

TEST REPORT

Report No.:	BCTC2304108780-1E	
Applicant:	LIFEWORKS TECHNOLOGY GROUP LI	-C.
Product Name:	WIRELESS SPEAKER	
Model/Type reference:	2SKSK1849	CHENZH
Tested Date:	2023-04-11 to 2023-04-27	
Issued Date:	2023-04-27	
She	nzhen BCTC Testing Co., Ltd.	
No.: BCTC/RF-EMC-007	Page: 1 of 80/	Edition: A.5

FCC ID:WWE-2SKSK1849

Product Name:	WIRELESS SPEAKER
Trademark:	Skullcandy
Model/Type reference:	2SKSK1849 2SKSK1849B0L2, 2SKSK1849O0L2, 2SKSK1849M0L2, 2SKSK1849N0L2, 2SKSK1849I0L2, 2SKSK1849E0L2, 2SKSK1849P0L2, 2SKSK1849B0W2, 2SKSK1849O0W2, 2SKSK1849M0W2, 2SKSK1849N0W2, 2SKSK1849I0W2, 2SKSK1849E0W2, 2SKSK1849P0W2
Prepared For:	LIFEWORKS TECHNOLOGY GROUP LLC.
Address:	530 7th Ave 21st FI New York United States 10018
Manufacturer:	LIFEWORKS TECHNOLOGY GROUP LLC.
Address:	530 7th Ave 21st FI New York United States 10018
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-04-11
Sample tested Date:	2023-04-11 to 2023-04-27
Issue Date:	2023-04-27
Report No.:	BCTC2304108780-1E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 80

Table Of Content

Test	Report Declaration Pa	ige
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	-
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
0.5 7.	Radiated emissions	
7.1		
7.1	Block Diagram Of Test Setup	
7.2 7.3	Limit Test procedure	
7.3 7.4		
	EUT operating Conditions	20
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operation	
8.1	Block Diagram Of Test Setup	
8.2	Limit	24
8.3	Test procedure	
8.4	EUT operating Conditions	25
8.5	Test Result	26
9.	Spurious RF Conducted Emissions	27
9.1	Block Diagram Of Test Setup	
9.2	Limit	27
9.3	Test procedure	27
9.4	Test Result	28
10.	Test Result	49
10.1	Block Diagram Of Test Setup	49
10.2	Limit	49
10.3	Limit Test procedure Test Result	49
10.4	Test Result	49
11.	Maximum Peak Output Power	55
11.1	Block Diagram Of Test Setup	55
11.2		55
11.3		55
11.4		55

Page: 3 of 80

Edition: A,5

,TC 3C

PR

》测

12. Hopping Channel Separation	61
12.1 Block Diagram Of Test Setup	61
12.2 Limit	61
12.3 Test procedure	61
12.4 Test Result	61
13. Number Of Hopping Frequency	67
13.1 Block Diagram Of Test Setup	67
13.2 Limit	67
13.3 Test procedure	67
13.4 Test Result	67
14. Dwell Time	70
14.1 Block Diagram Of Test Setup	70
14.2 Limit	70
14.3 Test procedure	70
14.4 Test Result	70
15. Antenna Requirement	76
15.1 Limit	76
15.2 Test Result	76
16. EUT Photographs	77
17. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

Page: 4 of 80

Edition: A,5

检

1. Version

Report No.	Report No. Issue Date		Approved	
BCTC2304108780-1E	2023-04-27	Original	Valid	

Page: 5 of 80

Edition: A,5

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

Page: 6 of 80

Edition: A.5

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

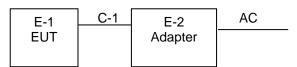
No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59 °C

No.: BCTC/RF-EMC-007

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference: Model differences:	2SKSK1849 2SKSK1849B0L2, 2SKSK1849O0L2, 2SKSK1849M0L2, 2SKSK1849N0L2, 2SKSK1849I0L2, 2SKSK1849E0L2, 2SKSK1849P0L2, 2SKSK1849B0W2, 2SKSK1849O0W2, 2SKSK1849M0W2, 2SKSK1849N0W2, 2SKSK1849I0W2, 2SKSK1849E0W2, 2SKSK1849P0W2 All the model are the same circuit and RF module, except model names.
Bluetooth Version:	V5.3
Hardware Version:	1.0
Hardware Version:	1.0
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel:	79CH
Antenna installation:	PCB antenna
Antenna Gain:	1.7 dBi
Ratings:	DC 22V 3200mA Battery:DC 11.1V


Page: 8 of 80

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission and Radiated Spurious Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Barrel boombox Wireless Speaker with Adaptor	N/A	2SKSK1849	2SKSK1849B0W2, 2SKSK1849B0L2, 2SKSK1849I0L2, 2SKSK1849N0L2, 2SKSK1849O0L2	EUT
E-2	Adapter	N/A	FY2203200	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	0.3M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

No.: BCTC/RF-EMC-007

Page: 9 of 80

Edition: A.5

ТC

PR

测

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Transmitting (Conducted emission & Radiated emission)					

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT	
Frequency	2402 MHz 2441 MHz 2480 MHz	1. 1.
Parameters	DEF	

Т

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850

FCC Designation Number: CN1212

ISED Registered No.: 23583

ISED CAB identifier: CN0017

5.2 Test Instrument Used

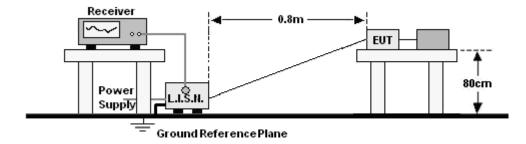
Conducted Emissions Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023			
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023			
Software	Frad	EZ-EMC	EMC-CON 3A1	/	\			
Attenuator	/	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023			

RF Conducted Test								
Equipment	Manufacturer	Model# Serial#		Last Cal.	Next Cal.			
Power Metter	Keysight	E4419		May 24, 2022	May 23, 2023			
Power Sensor (AV)	Keysight	E9300A		May 24, 2022	May 23, 2023			
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 24, 2022	May 23, 2023			
Radio frequency control box	MAIWEI	MW100-RFC B		١.				
Software	MAIWEI	MTS 8310						

Radiated Emissions Test (966 Chamber01)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023		
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023		
Receiver	R&S	ESRP	101154	May 24, 2022	May 23, 2023		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 24, 2022	May 23, 2023		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 26, 2022	May 25, 2023		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 26, 2022	May 25, 2023		
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 06, 2022	Jun. 05, 2023		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 26, 2022	May 25, 2023		
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 06, 2022	Jun. 05, 2023		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 24, 2022	May 23, 2023		
Software	Frad	EZ-EMC	FA-03A2 RE	\	Λ_{j}		

n. 00.,LTA

No.: BCTC/RF-EMC-007


Page: 12 of 80

Edition: A.5

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit	(dBuV)
Frequency (MHz)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

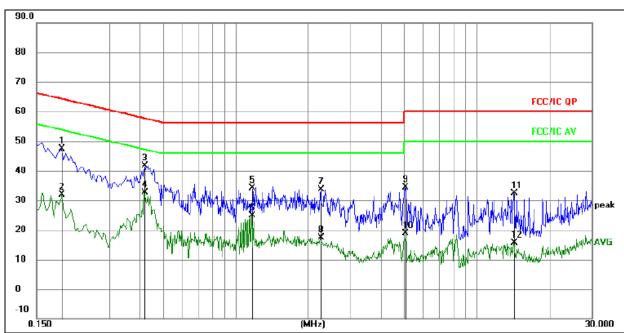
6.3 Test procedure

Receiver Parameters		Setting	
Attenuation		10 dB	
Start Frequency		0.15 MHz	
Stop Frequency		30 MHz	
IF Bandwidth		9 kHz	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

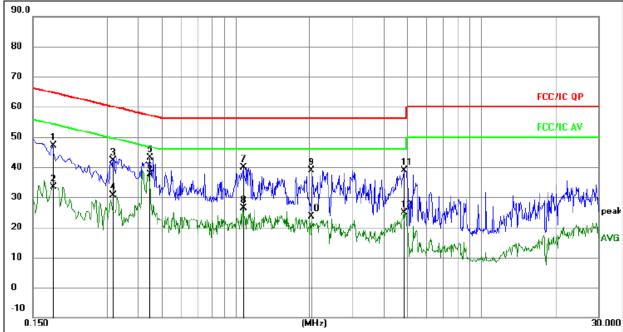
Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.

