>EUT</td><td>Antenna</td><td></td><td>Test Results</td><td>Margin to</td><td></td><td></td><td>Test Results</td><td>Margin to</td><td>Lim1:</td><td></td><td></td><td>n at 11:13:1</td><td></td></td>	<td>EUT</td> <td>Antenna</td> <td></td> <td>Test Results</td> <td>Margin to</td> <td></td> <td></td> <td>Test Results</td> <td>Margin to</td> <td>Lim1:</td> <td></td> <td></td> <td>n at 11:13:1</td> <td></td>	EUT	Antenna		Test Results	Margin to			Test Results	Margin to	Lim1:			n at 11:13:1		
184.123 28.8 -11.2 17.5 43.5 -26 PASS 43.5 -26 PASS 158 295 199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 166 700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 265 166 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 247 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 79 Gurtis Straus - a Bureau Veritas Company Work Order - S0819 EUT Power Input - battery 200 -23°C; 23% RH; 996mBar -23°C; 23% RH; 996mBar Vortis Straus - a Bureau Veritas Company, Radiated Emissions Electric Field 3m Distance EUT Maximum Frequency - 2480MHz EUT Maximum Frequency - 2480MHz EUT Maximum Frequency - 2480MHz Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Worst Lim2: Margin to Margin to Test Resu	184.123 28.8 -11.2 17.5 43.5 -26 PASS 43.5 -26 PASS 158 158 199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 262 265 262 <	EUT Azimutl		Margin		-	FCC_pt15_1	Margin		-	Lim1: FCC_pt15_1	Adjusted QP	Correction	n at 11:13:1 Raw QP	Data Taker			
199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 166 700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 235 200 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 247 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 79 Gurtis Straus - a Bureau Veritas Company Work Order - S0819 EUT Power Input - battery 30-1000MHz Vertical Data Test Site - CH-1 Conditions - 23°C; 23% RH; 996mBar Operator: AKZ Conditions - 23°C; 23% RH; 996mBar EUT Maximum Frequency - 2480MHz EUT Maximum Frequency - 2480MHz Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Imm1: Imm1: Margin to Test Results Margin to Test Results Margin Antenna EUT	199.401 23.3 -9.8 13.5 43.5 -30 PASS 43.5 -30 PASS 265 700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 235 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 262 SO-1000MHz Low Channel		Height	Margin Lim2	Lim2	Lim2	FCC_pt15_1 09_Class_B	Margin Lim1	Lim1	Lim1	Lim1: FCC_pt15_1 09_Class_B	Adjusted QP Amplitude	Correction Factor	n at 11:13:1 Raw QP Reading	Data Taker Frequency			
700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 235 200 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 247 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 79 SO-1000MHz Low Channel Curtis Straus - a Bureu Veritas Company Work Order - S0819 Radiated Emissions Electric Field 3m Distance EUT Power Input - battery 23°C; 23% RH; 996mBar 23°C; 23% RH; 996mBar Notes: EUT Maximum Frequency - 2480MHz	700.241 22.9 -0.5 22.3 46 -23.7 PASS 46 -23.7 PASS 235 235 700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 262 283 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 262 Subscript Straws - a Bure w Veritas Company Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Operator: AKZ Conditions - 23°C; 23%RH; 996mBar Notes:	Azimut	Height (cm)	Margin Lim2	Lim2 (Pass/Fail)	Lim2 (dB)	FCC_pt15_1 09_Class_B (dBµV/m)	Margin Lim1	Lim1 (Pass/Fail)	Lim1 (dB)	Lim1: FCC_pt15_1 09_Class_B (dbµV/m)	Adjusted QP Amplitude (dBµV/m)	Correction Factor (dB/m)	n at 11:13:1 Raw QP Reading (dBµV)	Data Taker Frequency (MHz)			
700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 247 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 79 Solution of the start of th	700.264 22.9 -0.5 22.4 46 -23.6 PASS 46 -23.6 PASS 262 834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 0 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000MHz Vertical Data Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Operator: AKZ Notes: Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Conditions - 23°C; 23%RH; 996mBar Vertical Data Vertical Data	Azimuti (degrees	Height (cm) 101	Margin Lim2	Lim2 (Pass/Fail) PASS	Lim2 (dB) -28	FCC_pt15_1 09_Class_B (dBµV/m) 43.5	Margin Lim1	Lim1 (Pass/Fail) PASS	Lim1 (dB) -28	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5	Adjusted QP Amplitude (dBµV/m) 15.5	Correction Factor (dB/m) -10.7	n at 11:13:1 Raw QP Reading (dBμV) 26.2	Data Taker Frequency (MHz) 104.489			
834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 79 Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000MHz Vertical Data Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Operator: AKZ Notes: Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Conditions - 23°C; 23%RH; 996mBar Under the state of the stat	834.054 22.4 1.6 24 46 -22 PASS -22 46 -22 PASS -22 199 30-1000MHz Low Channel Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000MHz Vertical Data Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Operator: AKZ Test Site - CH-1 Conditions - 23°C; 23%RH; 996mBar Vorte - S0819	Azimuti (degrees 227	Height (cm) 101 158	Margin Lim2	Lim2 (Pass/Fail) PASS PASS	Lim2 (dB) -28 -26	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5	Margin Lim1	Lim1 (Pass/Fail) PASS PASS	Lim1 (dB) -28 -26	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5	Adjusted QP Amplitude (dBµV/m) 15.5 17.5	Correction Factor (dB/m) -10.7 -11.2	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8	Data Taker Frequency (MHz) 104.489 184.123			
30-1000MHz Low Channel Curtis Straus - a Bure au Veritas Company Work Order - S0819 Radiated Emissions Electric Field 3m Distance EUT Power Input - battery 30-1000MHz Vertical Data Test Site - CH-1 Operator: AKZ Onditions - 23°C; 23%RH; 996mBar Notes: Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Margin to Raw QP Correction Adjusted QP FCC_pt15_1 Margin to Test Results Morest EUT Maximum Frequency - 2480MHz	Curtis Straus - a Bureau Veritas Company Work Order - S0819 Radiated Emissions Electric Field 3m Distance EUT Power Input - battery 30-1000MHz Vertical Data Test Site - CH-1 Operator: AKZ Conditions - 23°C; 23%RH; 996mBar Notes: Vertical Data	Azimuti (degrees 227 295	Height (cm) 101 158 265	Margin Lim2	Lim2 (Pass/Fail) PASS PASS PASS	Lim2 (dB) -28 -26 -30	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5	Margin Lim1	Lim1 (Pass/Fail) PASS PASS PASS	Lim1 (dB) -28 -26 -30	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5	Correction Factor (dB/m) -10.7 -11.2 -9.8	Raw QP Reading (dBμV) 26.2 28.8 23.3	Data Taker Frequency (MHz) 104.489 184.123 199.401			
30-1000MHz Low Channel Curtis Straus - a Bureau Veritas Company Work Order - S0819 Radiated Emissions Electric Field 3m Distance EUT Power Input - battery 30-1000MHz Vertical Data Test Site - CH-1 Operator: AKZ Onditions - 23°C; 23%RH; 996mBar Notes: Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Margin to Raw QP Correction Adjusted QP FCC_pt15_1 Margin to Test Results Worst Lim1: Raw QP Correction Adjusted QP FCC_pt15_2 Margin to Test Results Worst Lim2: Margin to Test Results Margin to Test Results	Curtis Straus - a Bureau Veritas Company Work Order - S0819 Radiated Emissions Electric Field 3m Distance EUT Power Input - battery 30-1000MHz Vertical Data Test Site - CH-1 Operator: AKZ Conditions - 23°C; 23%RH; 996mBar Notes: Operator: AKZ	Azimuti (degrees 227 295 160	Height (cm) 101 158 265 235	Margin Lim2	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5	Margin Lim1	Lim1 (Pass/Fail) PASS PASS PASS PASS	Lim1 (dB) -28 -26 -30 -23.7	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 43.5	Adjusted QP Amplitude (dBμV/m) 15.5 17.5 13.5 22.3	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5	Raw QP Reading (dBμV) 26.2 28.8 23.3 22.9	Data Taker Frequency (MHz) 104.489 184.123 199.401 700.241			
Radiated Emissions Electric Field 3m Distance EUT Power Input - battery 30-1000MHz Vertical Data Operator: AKZ Operator: AKZ Notes: EUT Maximum Frequency - 2480MHz UT Maximum Frequency - 2480MHz	Radiated Emissions Electric Field 3m DistanceEUT Power Input - battery30-1000MHz Vertical DataTest Site - CH-1Operator: AKZConditions - 23°C; 23%RH; 996mBarNotes:Notes:	Azimutl (degrees 227 295 160 20	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 43.5	Margin Lim1 (dB)	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS	Lim1 (dB) -28 -26 -30 -23.7 -23.6	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46	Adjusted QP Amplitude (dBμV/m) 15.5 17.5 13.5 22.3 22.4	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 -0.5	Raw QP Reading (dBμV) 26.2 28.8 23.3 22.9 22.9	Data Taker Frequency (MHz) 104.489 184.123 199.401 700.241 700.264			
Radiated Emissions Electric Field 3m Distance EUT Power Input - battery 30-1000MHz Vertical Data Taken at 03:06:32 PM, Westers Vertical Bata Taken at 03:	Radiated Emissions Electric Field 3m DistanceEUT Power Input - battery30-1000MHz Vertical DataTest Site - CH-1Operator: AKZConditions - 23°C; 23%RH; 996mBarNotes:Notes:	Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 43.5 43.5 43.5	Margin Lim1 (dB) -22	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46	Adjusted QP Amplitude (dBμV/m) 15.5 17.5 13.5 22.3 22.4	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 -0.5	Raw QP Reading (dBμV) 26.2 28.8 23.3 22.9 22.9	Data Taker Frequency (MHz) 104.489 184.123 199.401 700.241 700.264			
