

Page 1 of 38

Report No.: 2021-90023

TEST REPORT

Report No:	2021-90023			
FCC ID:	WWE-2MNPP0209			
Applicant:	LIFEWORKS TECHNOLOGY GROUP LLC.			
Address:	530 7th Ave, 21st FI, New York, NY 10018, United States.			
Manufacturer	LIFEWORKS TECHNOLOGY GROUP LLC.			
Address	530 7th Ave, 21st FI, New York, NY 10018, United States.			
Product Name:	Portable Power Station			
Trade Mark:	N/A			
Model/Type reference:	2MNPP0209			
Listed Model(s):	2MNPP0209B0L2, 2MNPP0209F0L2, 2MNPP0209W0L2			
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.207, 15.209, 15.203 ANSI C63.10:2020			
Date of Receipt:	September 03, 2021			
Date of Test Date:	September 03, 2021 - December 06, 2021			
Date of issue	December 06, 2021			
Test result:	Pass			
Compiled by: (Printed name + Signature)	Liu Wei Liu Wei			
Supervised by: (Printed name + Signature)	Liu Canhui			
Approved by: (Printed name + Signature)	Wang Weixiong			
Tosting Laboratory Name	KSIGN Tacting Co. 1 td			
Testing Laboratory Name: Address This test report may be duplicated complete	KSIGN Testing Co., Ltd. Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China			

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TRF No. Part 15 Subpart C Section 15.207_R1

TABLE OF CONTENTS

Page

1. TEST SUMMARY	
1.1. Test Standards	
1.2. REPORT VERSION	
1.3. Test Description	4
1.4. Measurement Uncertainty	
1.5. Environmental conditions	5
2. GENERAL INFORMATION	6
2.1. Client Information	
2.2. GENERAL DESCRIPTION OF EUT	6
2.3. Description of Test Modes	
2.4. Measurement Instruments List	8
2.5. Test Software	8
3. TEST ITEM AND RESULTS	
3.1. Antenna requirement	9
3.2. Conducted Emission	10
3.3. Radiated Spurious Emissions	
4. PHOTOGRAPHS OF TEST SETUP	20
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15 Subpart C: Operation within the bands 110.1~205 kHz.

ANSI C63.10-2020: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	December 06, 2021	Original

1.3. Test Description

EMC Emission							
Test Item FCC Rules Result Test Engin							
Conducted Emission	§15.207	Pass	Liu Wei				
Radiated Emission	§15.209	Pass	Liu Wei				
ANTENNA APPLICATION	§15.203	Pass	Liu Wei				

Note: The measurement uncertainty is not included in the test result.

1.4. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes	
Transmitter power conducted	0.42 dB	(1)	
Transmitter power Radiated	2.14 dB	(1)	
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)	
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)	
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)	
Radiated Emissions 30~1000MHz	4.70 dB	(1)	
Radiated Emissions 1~18GHz	5.00 dB	(1)	
Radiated Emissions 18~40GHz	5.54 dB	(1)	
Occupied Bandwidth	2.80 dB	(1)	

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	LIFEWORKS TECHNOLOGY GROUP LLC.	
Address:	530 7th Ave, 21st FI, New York, NY 10018, United States.	
Manufacturer:	LIFEWORKS TECHNOLOGY GROUP LLC.	
Address:	530 7th Ave, 21st FI, New York, NY 10018, United States.	

2.2. General Description of EUT

Test Sample Number:	1-1-1(Normal Sample),1-1-2(Engineering Sample)
Product Name:	Portable Power Station
Trade Mark:	N/A
Model/Type reference:	2MNPP0209
Listed Model(s):	2MNPP0209B0L2, 2MNPP0209F0L2, 2MNPP0209W0L2
Model Different:	The difference between product models only depends on the appearance color and the model naming is different. Other power supply methods, safety structure and key components are the same, which do not affect the safety and electromagnetic compatibility performance.
Power supply(Adapter) :	Input: AC 100-240V~50/60Hz 1.2A
	Output: DC 18V 3000mA, 54.0W
Power supply(Battery) :	DC 14.8V, 296Wh, 20Ah
Hardware version:	V1.0
Software version:	V1.0.0
Specification	
Frequency range	110.1KHz~205KHz
Modulation:	FSK
Modulation:	Induction
Test frequency:	125.3kHz
Antenna type:	Coil Antenna
Antenna gain:	0dBi

2.3. Description of Test Modes

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency range: 110.1KHz~205KHz

Test mode

MODE	TEST MODE DESCRIPTION			
1	Wireless charging mode(Full load)			
2	Wireless charging mode(Half load)			
3	Wireless charging mode(Null load)			

Note:

1. The Mode 1 was the worst case and only the data of the worst case record in this report.

2.4. Measurement Instruments List

	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2022	
2	Wideband Radio Communication Tester	R&S	CMW500	157282	04/07/2022	
3	Climate Chamber	Angul	AGNH80L	1903042120	04/07/2022	
4	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	04/07/2022	

	Transmitter spurious emissions & Receiver spurious emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	EMI Test Receiver	R&S	ESR	102525	04/07/2022	
2	Spectrum Analyzer	HP	8593E	3831U02087	04/07/2022	
3	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023	
4	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/25/2022	
5	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2022	
7	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	04/07/2022	
8	Pre-Amplifier	EMCI	EMC051835SE	980662	04/07/2022	

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	LISN	R&S	ENV432	1326.6105.02	03/27/2022
2	EMI Test Receiver	R&S	ESR	102524	04/07/2022
3	Manual RF Switch	JS TOYO	/	MSW-01/002	04/07/2022

Note:

1)The Cal. Interval was one year.

2)The cable loss has calculated in test result which connection between each test instruments.