- 3. Measurement = Reading Level + Correct Factor
- 4. Over = Measurement Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1905	27.64	19.78	47.42	64.01	-16.59	QP
2	0.1905	12.22	19.78	32.00	54.01	-22.01	AVG
3	0.4200	21.85	19.74	41.59	57.45	-15.86	QP
4 *	0.4200	12.81	19.74	32.55	47.45	-14.90	AVG
5	1.1715	14.47	19.78	34.25	56.00	-21.75	QP
6	1.1715	5.04	19.78	24.82	46.00	-21.18	AVG
7	2.2515	13.67	19.91	33.58	56.00	-22.42	QP
8	2.2515	-2.41	19.91	17.50	46.00	-28.50	AVG
9	5.0595	14.14	20.13	34.27	60.00	-25.73	QP
10	5.0595	-1.23	20.13	18.90	50.00	-31.10	AVG
11	14.2485	12.07	20.28	32.35	60.00	-27.65	QP
12	14.2485	-4.69	20.28	15.59	50.00	-34.41	AVG

No.: BCTC/RF-EMC-007


Page: 14 of 80

Edition:

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.

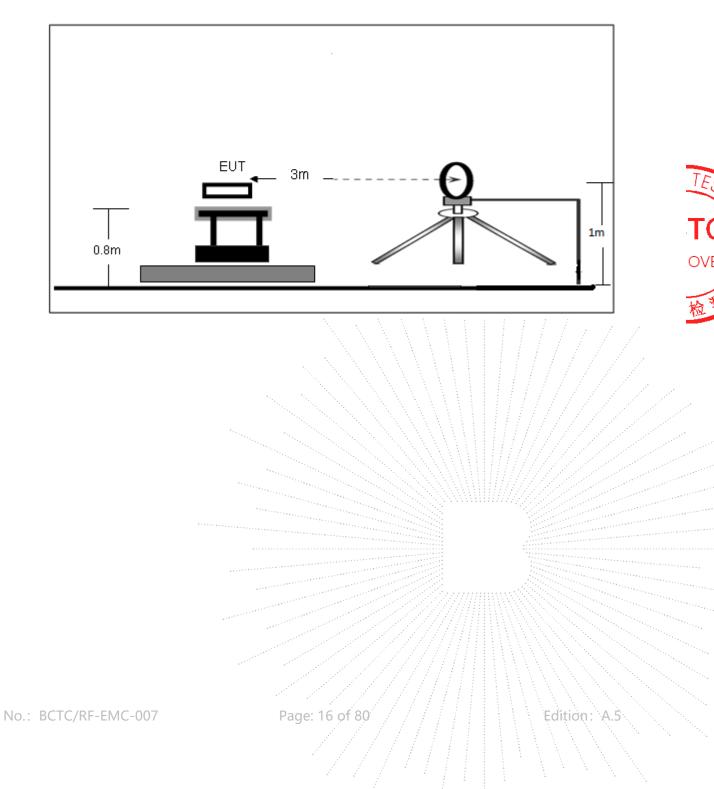
3. Measurement = Reading Level + Correct Factor

4.	Over	= Measurem	nent - Limit

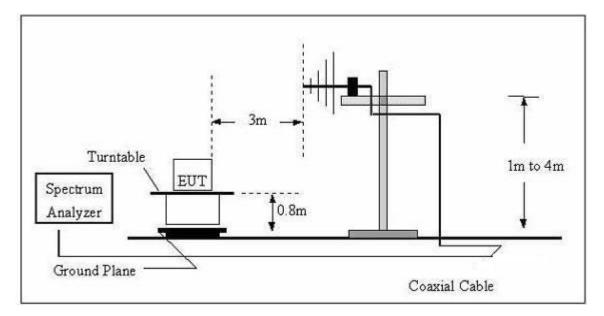
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1806	27.43	19.75	47.18	64.46	-17.28	QP
2	0.1806	13.66	19.75	33.41	54.46	-21.05	AVG
3	0.3183	22.26	19.77	42.03	59.75	-17.72	QP
4	0.3183	10.81	19.77	30.58	49.75	-19.17	AVG
5	0.4468	23.35	19.73	43.08	56.93	-13.85	QP
6 *	0.4468	17.93	19.73	37.66	46.93	-9.27	AVG
7	1.0710	20.12	19.77	39.89	56.00	-16.11	QP
8	1.0710	6.49	19.77	26.26	46.00	-19.74	AVG
9	2.0333	19.00	19.88	38.88	56.00	-17.12	QP
10	2.0333	3.71	19.88	23.59	46.00	-22.41	AVG
11	4.8480	18.65	20.12	38.77	56.00	-17.23	QP
12	4.8480	4.70	20.12	24.82	46.00	-21.18	AVG

No.: BCTC/RF-EMC-007

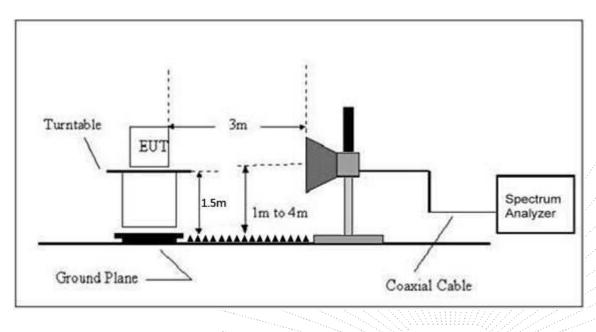
Page: 15 of 80


Edition:

JC JC JC


7. Radiated emissions

- 7.1 Block Diagram Of Test Setup
 - (A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	

No.: BCTC/RF-EMC-007

) ED,

1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

Limits Of Radiated Emission Measurement (Above 1000MHz)

Eroquonov (MHz)	Limit (dBuV/m) (at 3M)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

No.: BCTC/RF-EMC-007

Page: 18 of 80

Setting
Auto
RBW 200Hz for QP
RBW 9kHz for QP
RBW 120kHz for QP

Report No 'BCTC2304108780-1F

Spectrum Parameter	Setting		
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average		

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

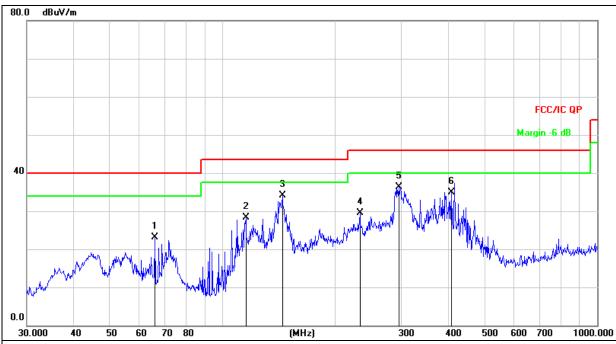
Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa		AC 120V/60Hz
Test Mode:	Mode 4	Test Voltage :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the


permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

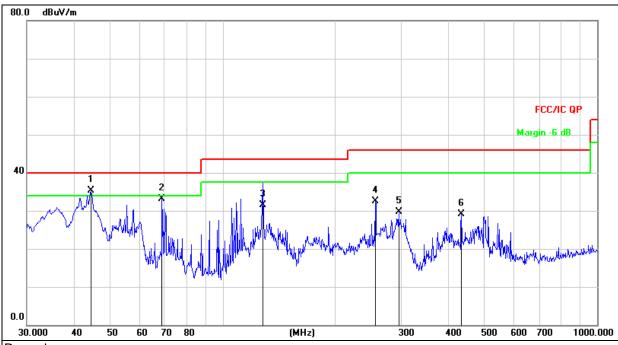
Between 30MHz – 1GHz						
Temperature:26 °CRelative Humidity:54%						
Pressure:	101KPa	Phase :	Horizontal			
Test Mode:	Mode 4	Test Voltage:	AC 120V/60Hz			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
Measurement = Reading Level + Correct Factor

Over = Measurement - Limi	t
---	---

						1		
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		66.0342	41.84	-18.82	23.02	40.00	-16.98	QP
2		115.3205	47.05	-18.77	28.28	43.50	-15.22	QP
3	*	144.3348	54.85	-20.68	34.17	43.50	-9.33	QP
4		232.5318	45.95	-16.37	29.58	46.00	-16.42	QP
5		295.1469	51.08	-14.70	36.38	46.00	-9.62	QP
6		407.5145	46.99	-12.10	34.89	46.00	-11.11	QP


JC JC JC

Edition:

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage:	AC 120V/60Hz

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement = Reading Level + Correct Factor
Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	44.4308	51.55	-16.22	35.33	40.00	-4.67	QP
2		68.8721	52.65	-19.63	33.02	40.00	-6.98	QP
3		127.9530	51.05	-19.60	31.45	43.50	-12.05	QP
4		255.6228	48.10	-15.69	32.41	46.00	-13.59	QP
5		295.1469	44.45	-14.70	29.75	46.00	-16.25	QP
6		434.0649	40.73	-11.72	29.01	46.00	-16.99	QP

