RF Exposure Evaluation Declaration

Product: QBOX-N270

Test Item: RF Exposure Evaluation Declaration

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR	MAXIMUM	PERMISSIBLE	EXPOSURE ((MPE)

		(,	
	Electric	Magnetic	Power	Average Time
Frequency	Field	Field	Density	
Range (MHz)	Strength	Strength	(mW/cm2)	_
	(V/m)	(A/m)	(IIIV/CIIIZ)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: $18^\circ\!\mathbb{C}\,\text{and}\,78\%\,$ RH.

1.3. EUT Operation condition

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

1.4. Test Result of RF Exposure Evaluation

Antenna Gain:

Antenna Gain: The maximum Gain is 1.69 dBi.

Output Power Into Antenna & RF Exposure Evaluation Distance:

1) 802.11b

Test date:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
01	2412.00	59.1562	0.019889144
06	2437.00	61.8016	0.020778565
11	2462.00	63.8263	0.021459298

2) 802.11g

Test date:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
01	2412.00	143.2188	0.04815217
06	2437.00	137.4042	0.04619722
11	2462.00	177.0109	0.059513548

Note:

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 1 mW/cm2.