		Auxiliary tes	st equipment		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	PHONE 1	HUAWEI	P40	/	/
2	PHONE 2	HUAWEI	MATE40	/	/
3	Wireless charging load	EESON	2S	/	/

2.5. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

(i) Systems operating in the 110KHz~205KHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

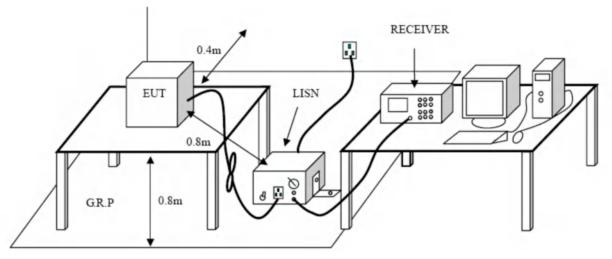
Note: The antenna is permanently fixed to the EUT

3.2. Conducted Emission

<u>Limit</u>

Conducted Emission Test Limit

Eroquepey	Maximum RF Lir	ne Voltage (dBµV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

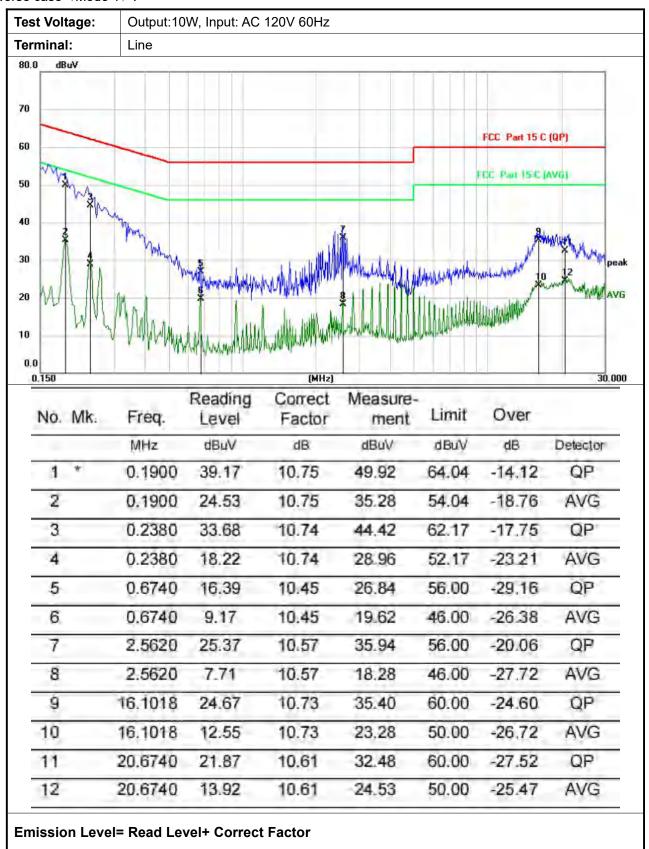
(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

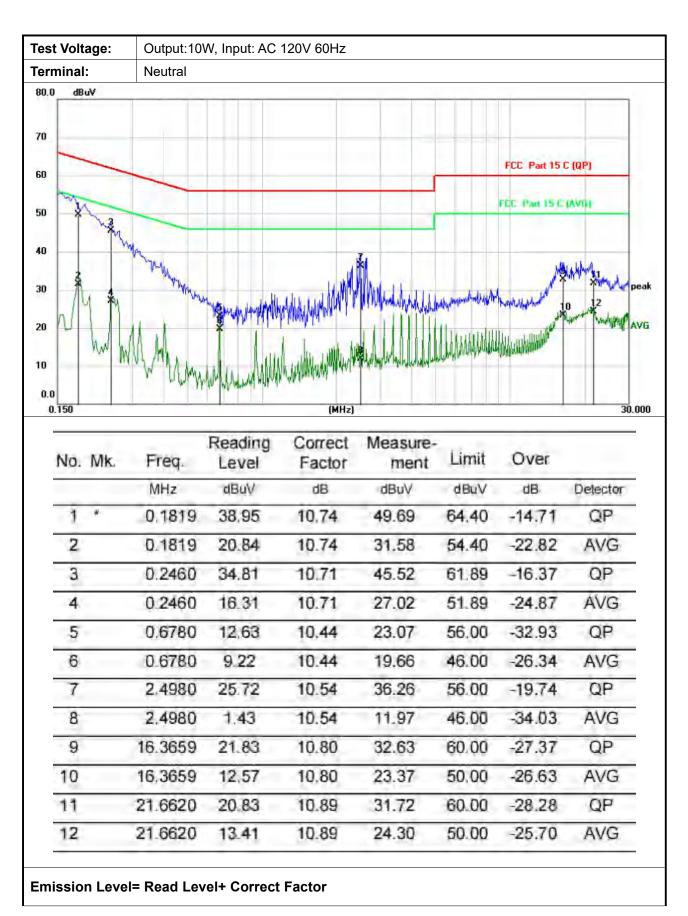
Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2020 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.


Test Mode:

Please refer to the clause 2.3.



<u>Test Results</u>

Pre-scan Full load, Half load, Null load, and found Full load which it is worse case, so only show the test data for worse case (Mode 1).

3.3. Radiated Spurious Emissions

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209(a) and 15.205(a)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

15.209(a)

Frequencies (MHz)	Field Strength	Measurement Distance
	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16,69475-16.69525	608-614	5,35-5,46
2 1735-2 1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4_17725-4_17775	37.5-38 25	1435-1626 5	9.0-9.2
4.20725-4.20775	73-74,6	1645.5-1646,5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121,94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149,9-150,05	2310-2390	15,35-16,2
8.362-8.366	156,52475-156,52525	2483.5-2500	17 7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	.22.01-23.12
8 41425-8 41475	162.0125-167 17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31,2-31,8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Notes:

(1).Measurement was performed at an antenna to the closed point of EUT distance of

meters.