TE. TC. OVE

Edition: A.5

Between 1GHz – 25GHz

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector		
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
	GFSK Low channel								
V	4804.00	53.10	-0.43	52.67	74.00	-21.33	PK		
V	4804.00	43.59	-0.43	43.16	54.00	-10.84	AV		
V	7206.00	43.23	8.31	51.54	74.00	-22.46	PK		
V	7206.00	33.46	8.31	41.77	54.00	-12.23	AV		
Н	4804.00	51.64	-0.43	51.21	74.00	-22.79	PK		
Н	4804.00	42.45	-0.43	42.02	54.00	-11.98	AV		
Н	7206.00	41.85	8.31	50.16	74.00	-23.84	PK		
Н	7206.00	33.47	8.31	41.78	54.00	-12.22	AV		
		G	FSK Middle c	hannel					
V	4882.00	51.99	-0.38	51.61	74.00	-22.39	PK		
V	4882.00	44.24	-0.38	43.86	54.00	-10.14	AV		
V	7323.00	44.74	8.83	53.57	74.00	-20.43	PK		
V	7323.00	36.03	8.83	44.86	54.00	-9.14	AV		
Н	4882.00	50.11	-0.38	49.73	74.00	-24.27	PK		
Н	4882.00	40.69	-0.38	40.31	54.00	-13.69	AV		
Н	7323.00	42.52	8.83	51.35	74.00	-22.65	PK		
Н	7323.00	34.19	8.83	43.02	54.00	-10.98	AV		
			GFSK High ch	nannel					
V	4960.00	53.83	-0.32	53.51	74.00	-20.49	PK		
V	4960.00	44.06	-0.32	43.74	54.00	-10.26	AV		
V	7440.00	45.37	9.35	54.72	74.00	-19.28	PK		
V	7440.00	35.96	9.35	45.31	54.00	-8.69	AV		
Н	4960.00	52.74	-0.32	52.42	74.00	-21.58	PK		
Н	4960.00	42.40	-0.32	42.08	54.00	-11.92	AV		
Н	7440.00	43.95	9.35	53.30	74.00	-20.70	PK		
Н	7440.00	35.13	9.35	44.48	54.00	-9.52	AV		

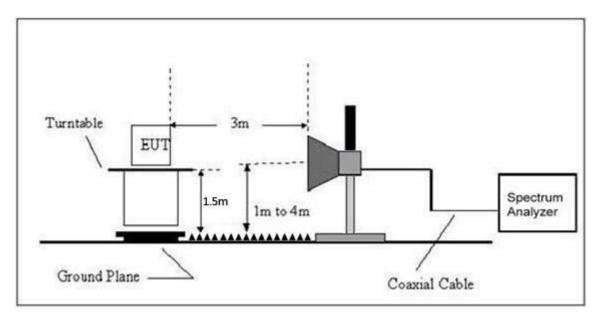
Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (d	BuV/m) (at 3M)
Frequency (MIRZ)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)		nits V/m)	Result
	(1,, 1, 1)	()	(dBuV/m)	(dB)	РК	РК	AV	
			Low	Channel 2	402MHz			
	Н	2390.00	53.37	-6.70	46.67	74.00	54.00	PASS
	Н	2400.00	56.52	-6.71	49.81	74.00	54.00	PASS
	V	2390.00	53.02	-6.70	46.32	74.00	54.00	PASS
GFSK	V	2400.00	52.87	-6.71	46.16	74.00	54.00	PASS
GFSK			High	h Channel 2	480MHz			
	Н	2483.50	52.48	-6.79	45.69	74.00	54.00	PASS
	Н	2500.00	49.00	-6.81	42.19	74.00	54.00	PASS
	V	2483.50	51.99	-6.79	45.20	74.00	54.00	PASS
	V	2500.00	48.50	-6.81	41.69	74.00	54.00	PASS
			Low	/ Channel 2	402MHz			
	Н	2390.00	52.54	-6.70	45.84	74.00	54.00	PASS
	Н	2400.00	56.93	-6.71	50.22	74.00	54.00	PASS
	V	2390.00	51.88	-6.70	45.18	74.00	54.00	PASS
π/4DQPSK	V	2400.00	52.63	-6.71	45.92	74.00	54.00	PASS
II/4DQF3N			High	n Channel 2	480MHz			
	Н	2483.50	51.12	-6.79	44.33	74.00	54.00	PASS
	Н	2500.00	49.05	-6.81	42.24	74.00	54.00	PASS
	V	2483.50	50.77	-6.79	43.98	74.00	54.00	PASS
	V	2500.00	46.86	-6.81	40.05	74.00	54.00	PASS
			Low	Channel 2	402MHz	•	•	
	Н	2390.00	52.82	-6.70	46.12	:74.00	54.00	PASS
	Н	2400.00	56.94	-6.71	50.23	74.00	54.00	PASS
	V	2390.00	53.60	-6.70	46.90	74.00	54.00	PASS
	V	2400.00	54.75	-6.71	48.04	74.00	54.00	PASS
8DPSK		-	High	h Channel 2	480MHz			
	Н	2483.50	51.83	-6.79	45.04	74.00	54.00	PASS
	Н	2500.00	48.93	-6.81	42.12	74.00	54.00	PASS
	V	2483.50	53.22	-6.79	46.43	74.00	54.00	PASS
	V	2500.00	48.85	-6.81	42.04	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss - Pre-amplifier. Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

E

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

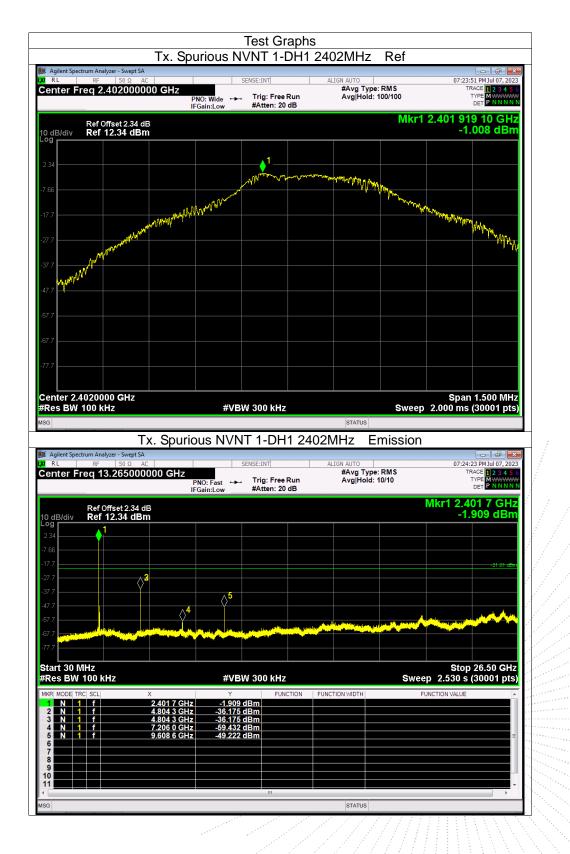
9.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer:

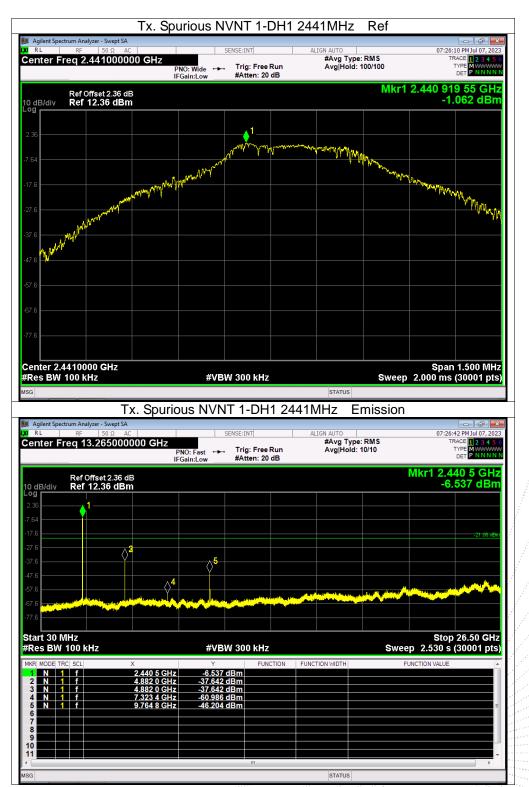
RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