30-1000MHz Vertical Data Test Site - CH-1 Operator: AKZ Notes: Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Test Results Margin to Test Results Marg	30-1000MHz Vertical Data Test Site - CH-1 Operator: AKZ Conditions - 23°C; 23%RH; 996mBar Notes:	Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 43.5 43.5 43.5	Margin Lim1 (dB) -22 LOW C	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.4	Data Taken Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054			
Operator: AKZ Notes: Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Raw QP Correction Adjusted QP FCC_pt15_2 Margin to Test Results Margin FCC_pt15_1 Margin to Test Results Margin Antenna EUT	Operator: AKZ Conditions - 23°C; 23%RH; 996mBar Notes:	Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 43.5 43.5 43.5	Margin Lim1 (dB) -22 LOW C	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.4	Data Taken Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054			
Notes: EUT Maximum Frequency - 2480MHz Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 EUT Maximum Frequency - 2480MHz Raw QP Correction Adjusted QP Lim1: Worst Lim2: Margin to Test Results Worst Lim2: Margin to Test Results Morgin Antenna EUT	Notes:	Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 46 46 46 46 46	Margin Lim1 (dB) -22 LOW C	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Аdjusted QP Аmplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Сотрапу	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra			
EUT Maximum Frequency - 2480MHz Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Image: State of the state		Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 46 46 46 46 46	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Аdjusted QP Аmplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Сотрапу	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 20.5 1.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E			
EUT Maximum Frequency - 2480MHz Data Taken at 03:06:32 PM, Wednesday, April 18, 2018 Image: State of the state		Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 46 46 46 46 46 hannel	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site -	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Аdjusted QP Аmplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Сотрапу	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 20.5 1.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH			
Data Taken at 03:06:32 PM, Wednesday, April 18, 2018		Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 43.5 46 46 46 46 46 hannel	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site -	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Аdjusted QP Аmplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Сотрапу	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 20.5 1.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator:			
Raw QP Correction Adjusted QP FCC_pt15_2 Margin to Test Results Margin FCC_pt15_1 Margin to Test Results Margin to ECT_pt15_1 FCC_pt15_1 FCC_pt		Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 hannel ttery	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition:	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Аdjusted QP Аmplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Сотрапу	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 20.5 1.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator:			
Raw QP Correction Adjusted QP FCC_pt15_2 Margin to Test Results Margin FCC_pt15_1 Margin to Test Results Margin to ECT_pt15_1 FCC_pt15_1 FCC_pt		Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 hannel ttery	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition:	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Аdjusted QP Аmplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Сотрапу	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 20.5 1.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator:			
Raw QP Correction Adjusted QP FCC_pt15_2 Margin to Test Results Margin FCC_pt15_1 Margin to Test Results Margin to EUT	Data Takan at 02:06:22 DM Madaasday, April 19, 2019	Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 hannel ttery	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition:	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Аdjusted QP Аmplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Сотрапу	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 20.5 1.6 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator:			
Raw QP Correction Adjusted QP FCC_pt15_2 Margin to Test Results Margin FCC_pt15_1 Margin to Test Results Margin Antenna EUT		Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 hannel ttery	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition:	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22 30-10 (Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Company Id 3m Dista	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 au Veritas Electric Fiel Data	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical AKZ	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator: Notes:			
		Azimuti (degrees 227 295 160 20 247	Height (cm) 101 158 265 235 262	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 hannel ttery	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition:	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22 30-10 (Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Company Id 3m Dista	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 au Veritas Electric Fiel Data	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical AKZ	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator: Notes:			
Frequency Reading Factor Amplitude 09 Lim1 Lim1 09_Class_B Lim2 Lim2 Height Azimu		Azimuti (degrees 227 295 160 20 247 79	Height (cm) 101 158 265 235 262 199	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar VIHz	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 hannel ttery 8% RH; 996r ency - 248C	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2: num Frequ	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition: EUT Maxin	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22 30-10(Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46 46 700 nce	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Company Id 3m Dista	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 -0.5 1.6 -0.5 1.6 -0.5 2.0.5 1.6 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.4 us - a Bure missions E Hz Vertical AKZ	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator: Notes:			
		Azimuti (degrees 227 295 160 20 247 79	Height (cm) 101 158 265 235 262 199	Margin Lim2 (dB) -22	Lim2 (Pass/Fail) PASS PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar MHz	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 700000000000000000000000000	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2 num Frequ Worst Margin	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition: EUT Maxin	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22 30-100	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 43.5 46 46 46 46 46 46 7 rce	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Company Id 3m Dista	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 200 Electric Fiel Data 32 PM, Weo Correction	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical AKZ	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator: Notes: Data Taker			
		Azimuti (degrees 227 295 160 20 247 79	Height (cm) 101 158 265 235 262 199	Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS PASS	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 Bar //Hz	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 46 700000000000000000000000	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2 num Frequ Worst Margin Lim1	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS DOMHZ Work Orde EUT Powe Test Site - Condition: EUT Maxin	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22 30-100	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 46 46 46 46 46 46 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 Company Id 3m Dista	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 200 Electric Fiel Data 32 PM, Weo Correction Factor	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical AKZ n at 03:06:3 Raw QP Reading	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator: Notes: Data Taker Frequency			
820.232 27 1.2 28.3 46 -17.7 PASS -17.7 46 -17.8 PASS -17.8 373 148	820.232 27 1.2 28.3 46 -17.7 PASS -17.7 46 -17.8 PASS -17.8 373	Azimuti (degrees 227 295 160 20 247 79	Height (cm) 101 158 265 235 262 199	Margin Lim2 (dB) -22 -22 Worst Margin Lim2 (dB)	Lim2 (Pass/Fail) PASS PASS PASS PASS PASS PASS Test Results Lim2 (Pass/Fail)	Lim2 (dB) -28 -26 -30 -23.7 -23.6 -22 -22 Bar //Hz Margin to Lim2 (dB)	FCC_pt15_1 09_Class_B (dBμV/m) 43.5 43.5 43.5 46 46 46 46 46 700000000000000000000000	Margin Lim1 (dB) -22 LOW C er - S0819 r Input - ba CH-1 s - 23°C; 2 num Frequ Worst Margin Lim1 (dB)	Lim1 (Pass/Fail) PASS PASS PASS PASS PASS PASS OOMHZ Work Orde EUT Powe Test Site - Condition: EUT Maxin	Lim1 (dB) -28 -26 -30 -23.7 -23.6 -22 30-100 30-100 8 8 Margin to Lim1 (dB)	Lim1: FCC_pt15_1 09_Class_B (dbµV/m) 43.5 43.5 46 46 46 46 46 46 46 10 5 5 5 6 6 6 6 6 6 6 7 6 7 7 8 7 7 8 7 8 7 8 7	Adjusted QP Amplitude (dBµV/m) 15.5 17.5 13.5 22.3 22.4 24 24 Company Id 3m Dista	Correction Factor (dB/m) -10.7 -11.2 -9.8 -0.5 -0.5 1.6 200 Electric Fiel Data 32 PM, Weo Correction Factor (dB/m)	n at 11:13:1 Raw QP Reading (dBµV) 26.2 28.8 23.3 22.9 22.9 22.9 22.4 us - a Bure Emissions E Hz Vertical AKZ n at 03:06:2 Raw QP Reading (dBµV)	Data Taker Frequency (MH2) 104.489 184.123 199.401 700.241 700.264 834.054 Curtis Stra Radiated E 30-1000MH Operator: Notes: Data Taker Frequency (MH2)			