(2).Emission level (dBuV/m)=20log Emission level (uV/m).

(3).Only spurious frequency is permitted to locate within the Restricted Bands specified in

provision of 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

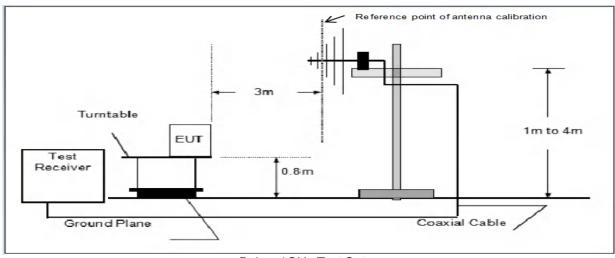
(4) .The emission limits shown in the above table are based on measurements employing a CISPR

quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Test Configuration

Below 30MHz Test Setup

Below 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2020
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz Peak detector for Average value.

TEST MODE:

Please refer to the clause 2.3

TEST RESULTS

⊠ Passed

Not Applicable

9 KHz~30 MHz and 30MHz~1GHz

From 9 KHz~30 MHz and 30MHz~1GHz: Conclusion: PASS

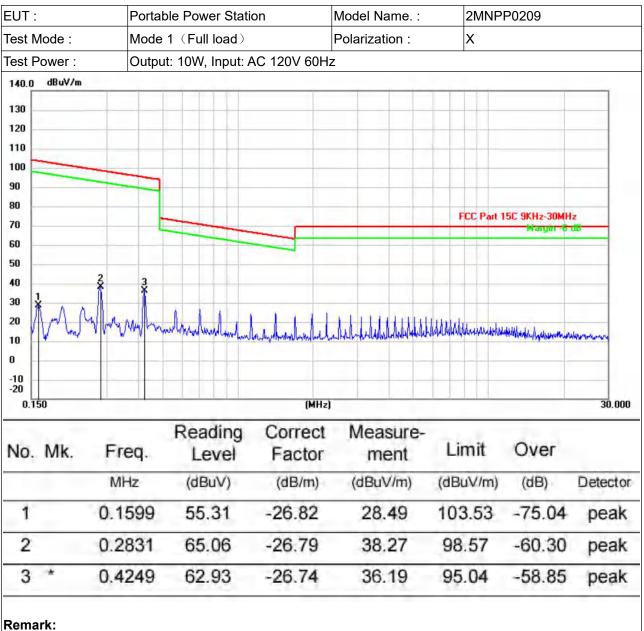
Note:

1) Final level = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

TRF No. Part 15 Subpart C Section 15.207_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China


Tel:+(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail:info@gdksign.cn Web: www.gdksign.com

9KHz~30MHz

Portal	ble Power Stat	ion	Model Name. :	2MNP	P0209	
Mode	$1 \ (Full \ load)$		Polarization :	x		
Outpu	it: 10W, Input:	AC 120V 60H	İz	I		
	Sec. 1					
					15C 9KHz-30M	Hz
					-	
						2×
						3 X
			*			
				hung	Mu	
Δ		Λ.		Lahy Mr	very Muchan	FLAX AT
N Win	monthlywayan	warrent have and	her white the work was a with	Willen HAA	ar AMI	.A. w
Mar William		_				
			4			0.15
		(MHz				0.15
Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	0.13
. Aug		Correct	Measure-		Over (dB)	
Freq.	Level	Correct Factor	Measure- ment	Limit	10,001	Detecto
Freq. MHz	(dBuV)	Correct Factor (dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detecto peak peak
	Mode Outpu	Mode 1 (Full load) Output: 10W, Input:	Mode 1 (Full load) Output: 10W, Input: AC 120V 60H	Mode 1 (Full load) Polarization : Output: 10W, Input: AC 120V 60Hz	Mode 1 (Full load) Output: 10W, Input: AC 120V 60Hz	Mode 1 (Full load) Polarization : X Output: 10W, Input: AC 120V 60Hz

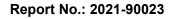
Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