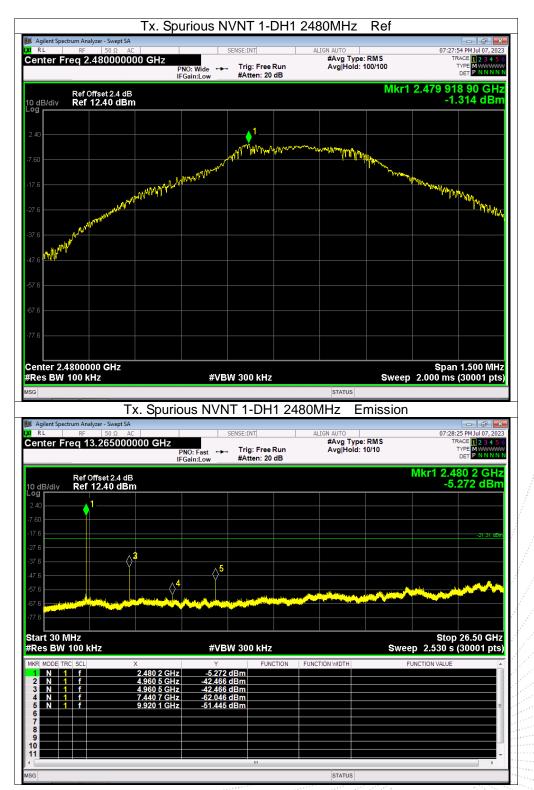

JC 3C

Page: 27 of 8

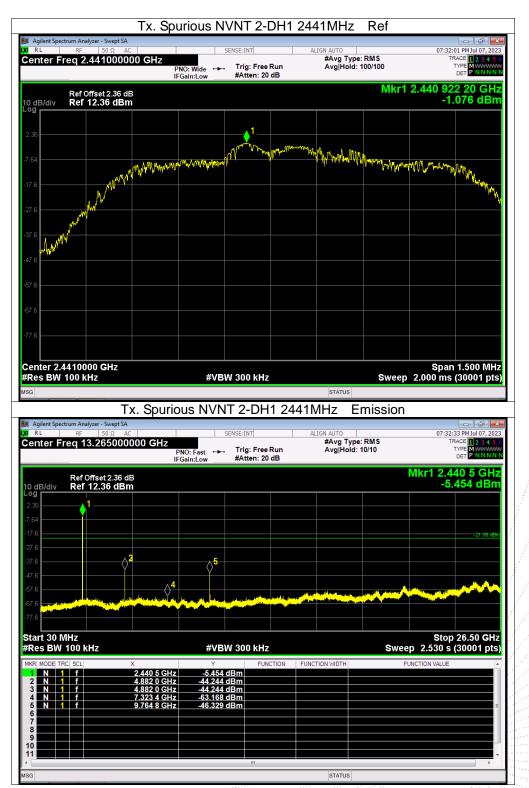
Edition: A.5



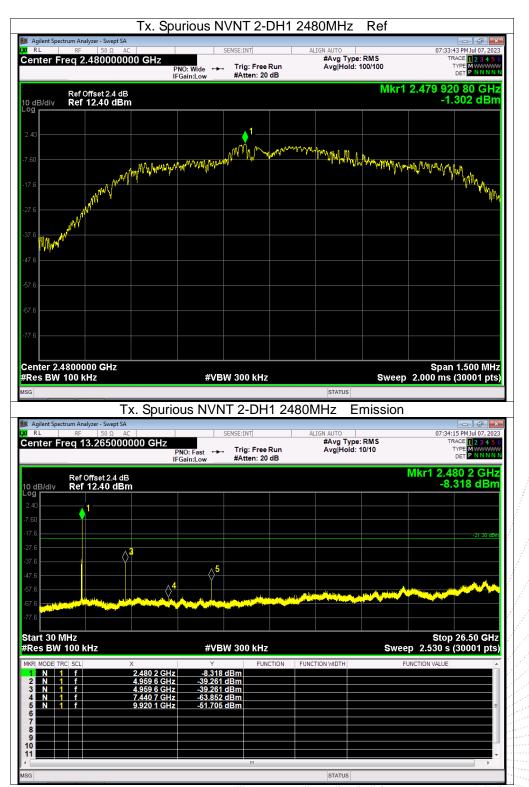
9.4 Test Result



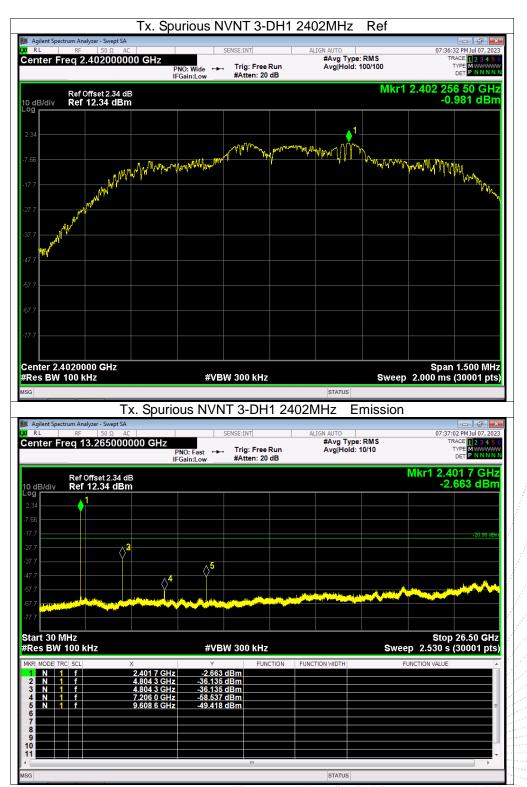
Edition: A.5



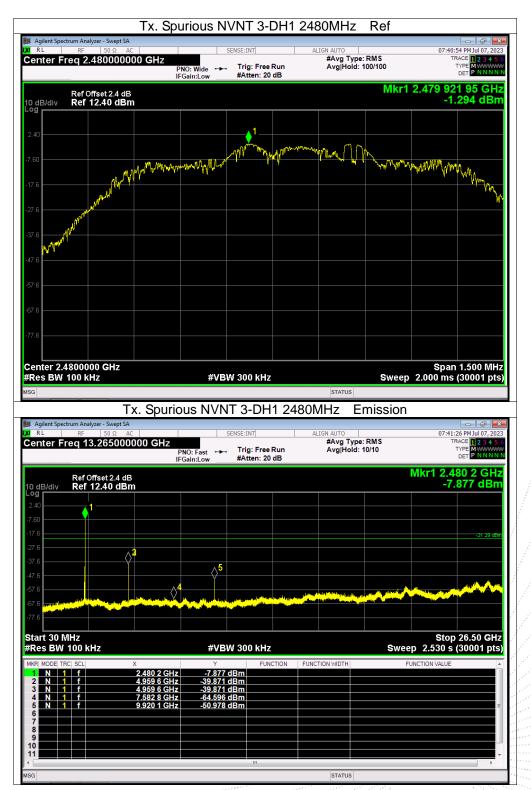
enter Freq 2.40200	P		Trig: Free Run Atten: 20 dB	Avg Hold: /		
Ref Offset 2.3 dB/div Ref 12.34 o	34 dB dBm					01 920 30 GH -1.009 dBr
34			1			
		M	Mina Mir-1	www.	h	
66	phiteliked Malanapart	Non Marine - 1	· ·		and the second products of the second of the second s	W W W W W W W W W W W W W W W W W W W
	ir '					1 and 1
.7						
.7 <mark>////** *</mark>						
.7						
.7						
.7						
enter 2.4020000 GHz Res BW 100 kHz	Z	#VBW 3	300 kHz		Sweep 2.0	Span 1.500 MH 00 ms (30001 pt
3				STATUS		
		ous NVNT	2-DH1 24	02MHz E	mission	
Agilent Spectrum Analyzer - Swep	pt SA			-		
RL RF 50 Ω	AC 000000 GHz		E:INT	ALIGN AUTO #Avg Type	RMS	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 5 TYPE MWWWW
RL RF 50 Ω enter Freq 13.2650	AC D000000 GHz F IF	NO: Fast ↔ 1	E:INT Frig: Free Run Atten: 20 dB	ALIGN AUTO	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 9 TYPE M WWW DET P NNNI
RL RF 50 Ω enter Freq 13.2650 Ref Offset 2.3 dB/div Ref 12.34 of	AC 000000 GHz F IF 34 dB	NO: Fast	rig: Free Run	ALIGN AUTO #Avg Type	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 5 TYPE MWWWW
RL RF 50 Ω enter Freq 13.2650 Ref Offset 2.3 dB/div Ref Offset 2.3 34 1	AC 000000 GHz F IF 34 dB	NO: Fast	rig: Free Run	ALIGN AUTO #Avg Type	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N T1 2.401 7 GH
Ref Offset 2.3 Ref Offset 2.3 D dB/div Ref 12.34 d	AC 000000 GHz F IF 34 dB	NO: Fast	rig: Free Run	ALIGN AUTO #Avg Type	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P NNN
RL RF 50 Ω enter Freq 13.2650 Ref Offset2.3 Ref 2.34 c 0 dB/div Ref 12.34 c Ref 3.26 c 34 1 1 65 7 1 7.7 7 1	AC 000000 GHz F IF 34 dB	PNO: Fast →→ 1 Gain:Low #	rig: Free Run	ALIGN AUTO #Avg Type	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N T1 2.401 7 GH
RL RF 50 Ω enter Freq 13.2650 0 dB/div Ref 12.34 d 9 dB/div Ref 12.34 d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AC	NO: Fast	rig: Free Run	ALIGN AUTO #Avg Type	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P NNN
RL RF 50 Ω enter Freq 13.2650 Ref Offset 2.3 Ref 0ffset 2.34 0 0 dB/div Ref 12.34 0 Ref 0ffset 2.3 1 1 1 66 1 1 7.7 1 1 7.7 1 1	AC	PNO: Fast →→ 1 Gain:Low #	rig: Free Run	ALIGN AUTO #Avg Type	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 TYPE MWWW DET P NNN
RL RF 50 Ω enter Freq 13.2650 Ref Offset 2.3 Ref Offset 2.34 G 0 dB/div Ref 12.34 G Ref 0.7 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1 7.7 1 1	AC	PNO: Fast →→ 1 Gain:Low #	rig: Free Run	ALIGN AUTO #Avg Type Avg Hold: '	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N T1 2.401 7 GH
RL RF 50 Ω enter Freq 13.2650 Ref Offset2.3 Ref Offset2.3 dB/div Ref 12.34 d Ref 7.7 7 7 7	AC	PNO: Fast →→ 1 Gain:Low #	rig: Free Run Atten: 20 dB	ALIGN AUTO #Avg Type Avg Hold: '	RMS 10/10	07:30:38 PM Jul 07, 20 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N T1 2.401 7 GH
RL RF 50 Ω enter Freq 13.2650 Ref Offset 2.3 dB/div Ref 12.34 d 9 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7	AC 000000 GHz F 54 dB 34 dB 34 dB 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast 1 Gain:Low 1 	rig: Free Run Atten: 20 dB	ALIGN AUTO #Avg Type Avg Hold: '	RMS 10/10 Mk1	07:30:38 PM Jul (7, 2) TRACE 2 34 TYPE MANNU FT 2.401 7 GH -21 07 0 -21 07 0 Stop 26.50 GH
RL RF 50 Ω enter Freq 13.2650 Ref Offset 2.3 GB/div Ref 12.34 (c) 34 1 1 1 6 34 1 1 1 1 660 1 1 1 1 77 7 1 1 1 77 8 8 1 1 1 77 7 7 7 1	AC	PNO: Fast 1 Gain:Low	rig: Free Run Atten: 20 dB	ALIGN AUTO	RMS 10/10 Mk1	07:30:38 PM Jul (7, 2) TRACE 12:34: TYPE 1
RL RF 50 Ω enter Freq 13.2650 0 dB/div Ref 12.34 d 9 dB/div Ref 12.34 d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AC 000000 GHz F 54 dB 34 dB 34 dB 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast 1 Gain:Low # 5 5 #VEW 3 -2.178 dBr -39.279 dBr -39.279 dBr -39.279 dBr -39.279 dBr	rig: Free Run Atten: 20 dB	ALIGN AUTO	RMS 10/10 Mk1	07:30:38 PM JU (7, 2) TRACE 12 3 4 TYPE MININ DET P NNNN r1 2.401 7 GH -2:101 d -2:101 d -2:101 d -2:101 d