June 1, 2018

page 13 of 28

Curtic Stra	us a Puro	au Voritac	Company			Work Orde	or \$0910						
Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance				EUT Power Input - battery									
30-1000MHz Horizontal Data					Test Site -		licity						
Operator:		tu butu						3%RH; 996r	nBar				
Notes:					_	EUT Maxin	num Frequ	iency - 2480	MHz				
Data Takei	n at 03:06::	32 PM, Wed I	dnesday, A	oril 18, 2018	3								
Frequency (MHz)	Raw QP Reading (dBµV)	Correction Factor (dB/m)	Adjusted QP Amplitude (dBµV/m)	Lim1: FCC_pt15_2 09 (dbµV/m)	Margin to Lim1 (dB)	Test Results Lim1 (Pass/Fail)	Worst Margin Lim1 (dB)	Lim2: FCC_pt15_1 09_Class_B (dBµV/m)	Margin to Lim2 (dB)	Test Results Lim2 (Pass/Fail)	Worst Margin Lim2 (dB)	Antenna Height (cm)	EUT Azimuth (degrees)
819.367	30.9	1.2	32.1	46	-13.9	PASS	-13.9	46	-13.9	PASS	-13.9	257	360

30-1000MHz Mid Channel

Curtis Stra	us - a Bure	au Veritas	Company			Work Orde	er - S0819						
Radiated E	Emissions E	lectric Fiel	d 3m Dista	nce		EUT Power	r Input - ba	attery					
30-1000MH	Hz Vertical	Data				Test Site -	CH-1						
Operator:	AKZ					Conditions	s- 23deg	.C; 23%RH	996mBar				
Notes:						EUT Maxim	num Frequ	iency - 2480)MHz				
Data Taker	n at 04:39:2	29 PM, Wec	lnesday, Aj	oril 18, 2018 Lim1:			Worst	Lim2:			Worst		
Frequency	Raw QP Reading	Correction Factor	Adjusted QP Amplitude	Lim1: FCC_pt15_2 09	3 Margin to Lim1	Test Results Lim1	Margin Lim1	FCC_pt15_1 09_Class_B	Lim2	Test Results Lim2	Margin Lim2	Antenna Height	EUT Azimuth
	Raw QP	Correction	Adjusted QP	Lim1: FCC_pt15_2	3 Margin to		Margin	FCC_pt15_1	•		Margin		-

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 30-1000MHz Horizontal Data Operator: AKZ Notes: Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Conditions - 23deg.C; 23%RH; 996mBar

EUT Maximum Frequency - 2480MHz

Data Taken at 04:39:29 PM, Wednesday, April 18, 2018

Frequency	Raw QP Reading	Factor	Adjusted QP Amplitude	09	Lim1	Test Results Lim1	Lim1	Lim2: FCC_pt15_1 09_Class_B	Lim2	Test Results Lim2	Worst Margin Lim2	Antenna Height	EUT Azimuth
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dbµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
701.646	23.1	-0.6	22.4	46	-23.6	PASS		46	-23.6	PASS		229	197
821.31	22.8	1.3	24	46	-22	PASS	-22	46	-22	PASS	-22	382	247

