

RFID 13.56 MHz Radio Test Report

FCC ID: WXAMP100

This report concerns (check one) : ☐ Original Grant ☐ Class II Change

Issued Date : Aug. 02, 2013 **Project No.** : 1307100

Equipment: Multi Protocol RFID READER Model Name: MP100; MP5; MP100R; MP100U

: GIGA-TMS INC Applicant

Address : 8F. NO. 31, Lane 169, Kang-Ning St.,

His-Chih, New Taipei City 22180, Taiwan

Tested by: Neutron Engineering Inc. EMC Laboratory

Date of Receipt: Jul. 30, 2013

Date of Test: Jul. 30, 2013 ~ Aug. 01, 2013

Testing Engineer: Gary Chou (Gary Chou).

Technical Manager: \

Authorized Signatory

Neutron Engineering Inc.

B1, No. 37, Lane 365, YangGuang St., NeiHu District 114, Taipei, Taiwan.

> TEL: +886-2-2657-3299 FAX: +886-2-2657-3331

Report No.: NEI-FCCP-1-1307100

Page 1 of 29

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: NEI-FCCP-1-1307100 Page 2 of 29

Table of Contents

REPOR	RT ISSUED HISTORY	4
1	CERTIFICATION	5
2	SUMMARY OF TEST RESULTS	6
2.1	TEST FACILITY	7
2.2	MEASUREMENT UNCERTAINTY	8
3	GENERAL INFORMATION	9
3.1	GENERAL DESCRIPTION OF EUT	9
3.2	DESCRIPTION OF TEST MODES	10
3.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
3.4	DESCRIPTION OF SUPPORT UNITS	12
4	CONDUCTED EMISSION	13
4.1	LIMITS	13
4.2	MEASUREMENT INSTRUMENTS LIST	13
4.3	TEST PROCEDURES	14
4.4	TEST SETUP LAYOUT	14
4.5	DEVIATION FROM TEST STANDARD	14
4.6	EUT OPERATING CONDITIONS	15
4.7	TEST RESULTS	16
5	RADIATED EMISSION	18
5.1	LIMITS	18
5.2	MEASUREMENT INSTRUMENTS LIST	19
5.3	TEST PROCEDURE	19
5.4	DEVIATION FROM TEST STANDARD	20
5.5	TEST SETUP	20
5.6	EUT OPERATING CONDITIONS	21
5.7	TEST RESULTS- FCC PART 15.209	22
5.8	TEST RESULTS- FCC PART 15.225	24
6	FREQUENCY STABILITY	26
6.1	LIMITS	26
6.2	MEASUREMENT INSTRUMENTS LIST	26
6.3	TEST PROCEDURE	26
6.4	DEVIATION FROM TEST STANDARD	26
6.5	EUT OPERATING CONDITIONS	26
6.6	TEST RESULTS	27
7	EUT TEST PHOTO	28

Report No.: NEI-FCCP-1-1307100 Page 3 of 29

REPORT ISSUED HISTORY

Revised Version No.	Description	Issued Date
-	Initial Issue.	Aug. 02, 2013

Report No.: NEI-FCCP-1-1307100 Page 4 of 29

1 CERTIFICATION

Equipment: Multi Protocol RFID READER

Brand Name: PROMAG; ProxData

Model Name: MP100; MP5; MP100R; MP100U

Applicant: GIGA-TMS INC

Date of Test: Jul. 30, 2013 ~ Aug. 01, 2013 Standards: FCC Part 15, Subpart C: 2012

ANSI C63.4: 2009

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FCCP-1-1307100) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Report No.: NEI-FCCP-1-1307100 Page 5 of 29

2 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Standard Section	Test Item	Result
15.207	Conducted emission	PASS
15.35 / 15.205 / 15.209 / 15.225	Radiated emission	PASS
15.225(e)	Frequency Stability	PASS
15.203	Antenna Requirement	PASS

NOTE:

- N/A: denotes test is not applicable in this Test Report
 Portable device; SAR report is required.