No.: BCTC/RF-EMC-007



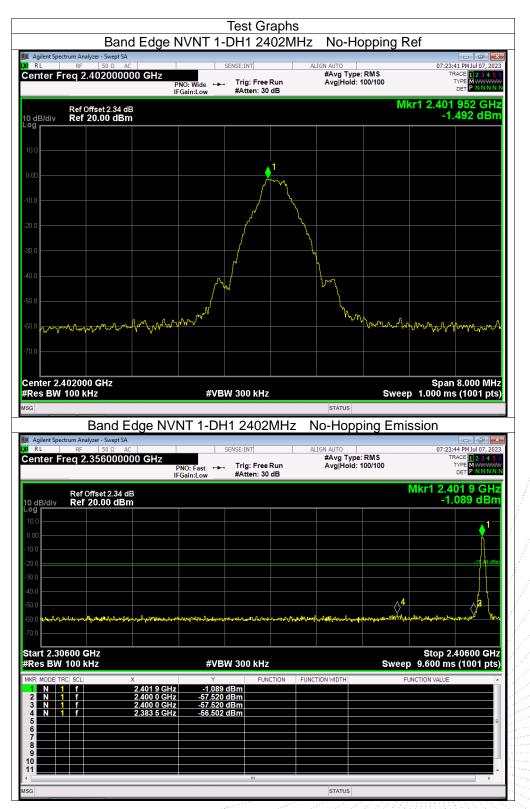
Edition: A.5



Ref Off dB/div Ref 1 2	set 2.36 dB 2.36 dBm							1 20 GH 114 dBm
36						1		
64				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	many			
7.6	M MMM	WWW	www.php.M.h.			<u>።</u> አትስሌሊኒ _ል ሎ	wath WWW.	May Ala
h.	W							, Aller
7.6								
7.6 VIV								
7.6								
7.6								
7.6								
7.6								
	0 GH7						Snar	1 500 MH
enter 2.441000 Res BW 100 kH g	z Tx.	. Spurio		/ 300 кнz Г 3-DH1 2-	status 441MHz E	Sweep mission		(30001 pts
enter 2.441000 Res BW 100 KH G Agilent Spectrum Analyz RL RF	z Tx. ter - Swept SA 50 Ω AC	00 GHz	DUS NVNT	T 3-DH1 2 NSE:INT Trig: Free Run			2.000 ms	1.500 MH2 (30001 pts 339 MJul 07, 202 RACE 1234 5 TYPE M MINNIN
enter 2.441000 Res BW 100 kH g Agilent Spectrum Analyz RL RF enter Freq 13. Ref Off	z TX. ser - Swept SA 50 Ω AC 2655000000	00 GHz		T 3-DH1 2	441MHz E Align Auto #Avg Typ	Emission E: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4	(30001 pts 33PMJu 07, 202 RACE 1 2 3 4 5 TYPE PNNNN DET PNNNN 40 5 GHz
Agilent Spectrum Analyz RL RF enter Freq 13. Ref Of dB/div Ref Of	Z TX. 50 Ω AC 265000000	00 GHz	DUS NVNT	T 3-DH1 2 NSE:INT Trig: Free Run	441MHz E Align Auto #Avg Typ	Emission E: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4	(30001 pts 33 PM Jul 07, 202 RACE 1 2 3 4 5 TYPE MWWWW DET P. N.N.N
Agilent Spectrum Analyz RL RF enter Freq 13.	z TX. ser - Swept SA 50 Ω AC 2655000000	00 GHz	DUS NVNT	T 3-DH1 2 NSE:INT Trig: Free Run	441MHz E Align Auto #Avg Typ	Emission E: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4	(30001 pts 33PMJu 07, 202 RACE 1 2 3 4 5 TYPE PNNNN DET PNNNN 40 5 GHz
Agilent Spectrum Analyz RL Ref Off O dB/div Ref 1	z Tx. 50 Q AC 26500000 rset 2.36 dB 2.36 dBm	00 GHz	NO: Fast Gain:Low	T 3-DH1 2 NSE:INT Trig: Free Run	441MHz E Align Auto #Avg Typ	Emission E: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4	(30001 pts 33PMJu 07, 202 RACE 1 2 3 4 5 TYPE PNNNN DET PNNNN 40 5 GHz
Agilent Spectrum Analyz RL RF enter Freq 13.	z TX. ser - Swept SA 50 Ω AC 2655000000	00 GHz	DUS NVNT	T 3-DH1 2 NSE:INT Trig: Free Run	441MHz E Align Auto #Avg Typ	Emission E: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4	(30001 pts 33PMJu 07, 202 RACE 1 2 3 4 5 TYPE PNNNN DET PNNNN 40 5 GHz
Agilent Spectrum Analyz RL RF enter Freq 13. RL RF enter Freq 13. Ref Off dB/div Ref 1 29 15 64 7 6 7 6 7 6 7 6 7 6 7 6	z Tx. 50 Q AC 26500000 rset 2.36 dB 2.36 dBm	00 GHz	NO: Fast Gain:Low	T 3-DH1 2 NSE:INT Trig: Free Run	441MHz E Align Auto #Avg Typ	Emission E: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4	(30001 pts 33PMJu 07, 202 RACE 1 2 3 4 5 TYPE PNNNN DET PNNNN 40 5 GHz
Agilent Spectrum Analyz RL RF enter Freq 13.	z Tx. 50 Q AC 26500000 rset 2.36 dB 2.36 dBm	00 GHz	NO: Fast Gain:Low	T 3-DH1 2 NSE:INT Trig: Free Run	441MHz E Align Auto #Avg Typ	Emission E: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4	(30001 pts 33PMJu 07, 202 RACE 1 2 3 4 5 TYPE PNNNN DET PNNNN 40 5 GHz
Agilent Spectrum Analyz RL RF enter Freq 13. RL RF enter Freq 13. Ref 0f 0 dB/div Ref 1 9 0 dB/div Ref 1 1 1 1 1 1 1 1 1 1	z Tx: 50 Q AC 26500000 rset 2.36 dB 2.36 dBm	00 GHz	NO: Fast	T 3-DH1 2 NSE:INT Trig: Free Run #Atten: 20 dB	441MHz E Align Auto #Avg Typ	mission e: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4 -5 Stop	(30001 pts 33 PM Jul 07, 202 33 PM Jul 07, 202 34 CE 12 3 4 5 PET NNNN 40 5 GHz 961 dBm 21.11 dBm 21.1
Agilent Spectrum Analyz Res BW 100 kH Agilent Spectrum Analyz RL RF enter Freq 13. Ref Off 0 dB/div Ref 1 9 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	z Tx, so 2 AC 26500000 fset 2.36 dB 2.36 dBm	00 GHz	NO: Fast	T 3-DH1 2 NSE:INT Trig: Free Run #Atten: 20 dB	441MHz E Align Auto #Avg Typ	mission e: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4 -5 Stop p 2.530 s	(30001 pts 333 PM Jul 07, 202 333 PM Jul 07, 202 334 CE 12 34 5 Per P NNNN 40 5 GH2 961 dBm -21.11 um
enter Freq 13. Ref Off	z Tx: 50 Q AC 26500000 rset 2.36 dB 2.36 dBm	00 GHz	NO: Fast	T 3-DH1 2- NSE:INT Trig: Free Run #Atten: 20 dB	441MHz E	mission e: RMS 10/10	2.000 ms 07:39 T Mkr1 2.4 -5 Stop	(30001 pts 33 PM Jul 07, 202 33 PM Jul 07, 202 34 CE 12 3 4 5 PET NNNN 40 5 GHz 961 dBm 21.11 dBm 21.1