30-1000MHz High Channel

June 1, 2018

	aus - a Bure					Work Ord									
	Emissions E	ectric Fiel	ld 3m Dista	ince		EUT Powe	r Input - 1.	5V DC							
1-6GHz Ve	ertical Data					Test Site -	CH-2								
Operator:	ZJ					Condition	s - 20.5°C;	32%RH; 998	mBar						
Notes:						0									
Low Chanr	nel					EUT Maxir	num Frequ	ency - 2480)MHz						
Data Takei	n at 06:46:4	12 PM, Thu	rsday, April	l 19, 2018											
Frequency	Raw Peak Reading	Raw Avg Reading	Correction Factor	Adjusted Peak Amplitude	Pk Lim: FCC_pt15_109 _ClassB_Peak	Peak Margin	Peak Results	Worst Peak Margin	Adjusted Avg Amplitude	Av Lim: FCC_pt15_109 _ClassB_AVG	Avg Margin	Avg Results	Worst Avg Margin	Antenna Height	EUT Azimuth
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
4804.2	39.6	36.6	12.2	51.9	74	-22.1	PASS	-22.1	48.8	54	-5.2	PASS	-5.2	181	41
5262.4	34.9	25.1	13.2	48.1	74	-25.9	PASS		38.2	54	-15.7	PASS	5.2	115	252
5276.5	33.1	25.1	13.3	46.4	74	-27.6	PASS		38.4	54	-15.6	PASS		197	125
5270.5	32.7	25.6	13.4	46.1	74	-27.9	PASS		39	54	-15.0	PASS		217	138
5441.7	33.4	25.0	14.1	47.5	74	-26.5	PASS		39.2	54	-14.8	PASS		225	283
5770.4	33.6	25.1	14.4	48	74	-26	PASS		39.5	54	-14.5	PASS		125	135
5770.4	33.0	25.1	14.4	40	74	-20	F7655		39.5	54	-14.5	PA33			
1-6GHz Ho Operator: Notes:			ld 3m Dista	ince		Test Site - Condition 0	s - 20.5°C;	32%RH; 998							
1-6GHz Ho Operator: Notes: Low Chanr	orizontal Da ZJ nel	ita				Test Site - Condition 0	CH-2 s - 20.5°C;								
1-6GHz Ho Operator: Notes: Low Chanr	orizontal Da ZJ	ita		19, 2018		Test Site - Condition 0	CH-2 s - 20.5°C;	32%RH; 998	DMHz						
1-6GHz Ho Operator: Notes: Low Chanr	orizontal Da ZJ nel n at 06:46:4	ata 12 PM, Thui	rsday, April	l 19, 2018 Adjusted	Pk Lim:	Test Site - Condition 0 EUT Maxir	CH-2 s - 20.5°C; mum Frequ	32%RH; 998 iency - 2484	DMHz Adjusted	Av Lim:			Worst		
1-6GHz Ho Operator: Notes: Low Chanr Data Taker	nel nat 06:46:4	ita 12 PM, Thui Raw Avg	rsday, April	l 19, 2018 Adjusted Peak	FCC_pt15_109	Test Site - Condition 0 EUT Maxin	CH-2 s - 20.5°C; mum Frequ Peak	32%RH; 998 iency - 248 Worst Peak	DMHz Adjusted Avg	FCC_pt15_109	Aug Marria	Aug Boculto	Average	Antenna	
1-6GHz Ho Operator: Notes: Low Chann Data Taker Frequency	n at 06:46:4 Raw Peak Reading	12 PM, Thu Raw Avg Reading	rsday, April Correction Factor	Adjusted Peak Amplitude	FCC_pt15_109 _ClassB_Peak	Test Site - Condition 0 EUT Maxir Peak Margin	CH-2 s - 20.5°C; : mum Frequ Peak Results	32%RH; 998 iency - 248i Worst Peak Margin	Adjusted Avg Amplitude	FCC_pt15_109 _ClassB_AVG		-	Average Margin	Height	EUT Azimuth
1-6GHz Ho Operator: Notes: Low Chann Data Take Frequency (MHz)	n at 06:46:4 Raw Peak Reading (dBµV)	12 PM, Thu Raw Avg Reading (dBμV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	FCC_pt15_109 _ClassB_Peak (dBµV/m)	Test Site - Condition 0 EUT Maxir Peak Margin (dB)	CH-2 s - 20.5°C; : mum Frequ Peak Results (Pass/Fail)	32%RH; 998 iency - 248 Worst Peak	Adjusted Avg Amplitude (dBµV/m)	FCC_pt15_109 _ClassB_AVG (dBµV/m)	(dB)	(Pass/Fail)	Average	Height (cm)	(degrees)
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3	n at 06:46:4 Raw Peak Reading (dBµV) 37.1	12 PM, Thui Raw Avg Reading (dBμV) 29.6	Correction Factor (dB/m) 5.7	Adjusted Peak Amplitude (dBµV/m) 42.8	FCC_pt15_109 _ClassB_Peak (dBµV/m) 74	Test Site - Condition 0 EUT Maxin Peak Margin (dB) -31.2	CH-2 s - 20.5°C; mum Frequ Peak Results (Pass/Fail) PASS	32%RH; 998 iency - 248i Worst Peak Margin	Adjusted Avg Amplitude (dBµV/m) 35.2	FCC_pt15_109 _ClassB_AVG (dBµV/m) 54	(dB) -18.7	(Pass/Fail) PASS	Average Margin	Height (cm) 275	(degrees) 331
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4	n at 06:46:4 Raw Peak Reading (dBµV) 37.1 36.9	R2 PM, Thui Raw Avg Reading (dBµV) 29.6 30.1	Correction Factor (dB/m) 5.7 8.2	19, 2018 Adjusted Peak Amplitude (dBμV/m) 42.8 45.1	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74	Test Site - Condition 0 EUT Maxir Harrin (dB) -31.2 -28.9	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS	32%RH; 998 iency - 248i Worst Peak Margin	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3	FCC_pt15_109 _ClassB_AVG (dBµV/m) 54 54	(dB) -18.7 -15.7	(Pass/Fail) PASS PASS	Average Margin	Height (cm) 275 175	(degrees) 331 189
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6	rizontal Da ZJ nel n at 06:46:4 Raw Peak Reading (dBµV) 37.1 36.9 33.4	аtа Raw Avg Reading (dBµV) 29.6 30.1 25.1	correction Factor (dB/m) 5.7 8.2 11.5	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74	Test Site - Condition 0 EUT Maxin Margin (dB) -31.2 -28.9 -29.1	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS	32%RH; 998 iency - 248i Worst Peak Margin	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3 36.6	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54	(dB) -18.7 -15.7 -17.4	(Pass/Fail) PASS PASS PASS	Average Margin	Height (cm) 275 175 101	(degrees) 331 189 277
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6 2905.1	rizontal Da ZJ nel nat 06:46:4 Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1	ta A2 PM, Thui Raw Avg Reading (dBµV) 29.6 30.1 25.1 24.7	Correction Factor (B/m) 5.7 8.2 11.5 12.6	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74	Test Site - Condition 0 EUT Maxin (dB) -31.2 -28.9 -29.1 -27.2	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS	32%RH; 998 iency - 248i Worst Peak Margin (dB)	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3 36.6 37.3	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54 54 54	(dB) -18.7 -15.7 -17.4 -16.7	(Pass/Fail) PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108	(degrees) 331 189 277 204
1-6GH2 Ho Operator: Notes: Low Chann Data Taken Frequency (MH2) 1669.3 1865.4 2162.6 2905.1 4803.9	rizontal Da ZJ nel Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1 40.9	ta 2 PM, Thur Raw Avg Reading (вµу) 29.6 30.1 25.1 24.7 37	rsday, April Correction Factor (dB/m) 5.7 8.2 11.5 12.6 12.2	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8 53.1	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -312.9 -28.9 -29.1 -27.2 -20.9	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS	32%RH; 998 iency - 248i Worst Peak Margin	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3 36.6 37.3 49.2	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54 54 54 54	(dB) -18.7 -15.7 -17.4 -16.7 -4.8	(Pass/Fail) PASS PASS PASS PASS PASS	Average Margin	Height (cm) 275 175 101 108 117	(degrees) 331 189 277 204 314
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6 2905.1	rizontal Da ZJ nel nat 06:46:4 Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1	ta A2 PM, Thui Raw Avg Reading (dBµV) 29.6 30.1 25.1 24.7	Correction Factor (B/m) 5.7 8.2 11.5 12.6	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -31.2 -28.9 -29.1 -27.2 -20.9 -27.8	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS PASS	Worst Peak Margin (dB)	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3 36.6 37.3 49.2 37.9	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54 54 54	(dB) -18.7 -15.7 -17.4 -16.7	(Pass/Fail) PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108	(degrees) 331 189 277 204
1-6GH2 Ho Operator: Notes: Low Chann Data Taken Frequency (MH2) 1669.3 1865.4 2162.6 2905.1 4803.9	rizontal Da ZJ nel Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1 40.9	ta 2 PM, Thur Raw Avg Reading (вµу) 29.6 30.1 25.1 24.7 37	rsday, April Correction Factor (dB/m) 5.7 8.2 11.5 12.6 12.2	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8 53.1	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -31.2 -28.9 -29.1 -27.2 -20.9 -27.8	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS PASS	32%RH; 998 iency - 248i Worst Peak Margin (dB)	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3 36.6 37.3 49.2 37.9	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54 54 54 54	(dB) -18.7 -15.7 -17.4 -16.7 -4.8	(Pass/Fail) PASS PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108 117	(degrees) 331 189 277 204 314
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6 2905.1 4803.9 5264.1	rizontal Da ZJ nel Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1 40.9	12 PM, Thui Raw Avg Reading (dBy.0 30.1 25.1 24.7 37 24.7	Correction Factor (dB/m) 5.7 8.2 11.5 12.6 12.2 13.2	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8 53.1 46.2	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -31.2 -28.9 -29.1 -27.2 -20.9 -27.8 1-6G	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS PASS PASS PASS BASS PASS BASS	Worst Peak Margin (dB)	Adjusted Avg Amplitude (d8μV/m) 35.2 38.3 36.6 37.3 49.2 37.9 37.9 37.9	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54 54 54 54	(dB) -18.7 -15.7 -17.4 -16.7 -4.8	(Pass/Fail) PASS PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108 117	(degrees) 331 189 277 204 314
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6 2905.1 4803.9 5264.1	rizontal Da ZJ nel Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1 40.9 33 34 34.1 40.9 33	а 2 РМ, Thui Raw Avg Reading (dBµV) 29.6 30.1 25.1 24.7 37 24.7 37 24.7	correction Factor (dB/m) 5.7 8.2 11.5 12.6 12.2 13.2 ritas Com	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8 53.1 46.2 трапу	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -31.2 -28.9 -29.1 -27.2 -20.9 -27.8 1-6C	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS PASS PASS PASS PAS	32%RH; 998 iency - 248 Worst Peak Margin (dB) -20.9 -20.9 -20.9 -20.9 -20.9 -20.9 -20.9 -20.9	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3 36.6 37.3 49.2 37.9 37.9 37.9	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54 54 54 54	(dB) -18.7 -15.7 -17.4 -16.7 -4.8	(Pass/Fail) PASS PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108 117	(degrees) 331 189 277 204 314
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6 2905.1 4803.9 5264.1 Curtis Sti Radiated	rizontal Da ZJ nel Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1 40.9 33 34 34.1 40.9 33	ata A2 PM, Thur Raw Avg Reading (dBµV) 29.6 30.1 25.1 24.7 37 24.7 ureau Ve ns Electric	correction Factor (dB/m) 5.7 8.2 11.5 12.6 12.2 13.2 ritas Com	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8 53.1 46.2 трапу	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -31.2 -28.9 -29.1 -27.2 -20.9 -27.8 1-6G	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS PASS PASS PASS PAS	32%RH; 998 iency - 248 Worst Peak Margin (dB) -20.9 -2	Adjusted Avg Amplitude (dBµV/m) 35.2 38.3 36.6 37.3 49.2 37.9 37.9 37.9	FCC_pt15_109 _ClassB_AVG (dBμV/m) 54 54 54 54 54 54	(dB) -18.7 -15.7 -17.4 -16.7 -4.8	(Pass/Fail) PASS PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108 117	(degrees) 331 189 277 204 314
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6 2905.1 4803.9 5264.1 Curtis Sti Radiate C Top Peal	nat 06:46:4 Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1 40.9 33 34 34.1 40.9 33	ata A2 PM, Thur Raw Avg Reading (dBµV) 29.6 30.1 25.1 24.7 37 24.7 ureau Ve ns Electric	correction Factor (dB/m) 5.7 8.2 11.5 12.6 12.2 13.2 ritas Com	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8 53.1 46.2 трапу	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -31.2 -28.9 -29.1 -27.2 -20.9 -27.8 1-6G	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS PASS PASS PASS FASS PASS P	32%RH; 998 iency - 248i Worst Peak Margin (dB) -20.9 -	Adjusted Avg Amplitude (d8μV/m) 35.2 38.3 36.6 37.3 49.2 37.9 annel	FCC_pt15_109 _ClassB_AVG (dBµV/m) 554 554 554 554 554 554 554 554	(dB) -18.7 -15.7 -17.4 -16.7 -4.8	(Pass/Fail) PASS PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108 117	(degrees) 331 189 277 204 314
1-6GHz Ho Operator: Notes: Low Chann Data Taken Frequency (MHz) 1669.3 1865.4 2162.6 2905.1 4803.9 5264.1 Curtis Sti Radiated	nat 06:46:4 Raw Peak Reading (dBµV) 37.1 36.9 33.4 34.1 40.9 33 34 34.1 40.9 33	ata A2 PM, Thur Raw Avg Reading (dBµV) 29.6 30.1 25.1 24.7 37 24.7 ureau Ve ns Electric	correction Factor (dB/m) 5.7 8.2 11.5 12.6 12.2 13.2 ritas Com	19, 2018 Adjusted Peak Amplitude (dBµV/m) 42.8 45.1 44.9 46.8 53.1 46.2 трапу	FCC_pt15_109 _ClassB_Peak (dBμV/m) 74 74 74 74 74 74 74 74 74	Test Site - Condition 0 EUT Maxir (dB) -31.2 -28.9 -29.1 -27.2 -20.9 -27.8 1-6G	CH-2 s - 20.5°C; num Frequ Peak Results (Pass/Fail) PASS PASS PASS PASS PASS PASS PASS FASS PASS P	32%RH; 998 iency - 248 Worst Peak Margin (dB) -20.9 -2	Adjusted Avg Amplitude (d8μV/m) 35.2 38.3 36.6 37.3 49.2 37.9 annel	FCC_pt15_109 _ClassB_AVG (dBµV/m) 554 554 554 554 554 554 554 554	(dB) -18.7 -15.7 -17.4 -16.7 -4.8	(Pass/Fail) PASS PASS PASS PASS PASS	Average Margin (dB)	Height (cm) 275 175 101 108 117	(degrees) 331 189 277 204 314

EUT Maximum Frequency - 2480MHz

Data Taken at 11:43:04 AM, Wednesday, April 18, 2018

Duta Tuker	1 41 11. 15.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	incoday, n	pm 10, 201	0								
Frequency	Raw Peak Reading	Correction Factor	Amplitude	Pk Lim: FCC_pt15_2 09_Peak	Peak Limit	Peak Limit Test Results	Margin	Av Lim: FCC_pt15_2 09_Average	Margin to Average Limit	Average Limit Test Result	Average Limit Worst Margin	Antenna Height	EUT Azimuth
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
1713.13	36.1	3.7	39.9	74	-34.1	PASS		54	-14.1	PASS		200	14
2130	33.3	8.1	41.4	74	-32.6	PASS		54	-12.6	PASS		300	180
4880	37.2	11.7	48.9	74	-25.1	PASS		54	-5.1	PASS		200	55
5267.25	35.7	12.6	48.4	74	-25.6	PASS		54	-5.6	PASS		300	141
5739.13	38.6	12.8	51.5	74	-22.5	PASS	-22.5	54	-2.5	PASS	-2.5	300	161
5761.38	36.4	12.8	49.2	74	-24.8	PASS		54	-4.8	PASS		200	315