Report No.: NEI-FCCP-1-1307100 Page 6 of 29

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C01: (VCCI RN: C-2918; FCC RN: 95335; FCC DN: TW1010) No.132-1, Ln. 329, Sec. 2, Balian Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

Radiated emission Test (Below 1 GHz):

CB08: (FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428C-1) 1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

Radiated emission Test (Above 1 GHz):

CB08: (VCCI RN: G-91; FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428C-1) 1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

Report No.: NEI-FCCP-1-1307100 Page 7 of 29

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainty is not specified by FCC rules and for reference only.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95%.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

A. Conducted emission test:

Test Site	Measurement Frequency Range	U, (dB)	NOTE
C01	150 kHz ~ 30 MHz	1.94	

B. Radiated emission test:

Test Site	Item	Measurement	Frequency Range	Uncertainty	NOTE		
				30 - 200MHz	3.35 dB		
		Horizontal	200 - 1000MHz	3.11 dB			
	Dadiated	Polarization	1 - 18GHz	3.97 dB			
CBUS	CB08 Radiated emission at 3m		18 - 40GHz	4.01 dB			
СВОО					30 - 200MHz	3.22 dB	
				JIII	3111	Vertical 20	200 - 1000MHz
		Polarization	1 - 18GHz	4.05 dB			
			18 - 40GHz	4.04 dB			

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR}, as follows:

Conducted Disturbance (mains port) - 150 kHz - 30 MHz : 3.6 dB

Radiated Disturbance (electric field strength on an open area test site or alternative test site) – 30 MHz – 1000 MHz : 5.2 dB

It can be seen that our U_{lab} values are smaller than U_{CISPR} .

Report No.: NEI-FCCP-1-1307100 Page 8 of 29

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

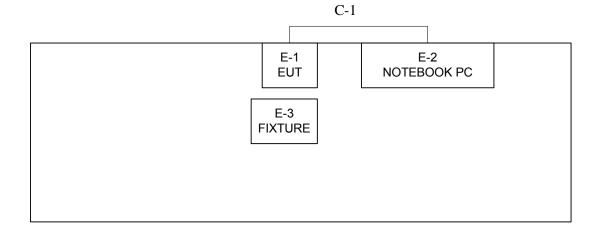
Equipment	Multi Protocol RFID READER			
Brand Name	PROMAG; ProxData			
Model Name	MP100; MP5; MP100R; MP100U			
OEM Brand/Model Name	N/A			
Model Difference	The EUT includes tow types of connector: RS232 and USB. Models' differences between each other only the changes of model name which do not affect the EMI performance. Model MP100 was used for final testing and collecting test data included in this report.			
Product Description	The EUT is a Multi Protocol RFID READER. Operation Frequency: 13.56 MHz Antenna Designation: LOOP Antenna More details of EUT technical specification, please refer to the User's Manual.			
Power Source	 DC Voltage supplied from DC Power Source (only for RS232 type). Supplied from PC USB port (only for USB type). 			
Power Rating	I/P: DC 5V			
Connecting I/O Port(s)	Please refer to the User's Manual			
Products Covered 1 * RFID Module				
EUT Modification(s)	N/A			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: NEI-FCCP-1-1307100 Page 9 of 29

3.2 DESCRIPTION OF TEST MODES


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Test Mode	Description
Mode 1	Transmit
	Conducted emission test
Final Test Mode	Description
	Transmit
	Radiated emission test
Final Test Mode	Description
	Transmit
	Frequency Stability test
Final Test Mode	Description
	Transmit
	Antenna Requirement test
Final Test Mode	Description
	Transmit

Report No.: NEI-FCCP-1-1307100 Page 10 of 29

3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Report No.: NEI-FCCP-1-1307100 Page 11 of 29

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
E-1	Multi Protocol RFID READER	PROMAG; ProxData	MP100	WXAMP100	N/A	EUT
E-2	Notebook PC	DELL	D620	DOC	7T390 A03	
E-3	Fixture	N/A	N/A	N/A	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	YES	N/A	1.5m	RS232&POWER CABLE

Note:

(1) The support equipment was authorized by Declaration of Conformity (DOC).