TRF No. Part 15 Subpart C Section 15.207_R1

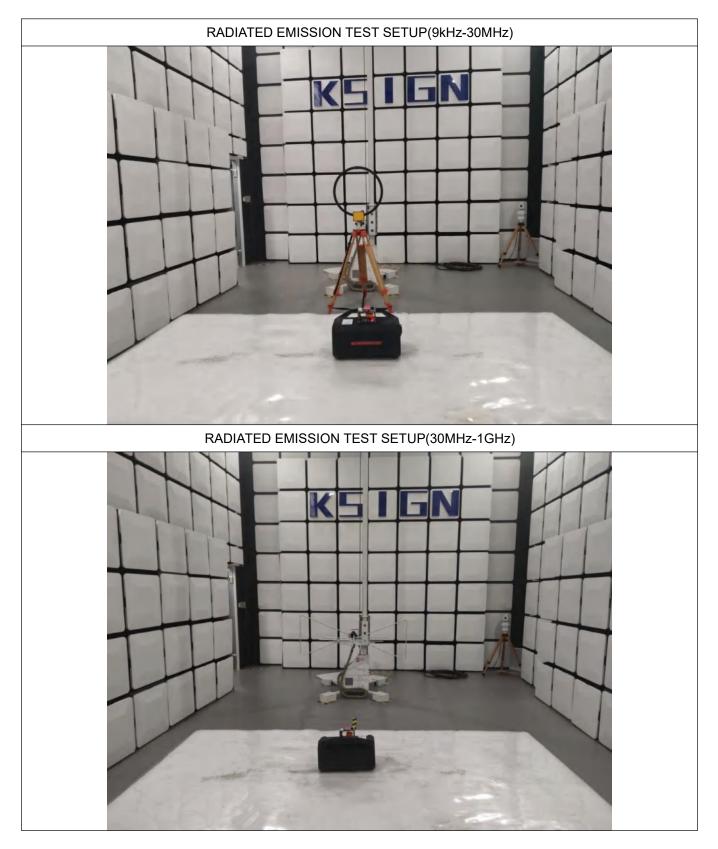
30MHz-1GHz

Test Volta	age:	Output:	10W, Input: A	C 120V 60Hz				
Ant. Pol.		Horizon	tal					
Test Mod	e:	Mode 1	(Full load)	Worse case				
80.0 dBu	iV/m							
70								
60		-				FCC Part 15C	(30MHz-1GHz)	
50							Margin -6.	
40		_		Å		\$		
30				12	1 m	M	monor	d s. h
20			MMM M			v	a arway	- Carton II
10 0.0 30.000	WWWWWWWWW	AMPHON HAN MAN	100	(MHz)		500		1000.0
30.000		00			Manut	500		1000.0
No. M	k. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	Ν	٨Hz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detecto
1 *	161.	0783	57.68	-21.12	36.56	43.50	-6.94	QP
2	180.	0165	52.01	-19.05	32.96	43.50	-10.54	QP
	208.4	4340	52.81	-17.63	35.18	43.50	-8.32	QP
3		0000	49.70	-15.21	34.49	46.00	-11.51	QP
3 4	276.	8022				10.00	10.00	QP
-		8022 6192	46.64	-12.89	33.75	46.00	-12.25	QF
4	341.		46.64 49.06	-12.89 -10.90	33.75 38.16	46.00	-12.25	QP

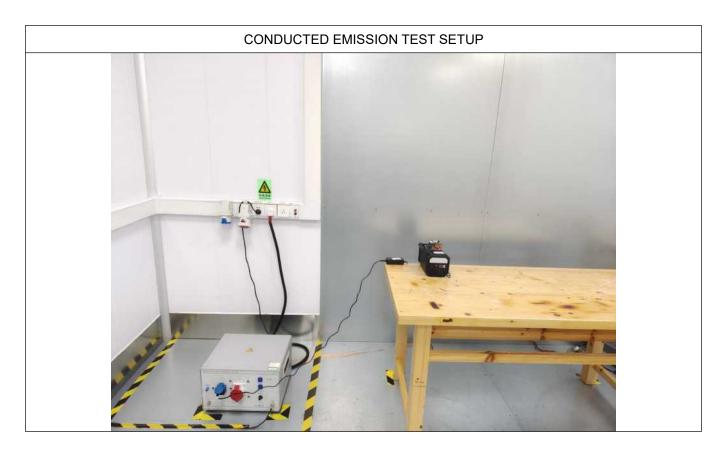
TRF No. Part 15 Subpart C Section 15.207_R1



Test Vo	oltag	e:	Out			, mpu									
Ant. Po	ol.		Vert	ical											
Test M	lode:		Mod	le 1	(Ful	ll load	1) V	Norse o	case						
80.0	dBuV/	m		_									_		
70	_				+							_			
60															
												FCC F	Part 15C	(30MHz-1GHz)
50 -					_									Margin -6	dB
						+				-	A	Š.	6		
40						-	_				A	. //	1		
30								ŀ	* han	3		Run	W		
								1		1 m 1	1 2			4	in
					100	dia.		M		1				man	Mar Martin A
20		ANNOAMA	NWNMAW	Mart	MUM	and the second	and the second	mand		12.				man	Here Water 1
M	WWW	WMM	NANAMA	When P	YHHH	and the second	and the	and the second s		V.				nenne	and a second
10	WWW	MMM	YWYM MAN	Ulina a'	YHHHM	en hannen	and the second	Stranger and a second						hand	
M		NNMMN	60		syntiffic	10	10	ward and a second	(MHz)	V.			500		10
10 M 0.0		MMMM						Corr		Mea	Isure-		500		
10 M 0.0		lin i			Rea	no n	g			100.000	isure- ent	Lin	-		
10 0.0 30.00		F	60		Rea L	adin	ig I	Fac	rect	100.000	ent	Lin (dBu	nit		
10 0.0 30.00		F	Freq.		Rea L	adin eve	ig I	Fac	rect ctor	m (dBu	ent		nit V/m)	Over	Detec
10 0.0 30.00		F	Freq. MHz	5	Rea L (dl	adin eve ^{BuV)}	ig I	Fac (dB	rect ctor 2/m) 28	m (dBu) 31	ent V/m)	(dBu	nit ∨/m) 50	Over (dB)	Detec
10 0.0 30.00 NO.		F 154.	60 Freq. MHz 603 2148	5	Rea L (dl 52 48	adin eve BuV) 2.95	ig I	Fac (dB -21.	rect ctor /m) 28 64	m (dBu) 31 31	ent V/m) .67	(dBu) 43.	nit ∨/m) 50 50	Over (dB) -11.83	Detec
10 0.0 30.00 NO. 1 2		F 1 154. 208.	бо req. ИНz 603 2148 7457	5	Rea L (dl 52 48 55	adin eve BuV) 2.95 3.91	ig I	Fac (dB -21. -17.	rect ctor 28 64 46	m (dBu) 31 31 40	ent V/m) .67 .27	(dBu) 43. 43.	nit V/m) 50 50	Over (dB) -11.83 -12.23	Detec
10 0.0 30.00 NO. 1 2 3 4		F 154. 208. 264.	6034 6034 7457	5	Rea L (dl 52 48 55 44	adin eve BuV) 2.95 3.91 5.52	ig I	Fac (dB -21. -17. -15.	rect ctor 28 64 46 94	m (dBu) 31 31 40 31	ent V/m) .67 .27 .06	(dBu) 43. 43. 43.	nit V/m) 50 50 00	Over (dB) -11.83 -12.23 -5.94	Detec