June 1, 2018

Curtis Stra	ius - a Bure	au Veritas	Company			Work Orde	er - S0819								
Radiated E	Emissions E	ectric Fiel	d 3m Dista	nce		EUT Powe	r Input - ba	attery							
1-6GHz Ho	rizontal Da	ita				Test Site -	CH-1								
Operator:	AKZ					Condition	s - 23°C; 2	3%RH; 996i	mBar						
Notes:						0									
0						EUT Maxir	num Fregu	iency - 2480	OMHz						
Data Take	n at 11:43:0	4 AM. Wed	dnesdav. A	pril 18. 201	8										
				Adjusted	Pk Lim:				Adjusted	Av Lim:			Worst		
	Raw Peak	Raw Avg	Correction	Peak	FCC_pt15_2	Peak	Peak	Worst Peak		FCC_pt15_2			Average	Antenna	EUT
Frequency	Reading	Reading	Factor	Amplitude	09_Peak	Margin	Results	Margin	0			Avg Results	-	Height	Azimuth
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
2152.6	33.5	25.1	8.1	41.6	74	-32.4	PASS		33.2	54	-20.8	PASS		285	154
4879.9	39	36.1	11.7	50.7	74	-23.3	PASS	-23.3	47.7	54	-6.3	PASS	-6.3	125	285
5270	32.2	24.3	12.6	44.8	74	-29.2	PASS		37	54	-17	PASS		100	276
5748	34.9	25.1	12.8	47.7	74	-26.3	PASS		37.9	54	-16.1	PASS		196	151
						1 00									

1-6GHz Mid Channel

Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance Top Peaks Vertical 1-6GHz Operator: AKZ Notes: Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Conditions - 23°C; 23%RH; 996mBar

EUT Maximum Frequency - 2480MHz

Data Taken at 11:05:58 AM, Wednesday, April 18, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	•	Peak Limit Test Results (Pass/Fail)		Av Lim: FCC_pt15_2 09_Average (dBµV/m)	Margin to Average Limit (dB)	Average Limit Test Result (Pass/Fail)	Average Limit Worst Margin (dB)	Antenna Height (cm)	EUT Azimuth (degrees)
2129.75	32.9	8.1	41	74	-33	PASS		54	-13	PASS		300	303
5749.25	38.8	12.8	51.7	74	-22.3	PASS	-22.3	54	-2.3	PASS	-2.3	200	55
5761	36.9	12.8	49.7	74	-24.3	PASS		54	-4.3	PASS		200	14

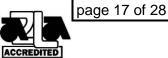
Curtis Straus - a Bureau Veritas Company Radiated Emissions Electric Field 3m Distance 1-6GHz Horizontal Data Operator: AKZ Notes: Work Order - S0819 EUT Power Input - battery Test Site - CH-1 Conditions - 23°C; 23%RH; 996mBar

EUT Maximum Frequency - 2480MHz

Data Taken at 11:05:58 AM, Wednesday, April 18, 2018

Frequency (MHz)	Raw Peak Reading (dBµV)	Raw Avg Reading (dBµV)	Correction Factor (dB/m)	Adjusted Peak Amplitude (dBµV/m)	Pk Lim: FCC_pt15_2 09_Peak (dBµV/m)	Peak Margin (dB)	Peak Results (Pass/Fail)	Worst Peak Margin (dB)	•	Av Lim: FCC_pt15_2 09_Average (dBµV/m)	Avg Margin	Avg Results (Pass/Fail)	Worst Average Margin (dB)	Antenna Height (cm)	EUT Azimuth (degrees)
2140	33.9	25.1	8.1	42	74	-32	PASS		33.1	54	-20.9	PASS		125	124
4960.5	39.5	29.7	12	51.5	74	-22.5	PASS	-22.5	41.7	54	-12.3	PASS	-12.3	125	271
5579.1	34.1	24.8	12.5	46.6	74	-27.4	PASS		37.4	54	-16.6	PASS		211	296
5750	33.3	25.1	12.8	46.2	74	-27.8	PASS		37.9	54	-16.1	PASS		186	320
5772.1	33.5	24.6	12.8	46.3	74	-27.7	PASS		37.4	54	-16.6	PASS		285	204
5801.1	34.8	24.5	12.6	47.4	74	-26.6	PASS		37.1	54	-16.9	PASS		275	104

1-6GHz High Channel



Radiated I 5-18GHz V Operator: Notes: 0		Electric Fie a	ld 1m Dist	ance April 18, 20 Adjusted	18 Pk Lim: FCC_pt15_	Test Site - Condition 0	r Input - ba	3%RH; 996r		63.5 63.5 Av Lim: FCC_pt15_2 09_Average	-10.4 -14.7	PASS PASS Avg Results	-10.4 Worst Avg Margin	200 101 Antenna Height	217 213 EUT Azimuth
(MHz) 7319.8 13448.9 Curtis Stra Radiated I 6-18GHz V Operator: Notes: 0	47.7 38.9 aus - a Bure Emissions I 'ertical Dat AKZ	31.3 au Veritas Electric Fie a	17.5 Company Id 1m Dist	April 18, 20 Adjusted	83.5 18 Pk Lim:	-27.1 Work Orde EUT Powe Test Site - Condition 0 EUT Maxin	PASS er - S0819 r Input - ba CH-1 s - 23°C; 2: num Frequ	ttery 3%RH; 996r ency - 2480	48.8 nBar DMHz Adjusted	63.5 Av Lim:				101	213
(MHz) 7319.8 13448.9 Curtis Stra Radiated I 6-18GHz V Operator: Notes: 0	47.7 38.9 Emissions I 'ertical Dat AKZ	31.3 Pau Veritas Electric Fie a	17.5 Company Id 1m Dist	56.4	83.5	-27.1 Work Orde EUT Powe Test Site - Condition 0	PASS er - S0819 r Input - ba CH-1 s - 23°C; 23	ttery 3%RH; 996r	48.8 nBar				-10.4		
(MHz) 7319.8 13448.9 Curtis Stra Radiated I 5-18GHz V Operator: Notes:	47.7 38.9 aus - a Bure Emissions I 'ertical Dat AKZ	31.3 au Veritas Electric Fie	17.5 Company	56.4	83.5	-27.1 Work Orde EUT Powe Test Site - Condition 0	PASS er - S0819 r Input - ba CH-1 s - 23°C; 23	ttery 3%RH; 996r	48.8 nBar				-10.4		
(MHz) 7319.8 13448.9 Curtis Stra Radiated I 5-18GHz V Operator: Notes:	47.7 38.9 aus - a Bure Emissions I 'ertical Dat AKZ	31.3 au Veritas Electric Fie	17.5 Company	56.4	83.5	-27.1 Work Orde EUT Powe Test Site - Condition 0	PASS er - S0819 r Input - ba CH-1 s - 23°C; 23	ttery 3%RH; 996r	48.8 nBar				-10.4		
(MHz) 7319.8 13448.9 Curtis Stra Radiated I 5-18GHz V Operator: Notes:	47.7 38.9 aus - a Bure Emissions I 'ertical Dat AKZ	31.3 au Veritas Electric Fie	17.5 Company	56.4	83.5	-27.1 Work Orde EUT Powe Test Site - Condition 0	PASS er - S0819 r Input - ba CH-1 s - 23°C; 23	ttery 3%RH; 996r	48.8 nBar				-10.4		
(MHz) 7319.8 13448.9 urtis Stra adiated I -18GHz V Operator:	47.7 38.9 aus - a Bure Emissions I Vertical Dat	31.3 au Veritas Electric Fie	17.5 Company	56.4	83.5	-27.1 Work Orde EUT Powe Test Site - Condition	PASS er - S0819 r Input - ba CH-1	ttery	48.8				-10.4		
(MHz) 7319.8 13448.9 Curtis Stra adiated I -18GHz V	47.7 38.9 aus - a Bure Emissions I Vertical Dat	31.3 au Veritas Electric Fie	17.5 Company	56.4	83.5	-27.1 Work Orde EUT Powe Test Site -	PASS er - S0819 r Input - ba CH-1	ttery	48.8				-10.4		
(MHz) 7319.8 13448.9 Curtis Stra Radiated I	47.7 38.9 aus - a Bure Emissions I	31.3 au Veritas Electric Fie	17.5 Company	56.4	83.5	-27.1 Work Orde EUT Powe	PASS er - S0819 r Input - ba						-10.4		
(MHz) 7319.8 13448.9	47.7 38.9	31.3	17.5	56.4	83.5	-27.1	PASS	-27.1					-10.4		
(MHz) 7319.8	47.7			-				-27.1					-10.4		
(MHz) 7319.8	47.7			-				-27.1					-10.4		
(MHz)		45.2	7.9	55.6	83.5	-27.9	PASS		53.1	63.5	-10.4	PASS	-10.4	200	217
	(dBµV)														
Frequency		(dBµV)	(dB/m)	(dBµV/m)	(dBuV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees
	Reading	Reading	Factor	Amplitude	FCC_pt15_ 209_Peak	Margin	Results	Margin	Amplitude	09_Average	Avg Margin	Results	Margin	Height	Azimuth
	Raw Peak	Raw Avg	Correction	Adjusted Peak	Pk Lim:	Peak	Peak Test	Worst Peak	Adjusted Avg	Av Lim: FCC_pt15_2		Avg Test	Worst Avg	Antenna	EUT
λαια τακέ	11 at 05.02.														
Sata Taka	n at 09:02:1		م م م م م		10										
0						EUT Maxin	num Frequ	ency - 2480	MHz						
votes:						0									
Operator:							s - 23°C; 23	3%RH; 996r	nBar						
	lorizontal [Test Site -	•	- 1							
	ius - a Bure Emissions l			ance			er - 50819 r Input - ba	tterv							
urtic St	aus - a Bure	au Voritaa	Company			Work Orde	or - \$0910								
						5 .00		011							
						6-180	Hz Lo	ow Ch	annel						
17956.7	40.7	31.4	19	59.7	83.5	-23.8	PASS	-23.8	50.4	63.5	-13.1	PASS	-13.1	140	125
7206.6	46.4	34.6	6.9	53.3	83.5	-30.2	PASS		41.5	63.5	-22	PASS		125	246
(MHz)	(dBµV)	(dBμV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
requency	Raw Peak Reading	Raw Avg Reading	Correction Factor	Peak Amplitude	FCC_pt15_109_ ClassB_Peak	Peak Margin	Peak Test Results	Worst Peak Margin	Avg Amplitude	FCC_pt15_10	ə Avg Margin	Avg Test Results	Worst Avg Margin	Antenna Height	EUT Azimu
				Adjusted	Pk Lim:				Adjusted	Av Lim:					
Data Takei	n at 08:33:4	1 PM, Thur	sday, April	19, 2018											
								-							
ow Chanr	nel						mum Frequ	iency - 248	OMHz						
votes:	-					0									
5-18GHz H Operator:	orizontal D 71	ald				Test Site	- CH-2 1s - 20.5°C;	32%RH· 009	SmBar						
	Emissions E		a 1m Distai	nce			er Input - 1.	SV DC							
	us - a Bure						ler - S0819								
			_												
17950.2	39.9	31.4	18.9	58.8	83.5	-24.7	PASS	-24.7	50.3	63.5	-13.2	PASS	-13.2	200	244
16528.2	39.7	30.9	16.5	56.2	83.5	-27.3	PASS	24.7	47.4	63.5	-16.1	PASS	12.2	200	280 244
7205.2	46.5	37.6	6.9	53.4	83.5	-30.1	PASS		44.5	63.5	-19	PASS		120	136
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
Frequency	Reading	Reading	Factor	Amplitude	_ClassB_Peak	Margin	Results	Margin	Amplitude		Avg Margin	Avg Results		Antenna Height	EUT Azimu
	Raw Peak	Raw Avg	Correction	Adjusted Peak	Pk Lim: FCC_pt15_109	Peak	Peak	Worst Peak	Adjusted Avg	Av Lim: FCC_pt15_109			Worst Avg		
Data Takei	n at 08:33:4	1 PM, Thu	sday, Apri												
D.4. T.1.		4 014 7		10 2010											
.ow Chanı	nel					EUT Maxir	num Frequ	ency - 2480	MHz						
						0	, -	,							
		1					s - 20.5°C; 3	2%RH; 998	mBar						
perator: lotes:			u III Dista	nce		Test Site -	•								
-18GHz V perator: otes:	missions		. ,	200											
6-18GHz V Operator: Notes:	Emissions E		. ,	nce			r Input - 1.5	SV DC							