Report No.: NEI-FCCP-1-1307100 Page 12 of 29

4 CONDUCTED EMISSION

4.1 LIMITS

FREQUENCY	Class A (dBuV)		Class B (dBuV)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79.00	66.00	66 - 56 *	56 - 46 *
0.50 - 5.0	73.00	60.00	56.00	46.00
5.0 - 30.0	73.00	60.00	60.00	50.00

NOTE:

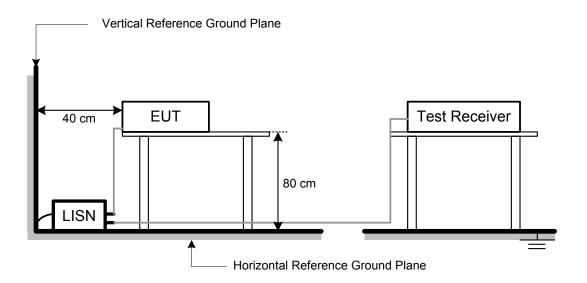
- 1. The tighter limit applies at the band edges.
- 2. The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- The test result calculated as following:
 Measurement Value = Reading Level + Correct Factor
 Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)
 Margin Level = Measurement Value Limit Value

4.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	Apr. 22, 2014
2	Test Cable	TIMES	CFD300-NL	C01	Jun. 16, 2014
3	EMI Test Receiver	R&S	ESCI	100082	Mar. 21, 2014
4	Measurement Software	EZ	EZ_EMC (Version NB-02A)	N/A	N/A

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.

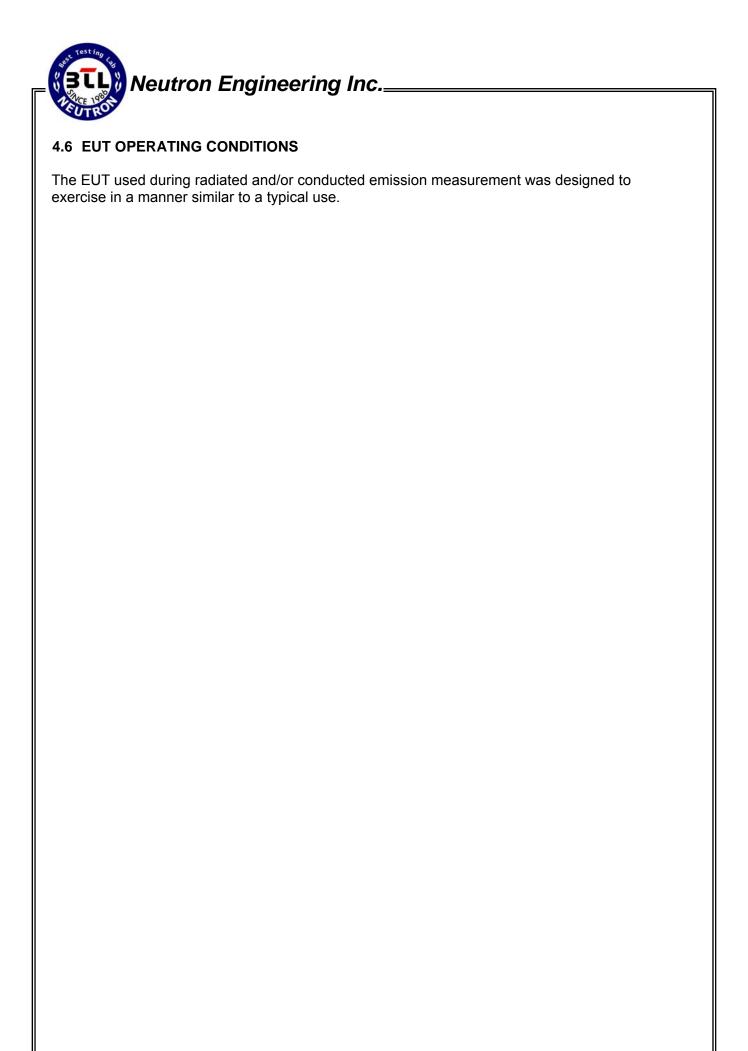
Report No.: NEI-FCCP-1-1307100 Page 13 of 29


4.3 TEST PROCEDURES

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

NOTE:

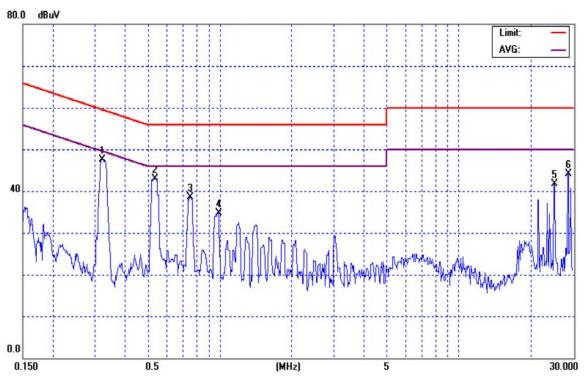
- a. Reading in which marked as Peak, QP or AVG means measurements by using are Quasi-Peak or Average Mode with Detector BW=9 kHz (6 dB Bandwidth).
- b. All readings are Peak Mode value unless otherwise stated QP or AVG in column of Note. If the Peak or QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only Peak or QP Mode was measured, but AVG Mode didn't perform.