Edition: A.5

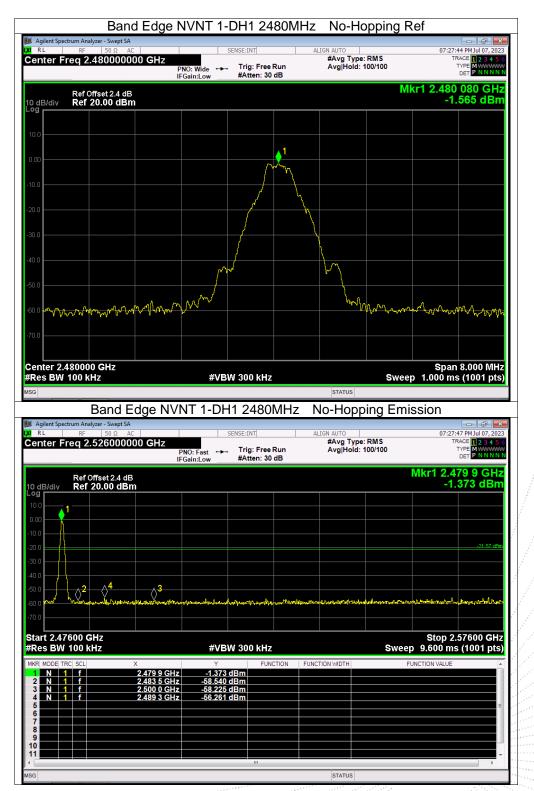
No.: BCTC/RF-EMC-007

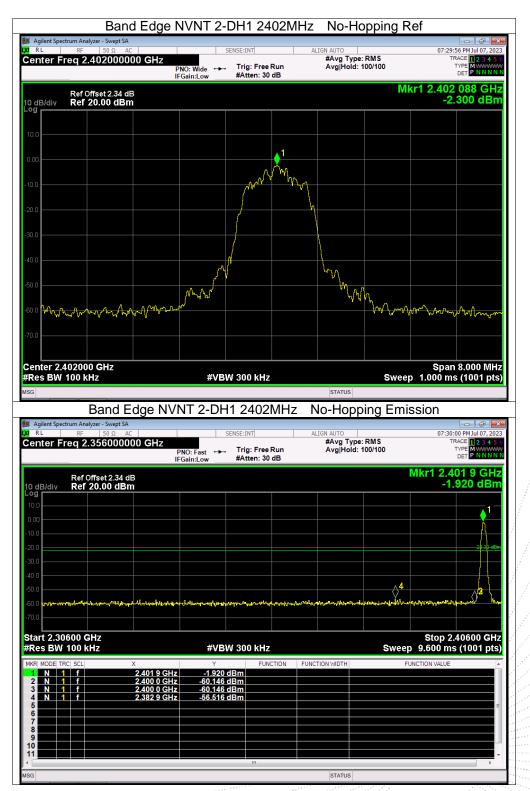


/////

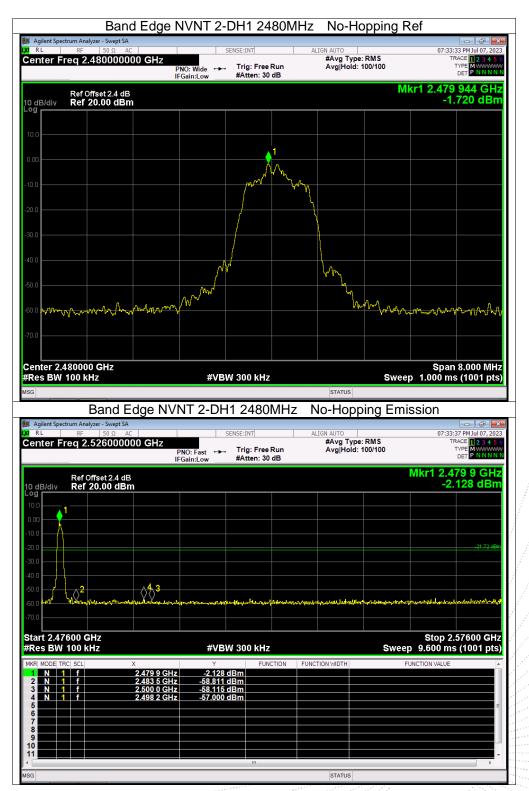
No.: BCTC/RF-EMC-007

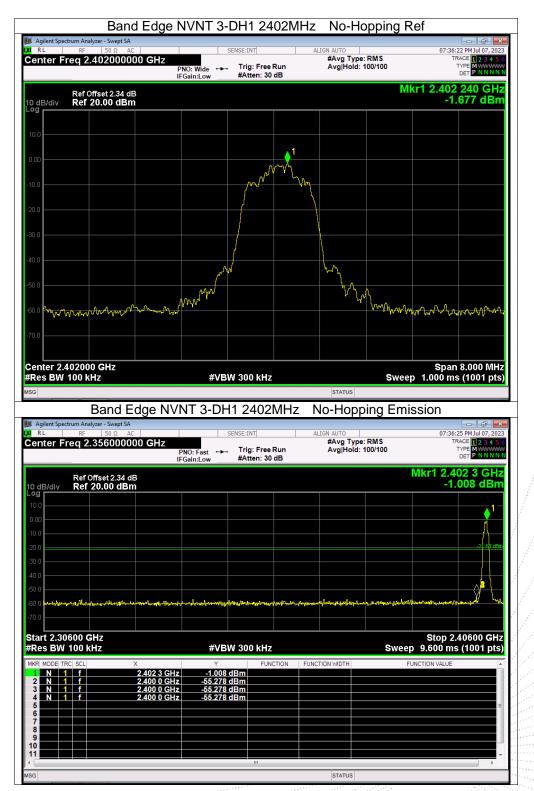
Page: 36 of 80

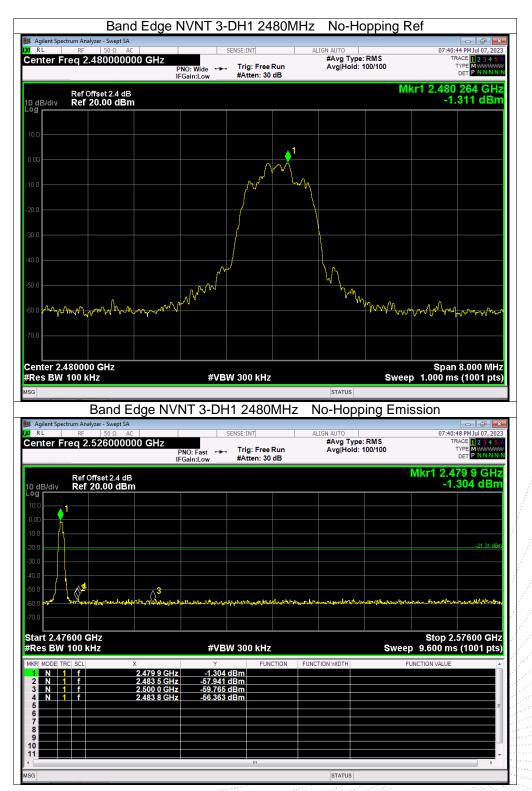



Edition: A.5

No.: BCTC/RF-EMC-007







No.: BCTC/RF-EMC-007

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure


- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

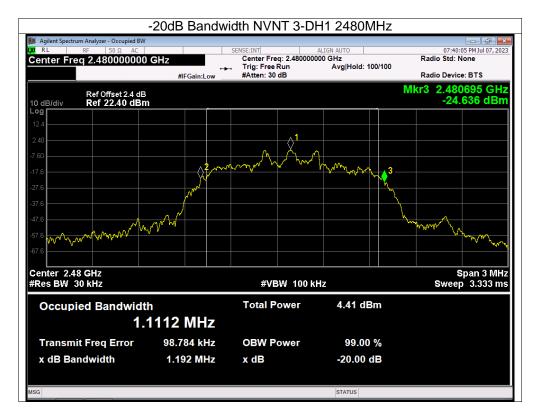
10.4 Test Result

Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
1-DH1	2402	0.869	Pass
1-DH1	2441	0.824	Pass
1-DH1	2480	0.873	Pass
2-DH1	2402	1.202	Pass
2-DH1	2441	1.204	Pass
2-DH1	2480	1.203	Pass
3-DH1	2402	1.202	Pass
3-DH1	2441	1.208	Pass
3-DH1	2480	1.192	Pass