(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(aBuv/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)
7319.9	49.2	46.3	7.9	57.1	83.5	-26.4	PASS		54.2	63.5	-9.3	PASS		122
8864.8	40.5	31.3	9.1	49.6	83.5	-33.9	PASS		40.4	63.5	-23.1	PASS		100
13548.5	40.6	31.2	17.1	57.7	83.5	-25.8	PASS		48.3	63.5	-15.2	PASS		122
17991.7	40.1	31.6	24.9	65	83.5	-18.5	PASS	-18.5	56.5	63.5	-7	PASS	-7	200
						6 1 9		lid Ch	onnol					

6-18GHz Mid Channel

ing Cert.

r															
Curtis Stra	ius - a Bure	au Veritas	Company			Work Ord	er - S0819								
Radiated I	Emissions E	lectric Fie	ld 1m Dista	nce		EUT Powe	er Input - 1.5	SV DC							
6-18GHz H	lorizontal D	ata				Test Site	- CH-2								
Operator:	ZJ					Condition	ns - 20.5°C; 3	2%RH; 998	mBar						
Notes:						0	, .	,							
High Chan	nel					-	mum Frequ	oncy - 2480							
riigii chan	lici						numriequ	2400	//////2						
Data Take	n at 09:00:5	64 PM, Thu	rsday, Apri	19, 2018							-		-		
				Adjusted	Pk Lim:				Adjusted	Av Lim:					
	Raw Peak	Raw Avg	Correction	Peak	FCC_pt15_109_Cl	Peak	Peak Test	Worst Peak	Avg	FCC_pt15_109_C	1	Avg Test	Worst Avg	Antenna	
Frequency	Reading	Reading	Factor	Amplitude	assB_Peak	Margin	Results	Margin	Amplitude	assB_AVG	Avg Margir	Results	Margin	Height	EUT Azimuth
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
7440.8	48.1	36.4	6.5	54.6	83.5	-28.9	PASS		42.9	63.5	-20.6	PASS		162	238
17077.7	39.7	31.5	17.6	57.3	83.5	-26.2	PASS	-26.2	49.1	63.5	-14.4	PASS	-14.4	125	243
1.0.1.0	550	51.5	17.0	57.5	05.5	20.2	1105	20.2	13.1	05.5		1765	1		
Curtis Stra	aus - a Bure	au Veritas	Company			Work Ord	der - S0819								
	Emissions I			ance		FLIT POW	er Input - 1.								
	ertical Dat			unce		Test Site	•	51 00							
		a													
Operator:	ZJ						ns - 20.5°C;	32%RH; 99	smBar						
Notes:						0									
High Chan	inel					EUT Maxi	mum Frequ	iency - 248	OMHz						
Data Talva	n at 08:54:	22 DM Th.		:1 10 2010											
Dala Take	11 at 06.54.	55 PIVI, 1110	isuay, Apr	11 19, 2018											
				Adjusted	Pk Lim:				Adjusted						
	Raw Peak	Raw Avg	Correction		FCC_pt15_109_	Peak	Peak	Worst Peak		FCC_pt15_109			Worst Avg	Antenna	
Frequency	Reading	Reading	Factor	Amplitude	ClassB_Peak	Margin	Results	Margin	Amplitude	e _ClassB_AVG	Avg Margin	Avg Results	Margin	Height	EUT Azimuth
(MHz)	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	(dB)	(dBµV/m) (dBµV/m)	(dB)	(Pass/Fail)	(dB)	(cm)	(degrees)
7440.8	46.6	37.8	6.5	53.2	83.5	-30.3	PASS		44.4	63.5	-19.1	PASS		135	125
17978.2	41.4	31.3	19.1	60.5	83.5	-23	PASS	-23	50.4	63.5	-13.1	PASS	-13.1	100	21
						C 400				1					
						0-190	SHz Hi	ign Cr	lanne	÷1					
	_	_													
Radiat	ed Emi	ssions	Table												
Da	ate: 19-Apr-	18		Con	npany: Onset								Wo	rk Order: S	0819
Engine	er: Zac Joh	inson		EUT	Desc: MX2501						EUT	Operating	Voltage/Fr	eauencv: E	Batterv
-	np: 20.5°C				midity: 32%			Pr	essure: 99	8mBar					,
101	np. 20.5 C				-				c 3501 c . 50	ombai					
			requency	-	25GHz						Meas		bistance: 0.		
Not	tes: Low, m	id, and high	channels te	sted								EUT Ma	ax Freq: 24	80MHz	
										FCC Class B H		ncy -	FCC Class	-	quency -
Antenna	ı	Р	eak Av	erage Pi	reamp Antenna	Cable	Adjusted	Adju	sted	Pe	eak			Average	
Polarizatio					actor Factor	Factor	Peak Readin		eading				Limit	Margin	Result
(H / V)	(MH	/		IBμV)	(dB) (dB/m)	(dB)	(dBµV/m)	(dBj	iV/m)	(dBµV/m) (d	iB) (Pa	ss/Fail) (o	dBµV/m)	(dB)	(Pass/Fail)
H/V		No Emissi	ons Found					-							
Ta	ble Res	ult:	P	ass	by	- dB						Wore	t Freg:	N	/Hz
					-										
	ite: EMI Ch	amber 1			able 1: Asset #2						ble 2:			Cable 3: -	
Analyz	er: Gold			Pr	eamp: 18-26.5G	Hz				An	enna: 18-2	5.5GHz Hor	n Pre	selector: -	

 Analyzer:
 Gold
 Preamp:
 18-26.5GHz
 Antenna:
 18-26.5GHz
 Home

 soft
 Radiated
 Emissions
 Calculator
 v1.017.203
 usted
 Reading = Reading - Preamp
 Factor + Cable
 Factor