4.4 TEST SETUP LAYOUT

4.5 DEVIATION FROM TEST STANDARD

No deviation

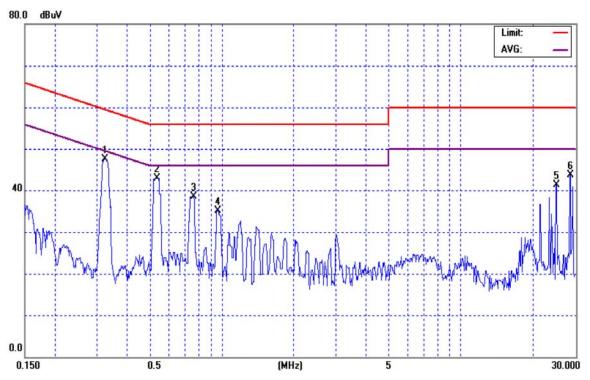
Report No.: NEI-FCCP-1-1307100 Page 14 of 29


Report No.: NEI-FCCP-1-1307100 Page 15 of 29

4.7 TEST RESULTS

E.U.T	Multi Protocol RFID READER	Model Name	MP100		
Temperature	31°C	Relative Humidity	53%		
Test Voltage	AC 120V/60Hz (System)				
Test Mode	Transmit				

Phase: Line



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.3229	37.94	9.64	47.58	59.63	-12.05	peak	
2	0.5360	33.32	9.61	42.93	56.00	-13.07	peak	
3	0.7520	28.79	9.62	38.41	56.00	-17.59	peak	
4	0.9860	24.98	9.63	34.61	56.00	-21.39	peak	
5	25.1000	31.85	9.87	41.72	60.00	-18.28	peak	
6	28.6500	34.24	9.96	44.20	60.00	-15.80	peak	

Report No.: NEI-FCCP-1-1307100 Page 16 of 29

E.U.T	Multi Protocol RFID READER	Model Name	MP100					
Temperature	31°C	Relative Humidity	53%					
Test Voltage	AC 120V/60Hz (System)							
Test Mode	Transmit							

Phase: Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.3236	37.87	9.62	47.49	59.61	-12.12	peak	
2	0.5360	33.34	9.59	42.93	56.00	-13.07	peak	
3	0.7610	28.93	9.61	38.54	56.00	-17.46	peak	
4	0.9590	25.54	9.62	35.16	56.00	-20.84	peak	
5	25.1000	31.56	9.84	41.40	60.00	-18.60	peak	
6	28.6500	33.82	9.93	43.75	60.00	-16.25	peak	

Report No.: NEI-FCCP-1-1307100 Page 17 of 29

5 RADIATED EMISSION

5.1 LIMITS

	FCC Part 15.209									
Frequency	Field Streng Limitation	<i>(</i>	Field Strength Limitation at 3m Measurement Dist							
(MHz)	(uV/m) Dist		(uV/m)	(dBuV/m)						
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80						
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40						
1.705 – 30.00	30 30m		100* 30	20log 30 + 40						
30.0 – 88.0	100	3m	100	20log 100						
88.0 – 216.0	150 3m		150	20log 150						
216.0 – 960.0	200	3m	200	20log 200						
Above 960.0	500	3m	500	20log 500						
		FCC P	art 15.225(a)/(b)/(c)							
Frequency	Field Streng Limitation	<i>(</i>	Field Strength Limitatio	n at 3m Measurement Dist						
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)						
13.553 – 13.567	15,848 30 m		15,848*100	124						
13.567 – 13.710	334 30 m		334*100	90.5						
13.110 – 13.410 13.710 – 14.010	106 30 m		106*100 80.5							

NOTE:

- (1) The tighter limit shall apply at the boundary between two frequency range.
- (2) Limitation expressed in dBuV/m is calculated by 20log Emission Level (uV/m).
- (3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d_2/d_1)^2$.