Note:

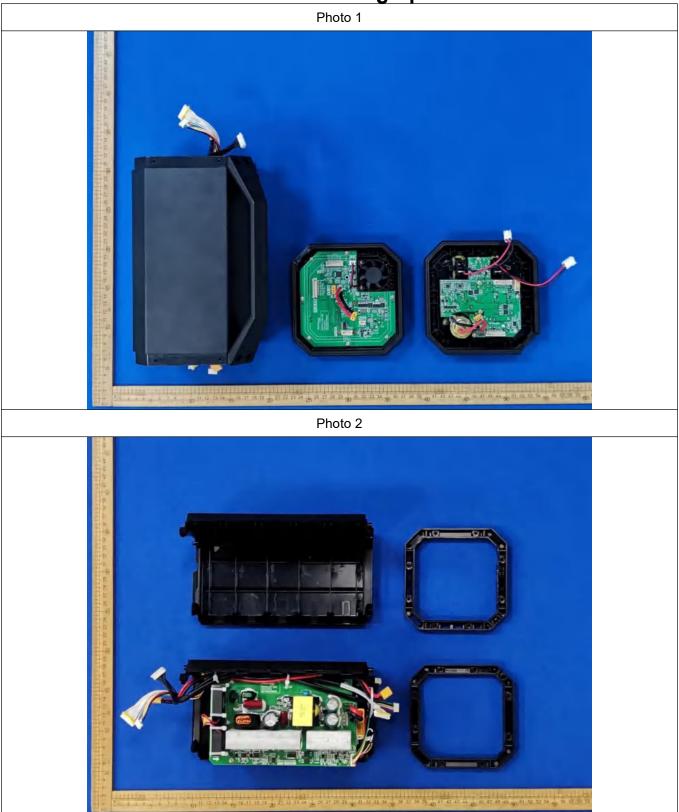
1. 30MHz-1GHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. 2.Pre-scan Full load,Half load,Null load, and found Full load which it is worse case, so only show the test data for worse case (Mode 1)

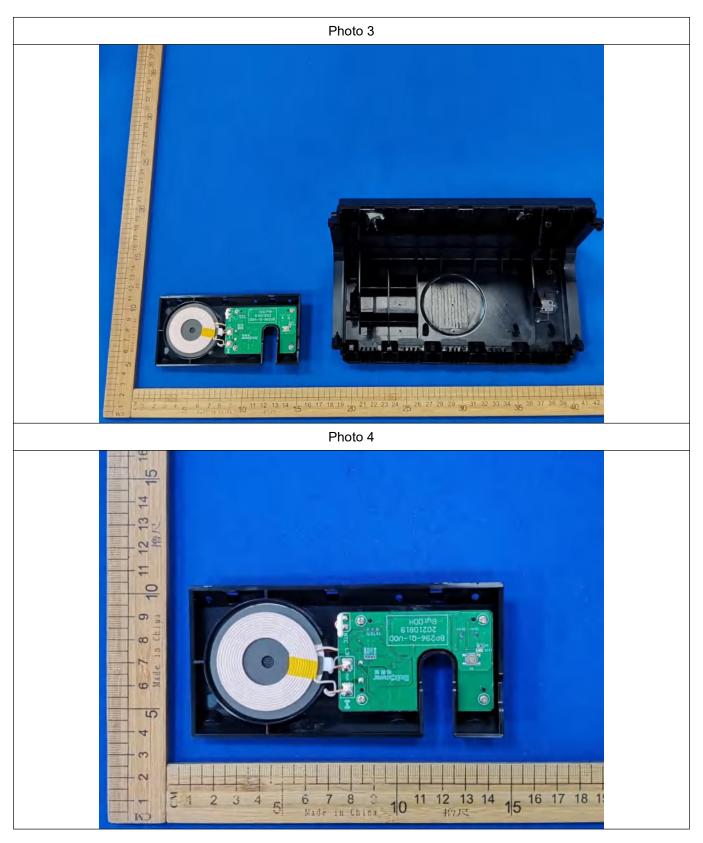

TRF No. Part 15 Subpart C Section 15.207_R1

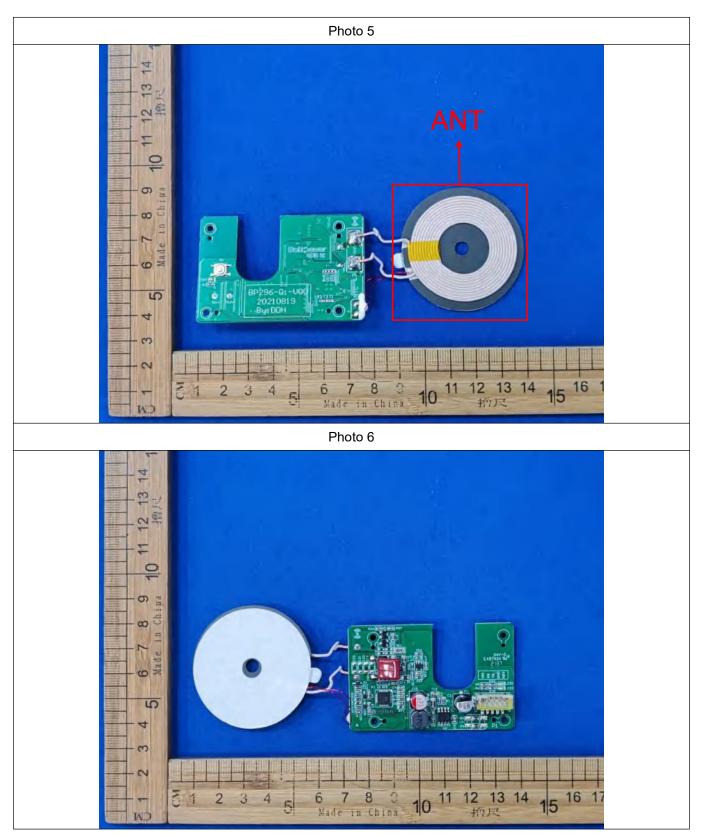
5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