18-25GHz All Channels

Copyright Curtis-Straus LLC 20

June 1, 2018

Rev. 4/17/2018								
Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
2093 MXE EMI Receiver	20Hz-26.5GHz	N9038A	Agilent	MY51210181	2093	I	11/16/2018	11/16/2017
Radiated Emissions Sites	FCC Code	IC Code	VCCI Code	Range	Asset	Cat	Calibration Due	Calibrated on
EMI Chamber 2	719150	2762A-7	A-0015	30-1000MHz	1686	1	12/21/2018	12/21/2016
EMI Chamber 2	719150	2762A-7	A-0015	1-18GHz	1686	I	12/21/2018	12/21/2016
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
2444 PA	9KHz-6GHz	BBV9744	SCWARZBECK	67	2444	1	2/5/2019	2/5/2018
2111 HF Preamp	0.5-18GHz	PAM-118A	COM-POWER	551063	2111	Ш	11/19/2018	11/19/2017
Antennas	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Red-Black Bilog	30-2000MHz	JB1	Sunol	A091604-2	1106	1	2/28/2019	2/28/2017
Blue Hom	1-18Ghz	3117	ETS	157647	1861	I	2/14/2019	2/14/2017
Meteorological Meters/Chambers		MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Weather Clock (Pressure Only)		BA928	Oregon Scientific	C3166-1	831	1	4/28/2018	4/28/2016
TH A#2077		HTC-1	HDE		2077	Ш	3/22/2019	3/22/2018
Cables	Range		Mfr			Cat	Calibration Due	Calibrated on
Asset #2458	9KHz-18GHz		MegaPhase			Ш	10/29/2018	10/29/2017
Asset #2459	9KHz-18GHz		MegaPhase			Ш	10/29/2018	10/29/2017
Asset #2466	9KHz-18GHz		MegaPhase			Ш	10/29/2018	10/29/2017
			-					

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

30MHz-18GHz

Rev. 4/17/2018 Spectrum Analyzers / Receivers /Preselectors Gold	Range 100Hz-26.5 GHz	MN E4407B	Mfr Agilent	SN MY45113816	Asset 1284	Cat	Calibration Due 3/19/2019	Calibrated on 3/19/2018
Preamps /Couplers Attenuators / Filters HF (Yellow)	Range 18-26.5GHz	MN AFS4-18002650-60-8P-4	Mfr CS	SN 467559	Asset 1266	Cat II	Calibration Due 10/16/2018	Calibrated on 10/16/2017
Antennas HF (White) Horn	Range 18-26.5GHz	MN 801-WLM	Mfr Waveline	SN 758	Asset 758	Cat Ⅲ	Calibration Due Verify before Use	Calibrated on date of test
Meteorological Meters/Chambers Weather Clock (Pressure Only) TH A#2080		MN BA928 HTC-1	Mfr Oregon Scientific HDE	SN C3166-1	Asset 831 2080	Cat I II	Calibration Due 4/28/2018 3/22/2019	Calibrated on 4/28/2016 3/22/2018
Cables Asset #2323	Range 1-26.5GHz	TM26-S1S1-120	Mfr MEGAPHASE	17139101 002	2323	Cat ∥	Calibration Due 8/19/2018	Calibrated on 8/19/2017

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

18-25GHz

page 19 of 28

Conducted Spurious Emissions

Limits: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth that contains the highest level of desired power. [15.247(d)]

MEASUREMENTS / RESULTS

PLOTS

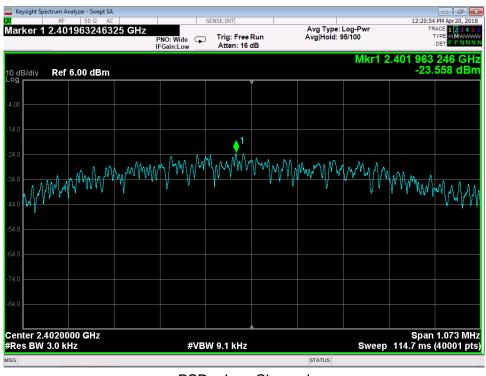
Conducted Spurious 9KHz to 25GHz Low Channel



page 20 of 28

Conducted Spurious 9KHz to 25GHz Mid Channel

Conducted Spurious 9KHz to 25GHz High Channel


Power Spectral Density

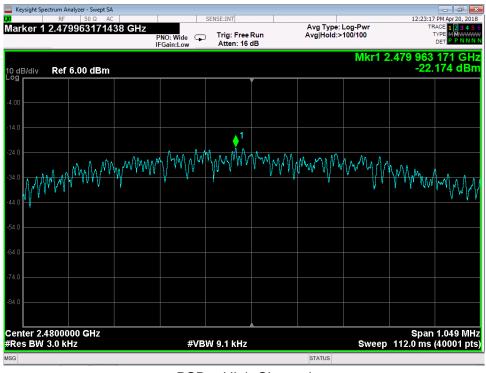
Limit: The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission. [15.247(e)]

MEASUREMENTS / RESULTS

Date: 4/9/2018	Company: Onset				Work Order: S0819		
Engineer: Zac Johnson	EUT: MX2501			Operating Voltage/Frequency: 1.5V DC			
Temp: 20.5°C	Humidity:	32%	Pressure: 998mBar				
Frequency Range: 2	402-2480 MHz	Measurer	ment Type: Conducted	1			
Notes:							
Frequency	Peak Reading	Cable Loss	Attenuator Loss	Peak PSD	Limit	Margin	Result
(MHz)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
2402	-23.56	0.43	0	-23.13	8.0	-31.13	Pass
2440	-22.66	0.43	0	-22.23	8.0	-30.23	Pass
2480	-22.17	0.43	0	-21.74	8.0	-29.74	Pass
est Site: CEMI-1	Cable:	2288 Cbl		Attenuator:	None		
Analyzer: 1118473 SA							

PLOTS

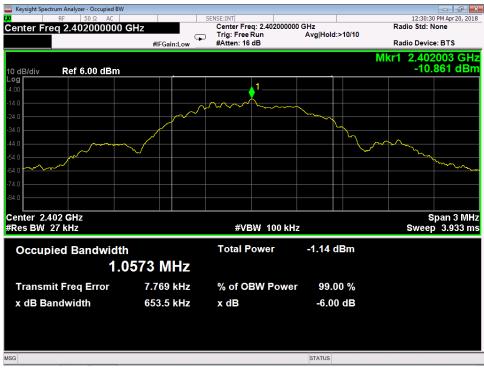
PSD – Low Channel



PSD – Mid Channel

PSD – High Channel

Occupied Bandwidth


Requirement: When an occupied bandwidth is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is its 99% emission bandwidth, as calculated or measured.

[RSS-GEN 6.6]

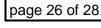
MEASUREMENTS / RESULTS

99% Occupied Bandwidth						
Date: 4/9/2018 Company: Onset Engineer: Zac Johnson EUT: MX2501 Temp: 20.5°C Humidity: 32%			Work Order: S0819			
			Operating Voltage/Frequency: 1.5V DC			
		Pressure: 998mBar				
Frequency Range: 2402-2480 MHz		Measurement Type: Conducted				
Nataa						
Notes:						
Frequency	99% OBW					
(MHz)		(MHz)				
2402	1.057					
2440		1.064				
2480		1.065				
Test Site: CEMI-1	Cable: 2288 Cbl	Attenuator: None				
Analyzer: 1118473 SA			Copyright Curtis-Straus LLC			

PLOTS:

99% Occupied Bandwidth Low Channel

99% Occupied Bandwidth High Channel


Measurement Uncertainty

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Expanded Uncertainty k=2	Maximum allowable uncertainty
Radiated Emissions (30-1000MHz) NIST	5.6dB	N/A
CISPR	4.6dB	5.2dB (Ucispr)
Radiated Emissions (1-26.5GHz)	4.6dB	N/A
Radiated Emissions (above 26.5GHz)	4.9dB	N/A
Magnetic Radiated Emissions	5.6dB	N/A
Conducted Emissions NIST CISPR	3.9dB 3.6dB	N/A 3.6dB (Ucispr)
Telco Conducted Emissions (Current)	2.9dB	N/A
Telco Conducted Emissions (Voltage)	4.4dB	N/A
Electrostatic Discharge	11.5%	N/A
Radiated RF Immunity (Uniform Field)	1.6dB	N/A
Electrical Fast Transients	23.1%	N/A
Surge	23.1%	N/A
Conducted RF Immunity	3dB	N/A
Magnetic Immunity	12.8%	N/A
Dips and Interrupts	2.3V	N/A
Harmonics	3.5%	N/A
Flicker	3.5%	N/A
Radio frequency (@ 2.4GHz)	3.23 x 10 ⁻⁸	1 x 10 ⁻⁷
RF power, conducted	0.40dB	0.75dB
Maximum frequency deviation: • Within 300Hz and 6kHz of audio frequency / Within 6kHz and 25kHz of audio frequency	3.4% 0.3dB	5% 3dB
Adjacent channel power	1.9dB	3dB
Conducted spurious emission of transmitter, valid up to 12.75GHz	2.39dB	3dB
Conducted emission of receivers	1.3dB	3dB
Radiated emission of transmitter, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of transmitter, valid up to 80GHz	3.3dB	6dB
Radiated emission of receiver, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of receiver, valid up to 80GHz	3.3dB	6dB
Humidity	2.37%	5%
Temperature	0.7°C	1.0°C
Time	4.1%	10%
RF Power Density, Conducted	0.4dB	3dB
DC and low frequency voltages	1.3%	3%
Voltage (AC, <10kHz)	1.3%	2%
Voltage (DC)	0.62%	1%
The above reflects a 95% confidence level		

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

ACCREDIT

Conditions of Testing

[Bureau Veritas Consumer Products Services, Inc., a Massachusetts corporation], and/or its affiliates (collectively, the "Company") will conduct, at the request of the Submitter ("Client"), the tests specified on the submitted Test Request Form or equivalent in accordance with, and subject to, the following terms and conditions (collectively, "Conditions"):

1. All orders for tests are subject to acceptance by the Company, and no order will constitute a binding commitment of the Company unless and until such order is accepted by it, as evidenced by the issuance of a written report ("Test Report") by the Company. The Test Report is issued solely by the Company, is intended for the exclusive use of Client and shall not be published, used for advertising purposes, copied or replicated for distribution to any other person or entity or otherwise publicly disclosed without the prior written consent of the Company. By submitting a request for services to the Company, Client consents to the disclosure to accreditation bodies of those records of Client relevant to the accreditation body's assessment of the Company's competence and compliance with relevant accreditation criteria. The Company shall not be liable for any loss or damage whatsoever resulting from the failure of the Company to provide its services within any time period for completion estimated by the Company. If Client anticipates using the Test Report in any legal proceeding, arbitration, dispute resolution forum or other proceeding, it shall so notify the Company prior to submitting the Test Report in such proceeding. The Company has no obligation to provide a fact or expert witness at such proceeding unless the Company agrees in advance to do so for a separate and additional fee.