Example:

F.S Limit at 30m distance is 30uV/m , then F.S Limitation at 3m distance is adjusted as L_{d1} = L_1 = $30uV/m * (10)^2$ = 100 * 30 uV/m

(4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)

Margin Level = Measurement Value – Limit Value

Report No.: NEI-FCCP-1-1307100 Page 18 of 29

5.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013
2	Test Cable	LMR	LMR-400	12m	May. 14, 2014
3	Test Cable	LMR	LMR-400	3m	May. 14, 2014
4	Pre-Amplifier	Anritsu	MH648A	M92649	Jun. 18, 2014
5	Log-Bicon Antenna	Schwarzbeck	VULB9168-352	9168-352	Jun. 11, 2014
6	Preamplifier With Adaptor	EMC	EMC2654045	980030	Feb. 18, 2014
7	Horn Antenna	Schwarzbeck	BBHA 9170	187	Dec. 24, 2013
8	Loop Ant.	EMCO	6502	00042960	Jul. 25,2013

Remark: "N/A" denotes No Model Name, No Serial No. or No Calibration specified.

5.3 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m or 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

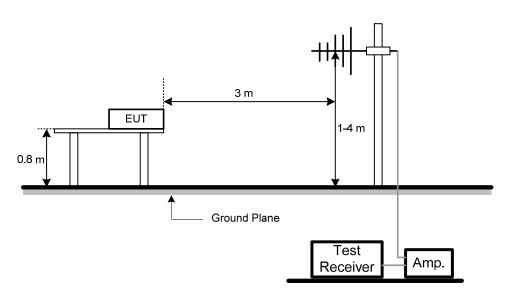
NOTE: (FCC PART 15.209)

- a. Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode with Detector BW=120 kHz.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

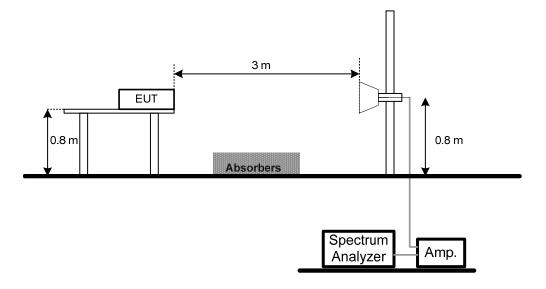
NOTE: (FCC PART 15.225)

- a. Spectrum Setting:
 - 9 KHz 150 KHz, RBW= 200Hz, VBW=200Hz, Sweep time = 200 ms.
 - 150 K Hz 30 MHz, RBW= 10 KHz, VBW=10 KHz, Sweep time = 200 ms.
 - 30 MHz 1000 MHz, RBW= 100KHz, VBW=100KHz, Sweep time = 200 ms.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- c. The Log-Bicon Antenna will use to test frequency range from 30MHz to 1000MHz and the Loop Antenna will use to test frequency below 30MHz.

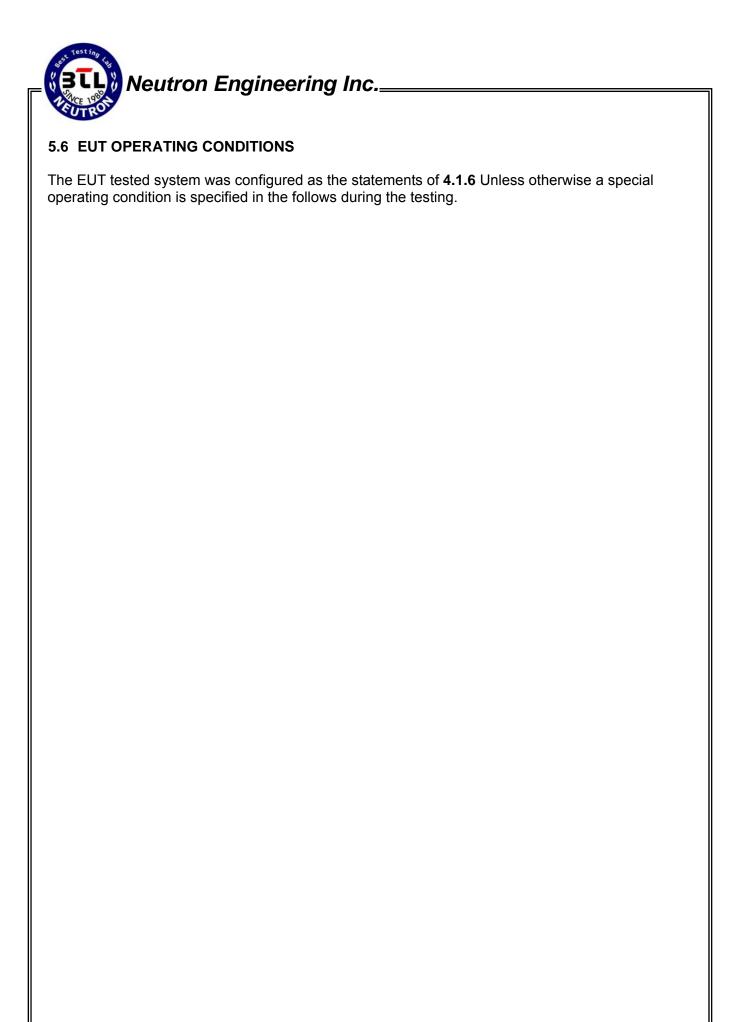
Report No.: NEI-FCCP-1-1307100 Page 19 of 29