	1-DH1 1-DH1 2-DH1 2-DH1 2-DH1 3-DH1 3-DH1	Mode (MHz) 1-DH1 2402 1-DH1 2441 1-DH1 2480 2-DH1 2402 2-DH1 2441 2-DH1 2441 3-DH1 2402 3-DH1 2441	Mode (MHz) (MHz) 1-DH1 2402 0.869 1-DH1 2441 0.824 1-DH1 2480 0.873 2-DH1 2402 1.202 2-DH1 2441 1.204 2-DH1 2480 1.203 3-DH1 2402 1.202 3-DH1 2441 1.208

Edition: A.5

E

JC JC PPR



No.: BCTC/RF-EMC-007

No.: BCTC/RF-EMC-007

Page: 54 of 80

11. Maximum Peak Output Power

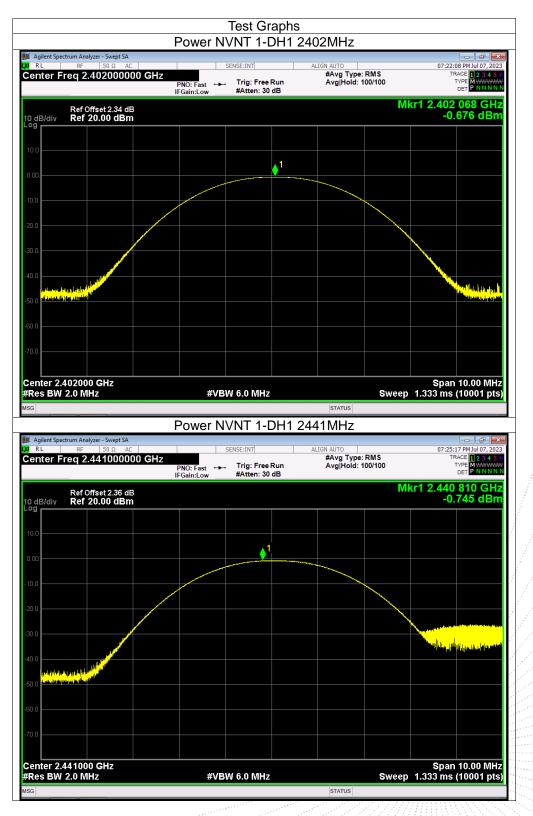
11.1 Block Diagram Of Test Setup

11.2 Limit

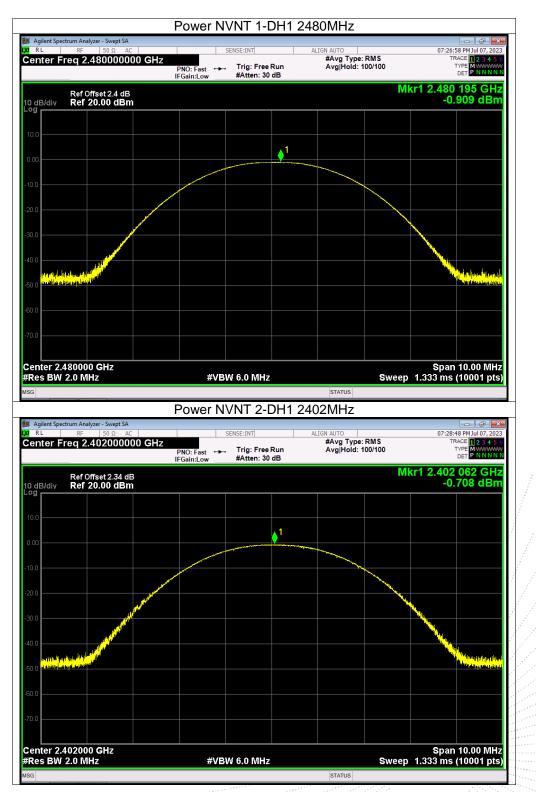
		FCC Part15 (15.247) , S	ubpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

11.3 Test procedure

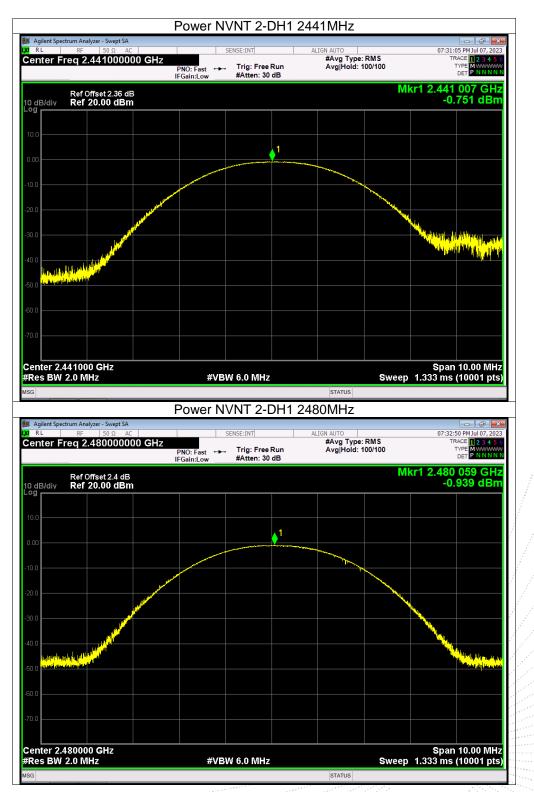
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

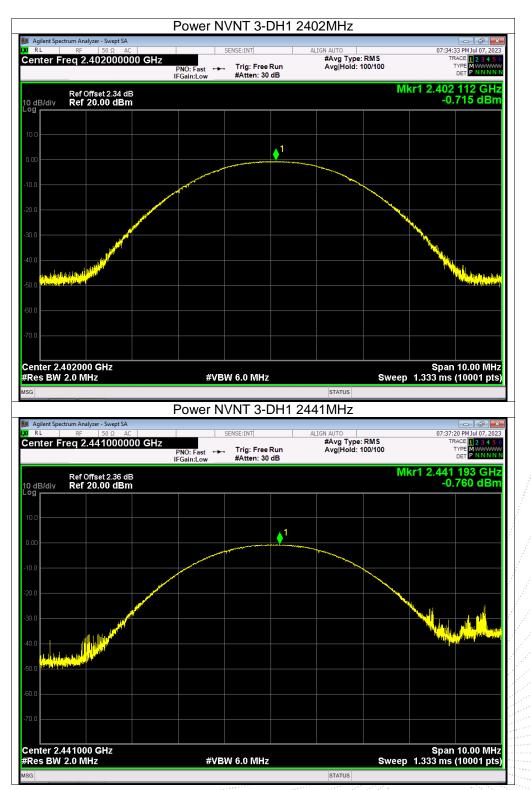

2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.