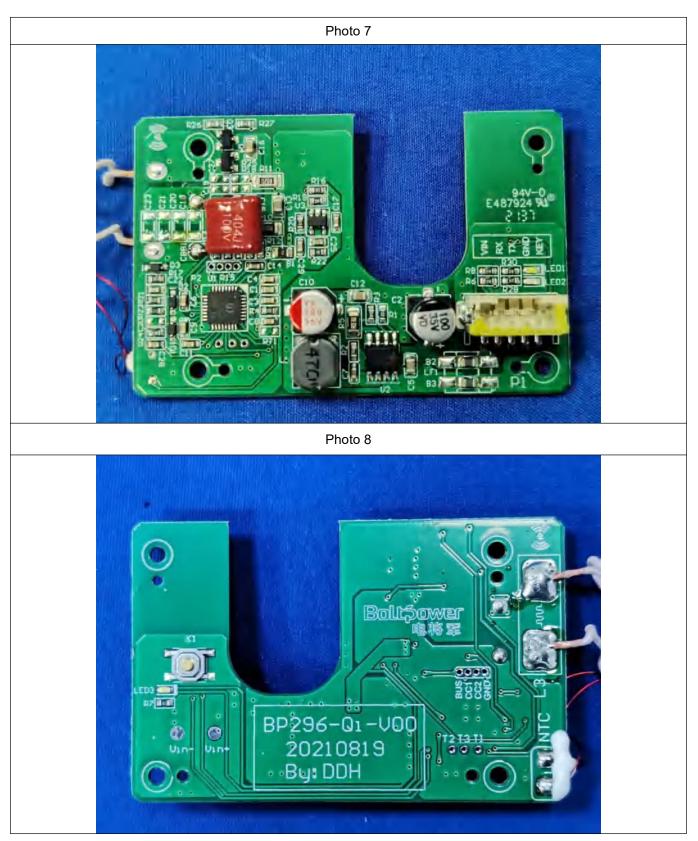
External Photographs

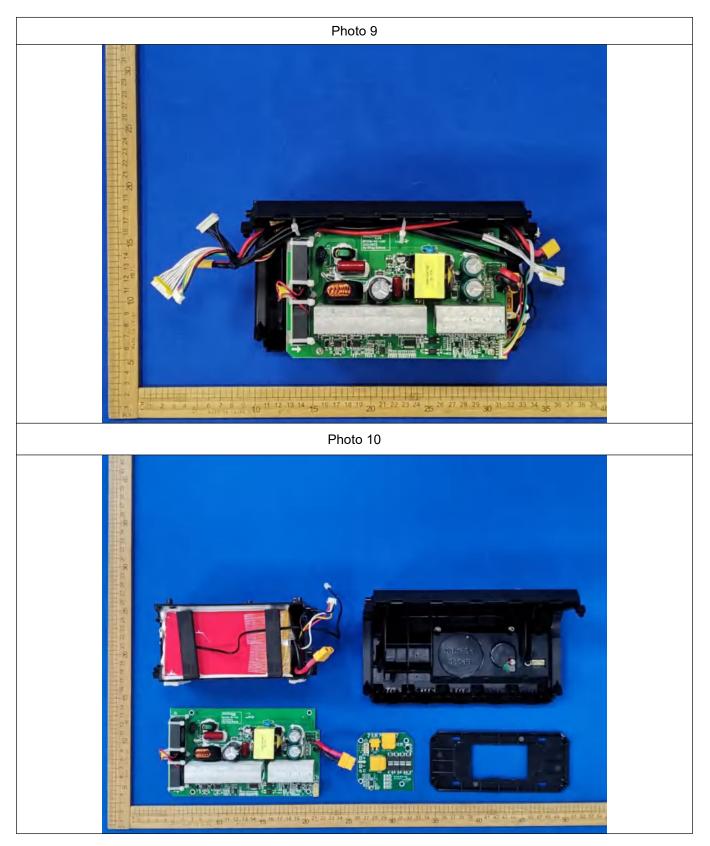
Photo 1 (((+))) Photo 2 8 0 0 (((+))) WINELESS CHARGING 0 0 11 12