2. The Test Report will set forth the findings of the Company solely with respect to the test samples identified therein. Unless specifically and expressly indicated in the Test Report, the results set forth in such Test Report are not intended to be indicative or representative of the quality or characteristics of the lot from which a test sample is taken, and Client shall not rely upon the Test Report as being so indicative or representative of the lot or of the tested product in general. The Test Report will reflect the findings of the Company at the time of testing only, and the Company shall have no obligation to update the Test Report after its issuance. The Test Report will set forth the results of the tests performed by the Company based upon the written information provided to the Company. The Test Report will be based solely on the samples and written information submitted to the Company by Client, and the Company shall not be obligated to conduct any independent investigation or inquiry with respect thereto.

3. The Company may, in its sole discretion, destroy samples which have been furnished to the Company for testing and which have not been destroyed in the course of testing. The Company may delegate the performance of all or a portion of the services contemplated hereunder to an affiliate, agent or subcontractor of the Company, and Client consents to such delegation.

4. These Conditions and the Test Report represent the entire understanding of the parties hereto with respect to the subject matter hereof and of the Test Report, and no modification, variance or extrapolation with respect thereto shall be permitted without the prior written consent of the Company.

5. The names, service marks, trademarks and copyrights of the Company and its affiliates, including the names "BUREAU VERITAS," "BUREAU VERITAS CONSUMER PRODUCTS SERVICES," "BVCPS", "MTL", "ACTS", "MTL-ACTS" and CURTIS-STRAUS (collectively, the "Marks") are and shall remain the sole property of the Company or its affiliates and shall not be used by Client except solely to the extent that Client obtains the prior written approval of the Company and then only in the manner prescribed by the Company. Client shall not contest the validity of the Marks or take any action that might impair the value or goodwill associated with the Marks or the image or reputation of the Company or its affiliates.

6. Payment in full shall be due 30 days after the date of invoice. Interest shall be due on overdue amounts from the due date until paid at an interest rate of 1.5% per month or, if less, the maximum rate permitted by law. The Company reserves the right, at any time and from time to time, to revoke any credit extended to Client. Client shall reimburse the Company for any costs it incurs in collecting past due amounts, including court costs and fees and expenses of attorneys and collection agencies. The Test Report may not be used or relied upon by Client if and for so long as Client fails to pay when due any invoice issued by the Company or any affiliate of it to Client or any affiliate or subsidiary of Client together with interest and penalties, if any, accrued thereon.

7. The Company disclaims any and all responsibility or liability arising out of or in connection with e-mail transmissions of such information.

Client understands and agrees that the Company is neither an insurer nor a guarantor, that the Company does not take the place of Client or any designer, manufacturer, agent, buyer, distributor or transportation or shipping company, and that the Company disclaims all liability in such capacities. Client further understands that if it seeks assurance against loss or damage, it should obtain appropriate insurance.
 Client agrees that the Company, by providing the services, does not take the place of Client nor any third party, nor does the Company release them from any of their obligations, nor does the Company otherwise assume, abridge, abrogate or undertake to discharge any duty of any third party to Client or any duty of Client or any third party to any other third party, and Client will not release any third party from its obligations and duties with respect to the tested goods.

10. Client shall, on a timely basis, (a) provide adequate instructions to the Company in order to enable the Company to perform properly its services, (b) provide, or cause Client's suppliers and contractors to provide, the Company with all documents necessary to enable the Company to perform its services, (c) furnish the Company with all relevant information regarding Client's intended use and purposes of the tested goods, (d) advise the Company of essential dates and deadlines relevant to the tested goods and (e) fully exercise all rights and remedies available to Client against third parties in respect of the tested goods.

11. The Company shall undertake due care and ordinary skill in the performance of its services to Client, and the Company shall accept responsibility only were such skill has not been exercised and, even in such event, only to the extent of the limitation of liability set forth herein.

12. If Client desires to assert a claim arising from or relating to (i) the performance, purported performance or non-performance of any services by the Company or (ii) the sale, resale, manufacture, distribution or use of any tested goods, it must submit that claim to the Company in a writing that sets forth with particularity the basis for such claim within 60 days from discovery of the potential claim and not more than six months after the date of issuance of the Test Report to Client. Client waives any and all such claims including, without limitation, claims that the Test Report is inaccurate, incomplete or misleading or that additional or different testing is required, unless and then only to the extent that Client submits a written claim to the Company within both such time periods.

13. CLIÉNT SHALL, EXCEPT TO THE EXTENT OF COMPANY'S LIABILITY TO CLIENT HEREUNDER (WHICH IN NO EVENT SHALL EXCEED THE LIMITATION OF LIABILITY HEREIN), HOLD HARMLESS AND INDEMNIFY THE COMPANY, ITS AFFILIATES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, AGENTS AND SUBCONTRACTORS AGAINST ALL ACTUAL OR ALLEGED THIRD PARTY CLAIMS FOR LOSS, DAMAGE OR EXPENSE OF WHATSOEVER NATURE AND HOWSOEVER ARISING FROM OR RELATING TO (I) THE PERFORMANCE, PURPORTED PERFORMANCE OR NON-PERFORMANCE OF ANY SERVICES BY THE COMPANY OR (II) THE SALE, RESALE, MANUFACTURE, DISTRIBUTION OR USE OF ANY TESTED GOODS.

14. EXCEPT AS MAY OTHERWISE BE EXPRESSLY AGREED TO IN WRITING BY THE COMPANY AND NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN OR IN ANY TEST REPORT, NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE, IS MADE.

page 27 of 28

15. (A) IN NO EVENT WHATSOEVER SHALL THE COMPANY BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE TEST REPORT OR THE SERVICES PROVIDED BY THE COMPANY HEREUNDER, INCLUDING WITHOUT LIMITATION LOSS OF OR DAMAGE TO PROPERTY; LOSS OF INCOME, PROFIT OR USE; OR ANY CLAIMS OR DEMANDS MADE AGAINST CLIENT OR ANY OTHER PERSON BY ANY THIRD PARTY IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE SERVICES PROVIDED BY THE COMPANY HEREUNDER.

(B)NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN, AND IN RECOGNITION OF THE RELATIVE RISKS AND BENEFITS TO CLIENT AND THE COMPANY ASSOCIATED WITH THE TESTING SERVICES CONTEMPLATED HEREBY, THE RISKS HAVE BEEN ALLOCATED SUCH THAT UNDER NO CIRCUMSTANCES WHATSOEVER SHALL THE LIABILITY OF THE COMPANY TO CLIENT OR ANY THIRD PARTY IN RESPECT OF ANY CLAIM FOR LOSS, DAMAGE OR EXPENSE, OF WHATSOEVER NATURE OR MAGNITUDE, AND HOWSOEVER ARISING, EXCEED AN AMOUNT EQUAL TO FIVE (5) TIMES THE AMOUNT OF THE FEES PAID TO THE COMPANY FOR THE SPECIFIC SERVICES WHICH GAVE RISE TO SUCH CLAIM OR U.S.\$10,000, WHICHEVER IS THE LESSER AMOUNT.

16. The Company shall not be liable for any loss or damage resulting from any delay or failure in performance of its obligations hereunder resulting directly or indirectly from any event of force majeure or any event outside the control of the Company. If any such event occurs, the Company may immediately cancel or suspend its performance hereunder without incurring any liability whatsoever to Client.

17. Company's services, including these Conditions, shall be governed by, and construed in accordance with, the local laws of the country where the Company performs the tests or, in the case of tests performed in the United States of America, the laws of Massachusetts without regard to conflicts of laws principles. If any aspect(s) of these Conditions is found to be illegal or unenforceable, the validity, legality and enforceability of all remaining aspects of these Conditions shall not in any way be affected or impaired thereby. Any proceeding related to the subject matter hereof shall be brought, if at all, in the courts of the country where the Company performs the tests or, in the case of tests performed in the United States of America, in the courts of Massachusetts. Client waives the right to interpose any counterclaim or setoffs of any nature in any litigation arising hereunder.

The complete list of the Approved Subcontractors Curtis-Straus may use to delegate the performance of work can be provided upon request. Rev.160009121(2)_#684340 v14CS

page 28 of 28