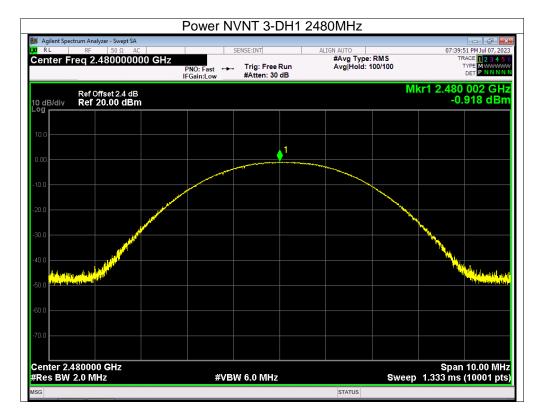
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.


11.4 Test Result

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-0.68	21	Pass
NVNT	1-DH1	2441	-0.75	21	Pass
NVNT	1-DH1	2480	-0.91	21	Pass
NVNT	2-DH1	2402	-0.71	21	Pass
NVNT	2-DH1	2441	-0.75	21	Pass
NVNT	2-DH1	2480	-0.94	21	Pass
NVNT	3-DH1	2402	-0.72	21	Pass
NVNT	3-DH1	2441	-0.76	21	Pass
NVNT	3-DH1	2480	-0.92	21	Pass






测

TL TON 検

Page: 60 of 80

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

odulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low Market	1.002	0.923	PASS
GFSK	Middle	1.004	0.958	PASS
GFSK	High Migh	0.998	0.976	PASS
π/4 DQPSK	Low	1.004	0.832	PASS
π/4 DQPSK	Middle	1.002	0.845	PASS
π/4 DQPSK	High	0.996	0.854	PASS
8DPSK	Low	1.002	0.825	PASS
8DPSK	Middle		0.828	PASS
8DPSK	High	0.994	0.876	PASS

12.4 Test Result

Agilent Spectrum Analyzer		FS NVNT 1-	DH1 2402M	Hz	
	50 Ω AC 2500000 GHz PNO	SENSE:INT : Wide Trig: Fro in:Low #Atten:	ree Run Av	UTO Vyg Type: RMS yg Hold:>100/100	07:23:36 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
Ref Offs	et 2.34 dB .00 dBm	III.EOW		Mkr	1 2.401 920 GH -2.851 dBn
dB/div Ref 20.					2.001 0.01
				2	
).0			~~~		
1.0					
).0					
).0					
enter 2.402500 C	Hz				Span 2.000 MH
Res BW 30 kHz		#VBW 100 kH			2.133 ms (1001 pts
R MODE TRC SCL N 1 f N 1 f	× 2.401 920 GHz 2.402 922 GHz	Y F -2.851 dBm -2.885 dBm	FUNCTION FUNCTION W	VIDTH FUNC	CTION VALUE
3 A	2.402.572.5HZ				
3 					
à			S	STATUS	•
		FS NVNT 1-			
Agilent Spectrum Analyzer R L RF	- Swept SA 50 Ω AC	FS NVNT 1-	DH1 2441MI	Hz	07:26:05 PM Jul 07, 202
Agilent Spectrum Analyzer R L RF	- Swept SA 50 Ω AC		DH1 2441MI ALIGN AL #A ree Run Av	Hz	07:26:05 PM Jul 07, 202 TRACE 12 3 4 5
Agilent Spectrum Analyzer RL RF enter Freq 2.44 Ref Offs	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	HZ	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P NNNN 1 2.440 920 GH
Agilent Spectrum Analyzer RL RF enter Freq 2.44 Ref Offs dB/div Ref 20.	- Swept SA 50 Ω AC .15000000 GHz PNO IFGa	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	Hz vyg Type: RMS rg Hold:>100/100 Mkr	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P NNNN 1 2.440 920 GH
Agilent Spectrum Analyzer RL RF enter Freq 2.44 Ref Offs dB/div Ref 20.	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	HZ	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N 1 2.440 920 GH
Agilent Spectrum Analyzer RL RF enter Freq 2.44 Ref Offs dB/div Ref 20.	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	Hz vyg Type: RMS rg Hold:>100/100 Mkr	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N 1 2.440 920 GH
Agilent Spectrum Analyzer RL RF enter Freq 2.44	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	Hz vyg Type: RMS rg Hold:>100/100 Mkr	07:26:05 PM Jul 07, 202 TRACE 12 3 4 5 TYPE DET NUMBER OFT NUMBER 1 2.440 920 GH: -2.939 dBn
Agilent Spectrum Analyzer RL RF Inter Freq 2.44	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	Hz vyg Type: RMS rg Hold:>100/100 Mkr	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N 1 2.440 920 GH
enter Freq 2.44 Ref Offs	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	Hz vyg Type: RMS rg Hold:>100/100 Mkr	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P NNNN 1 2.440 920 GH
Agilent Spectrum Analyzer RL RF inter Freq 2.44 Ref Offs dB/div Ref 20. 9 0 0 0 0 0 0 0 0 0 0 0 0 0	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB	SENSE:INT	DH1 2441MI ALIGN AL #A ree Run Av	Hz vyg Type: RMS rg Hold:>100/100 Mkr	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N 1 2.440 920 GH
Agilent Spectrum Analyzer RL RF enter Freq 2.44	- Swept SA 50 Ω AC PNO I-500000 GHz PNO IFGa et 2.36 dB 00 dBm	SENSE:INT	DH1 2441Mi ALIGN AL *A *A 30 dB	Hz vyg Type: RMS (g)Hold:>100/100 Mkr	07:26:05 PM Jul 07, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N 1 2.440 920 GH
Agilent Spectrum Analyzer RL RF inter Freq 2.44 Ref Offs dB/div Ref 20. 9 9 9 9 9 9 9 9 9 9 9 9 9	- Swept SA 50 Ω AC 1500000 GHz PNO IFGa et 2.36 dB 00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT	DH1 2441Mi ALIGN AL *A *A 30 dB	Hz vyg Type: RMS vg Hold:>100/100 Mkr	07:26:05 PMJU107, 202 TRACE [] 22 4 5 TYPE [] 23 4 5 TYPE [] 12 4 4 DET [] NINN 1 2.440 920 GH: -2.939 dBn
Agilent Spectrum Analyzer RL RF enter Freq 2.44	- Swept SA 50 Ω AC PNO 1500000 GHz PNO IFGa et 2.36 dB 00 dBm 1 1 1 5	SENSE:INT	DH1 2441Mi	Hz vyg Type: RMS vg Hold:>100/100 Mkr	07:26:05 PMJU107.202 TRACE [] 2 3 4 3 TYPE M
Agilent Spectrum Analyzer RL RF enter Freq 2.44 Ref Offs dB/div Ref 20, g dB/div Re	- Swept SA 50 Ω AC PNO I-500000 GHz PNO IFGa et 2.36 dB 00 dBm 1 1 1 1 5 Hz 2.440 920 GHz	SENSE:INT	DH1 2441Mi	Hz vyg Type: RMS vg Hold:>100/100 Mkr	07:26:05 PMJu107, 202 TRACE [] 2 3 4 5 TYPE M MININ 0 ET P. NINN 1 2.440 920 GH; -2.939 dBn -2.939 dBn -2.133 ms (1001 pts
Agilent Spectrum Analyzer RL RF enter Freq 2.44 Ref Offs dB/div Ref 20. 9 9 9 9 9 9 9 9 9 9 9 9 9	- Swept SA 50 Ω AC PNO I-500000 GHz PNO IFGa et 2.36 dB 00 dBm 1 1 1 1 5 Hz 2.440 920 GHz	SENSE:INT	DH1 2441Mi	Hz vyg Type: RMS vg Hold:>100/100 Mkr	07:26:05 PMJu107, 202 TRACE [] 2 3 4 5 TYPE M MININ 0 ET P. NINN 1 2.440 920 GH; -2.939 dBn -2.939 dBn -2.133 ms (1001 pts