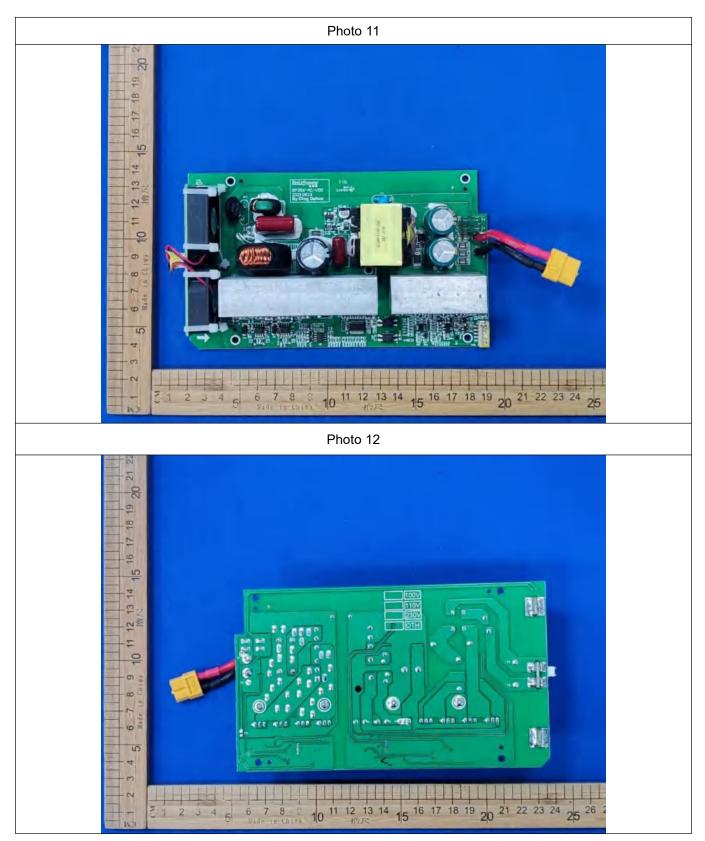


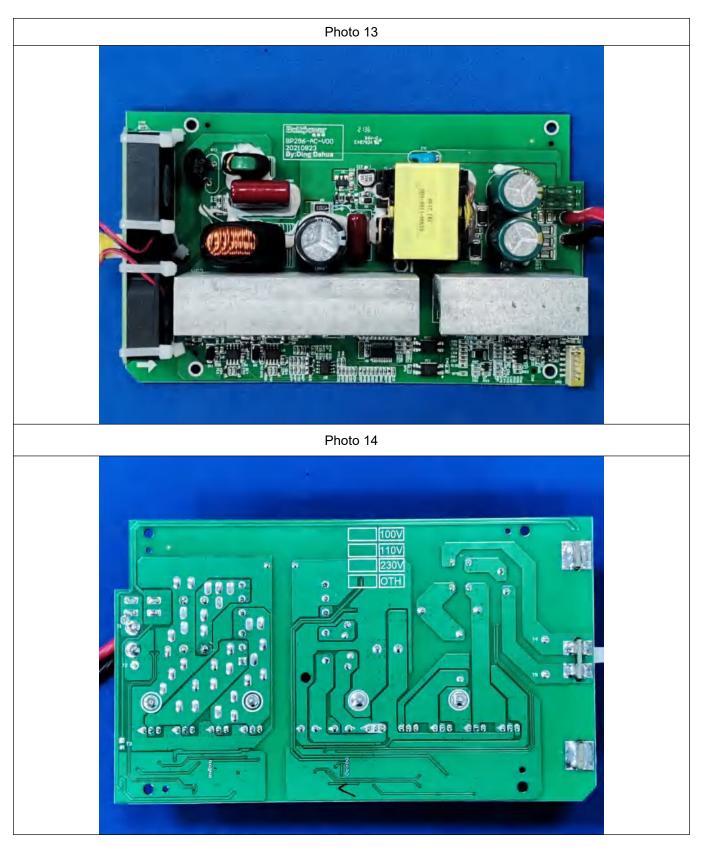


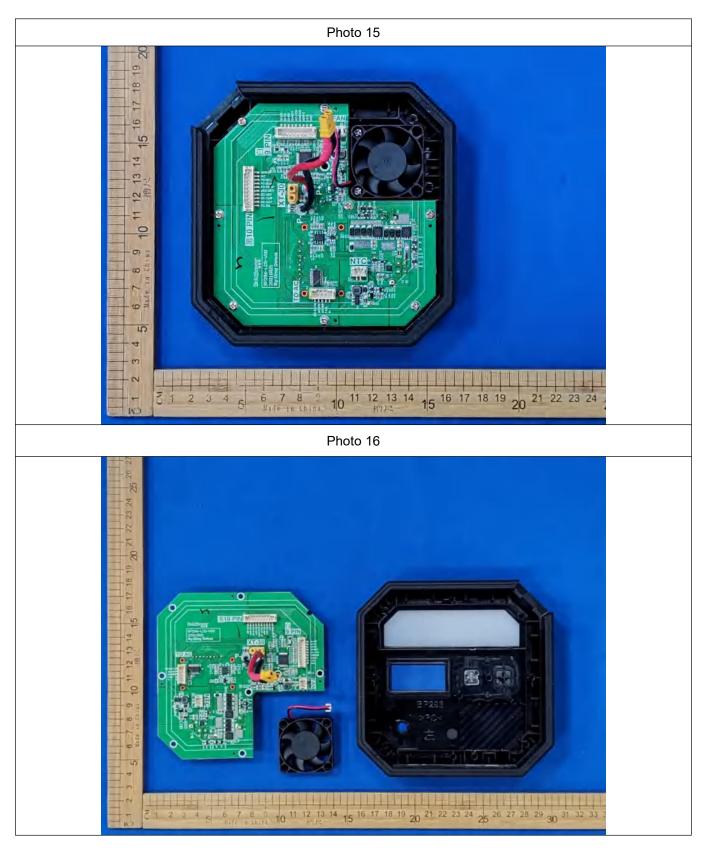

Internal Photographs