5.4 DEVIATION FROM TEST STANDARD

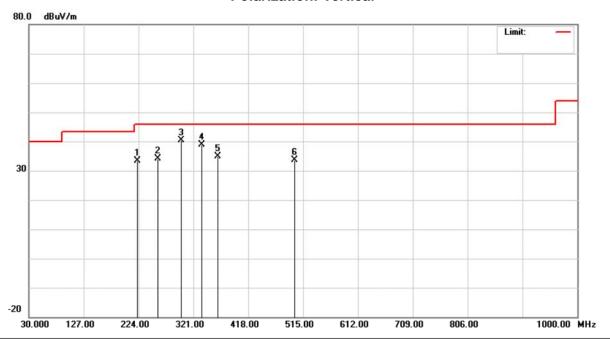

No deviation

5.5 TEST SETUP


Below 1 GHz

Above 1 GHz

Report No.: NEI-FCCP-1-1307100 Page 20 of 29

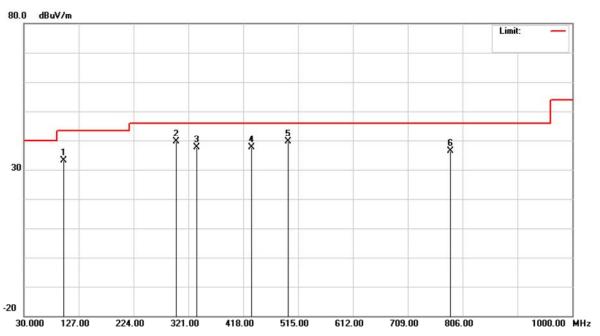


Report No.: NEI-FCCP-1-1307100 Page 21 of 29

5.7 TEST RESULTS- FCC PART 15.209

E.U.T	Multi Protocol RFID READER	Model Name	MP100					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz (System)							
Test Mode	Transmit							

Polarization: Vertical

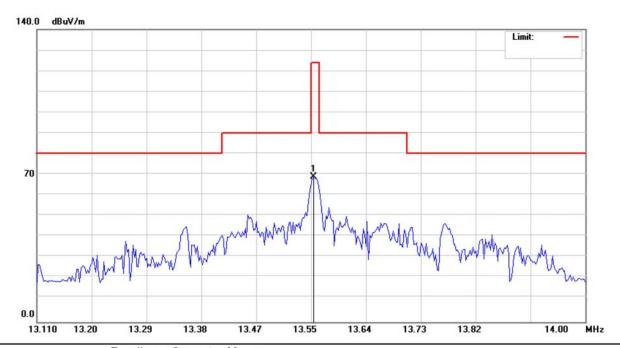


	. Freq.	Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	221.5750	50.05	-16.78	33.27	46.00	-12.73	peak	
2	257.9500	48.71	-14.61	34.10	46.00	-11.90	peak	
3 *	299.1750	54.38	-13.97	40.41	46.00	-5.59	peak	
4	335.5500	51.55	-12.73	38.82	46.00	-7.18	peak	
5	364.6500	47.18	-12.26	34.92	46.00	-11.08	peak	
6	500.4500	43.00	-9.48	33.52	46.00	-12.48	peak	

Report No.: NEI-FCCP-1-1307100 Page 22 of 29

E.U.T	Multi Protocol RFID READER	Model Name	MP100					
Temperature	26 ° C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz (System)							
Test Mode	Transmit							

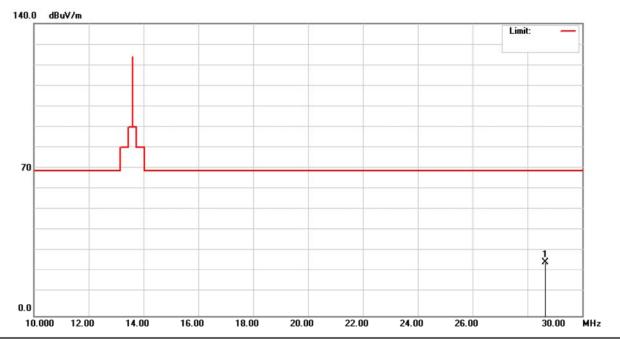
Polarization: Horizontal



No.	Mk	k. Freq.	Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		100.3250	52.36	-19.19	33.17	43.50	-10.33	peak	
2	*	299.1750	53.64	-13.97	39.67	46.00	-6.33	peak	
3		335.5500	50.43	-12.73	37.70	46.00	-8.30	peak	
4		432.5500	47.96	-10.26	37.70	46.00	-8.30	peak	
5		498.0250	49.09	-9.50	39.59	46.00	-6.41	peak	
6		784.1750	41.40	-5.00	36.40	46.00	-9.60	peak	

Report No.: NEI-FCCP-1-1307100 Page 23 of 29

5.8 TEST RESULTS- FCC PART 15.225


E.U.T	Multi Protocol RFID READER	Model Name	MP100					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz (System)							
Test Mode	Transmit							

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	13.5594	58.41	11.18	69.59	124.0	-54.41	peak		

Report No.: NEI-FCCP-1-1307100 Page 24 of 29

E.U.T	Multi Protocol RFID READER	Model Name	MP100					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz (System)							
Test Mode	Transmit							

ı	No.	Mk.	Freq.			Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	1	*	28.6500	15.92	9.68	25.60	69.54	-43.94	peak	

Report No.: NEI-FCCP-1-1307100 Page 25 of 29

6 FREQUENCY STABILITY

6.1 LIMITS

FCC Part 15.225(e)

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of - 20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013

Remark: "N/A" denotes No Model Name, No Serial No. or No Calibration specified.

6.3 TEST PROCEDURE

- a. The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber.
 - After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.
- b. At room temperature (25±5°C), an external variable AC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

6.4 DEVIATION FROM TEST STANDARD

No deviation

6.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: NEI-FCCP-1-1307100 Page 26 of 29

6.6 TEST RESULTS

E.U.T	Multi Protocol RFID READER	Model Name	MP100
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz (System)		
Test Mode	Transmit		

Frequency Stability Versus Environmental Temperature									
	Temperature (°C)	Voltage (AC)	Frequency (MHz)	Frequency Error (kHz)	Limit (kHz)	Result			
	20	120V	13.56084						
0 min	50	120V	13.56084	0.000	+/- 1.356	PASS			
	-20	120V	13.56920	8.360	+/- 1.356	PASS			
2 min	50	120V	13.56084	0.000	+/- 1.356	PASS			
	-20	120V	13.56088	0.040	+/- 1.356	PASS			
5 min	50	120V	13.56084	0.000	+/- 1.356	PASS			
	-20	120V	13.56088	0.040	+/- 1.356	PASS			
10 min	50	120V	13.56088	0.040	+/- 1.356	PASS			
	-20	120V	13.56092	0.080	+/- 1.356	PASS			

Fuequency Stability Versus Input Voltage									
Temperature (°C)	Voltage (AC)		Frequency (MHz)	Frequency Error (kHz)	Limit (kHz)	Result			
20	V-nom	120	13.56084						
20	V-min	102	13.56088	0.04	+/- 1.356	PASS			
20	V-max	138	13.56088	0.04	+/- 1.356	PASS			

Report No.: NEI-FCCP-1-1307100 Page 27 of 29