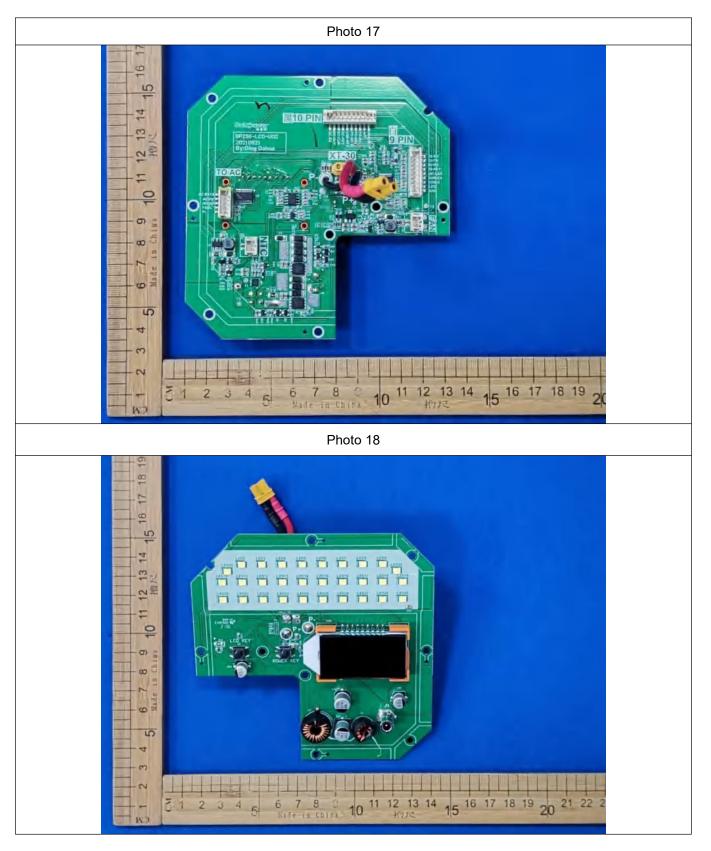


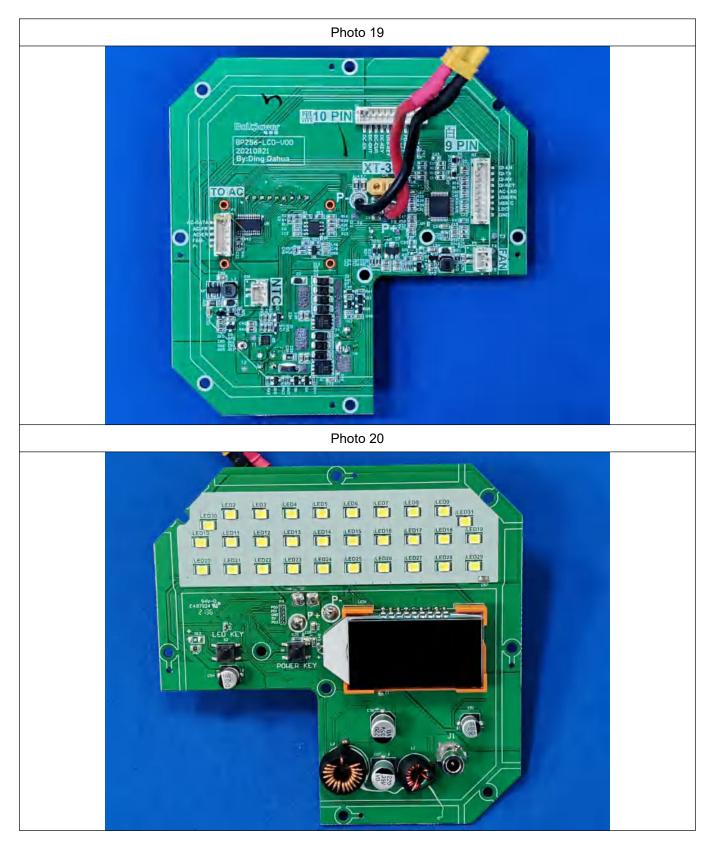


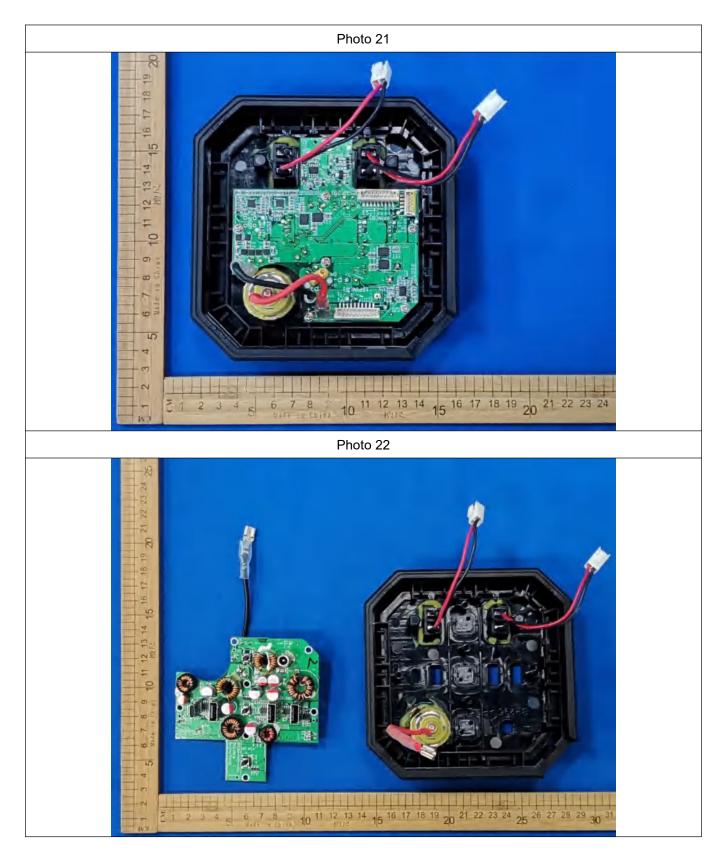


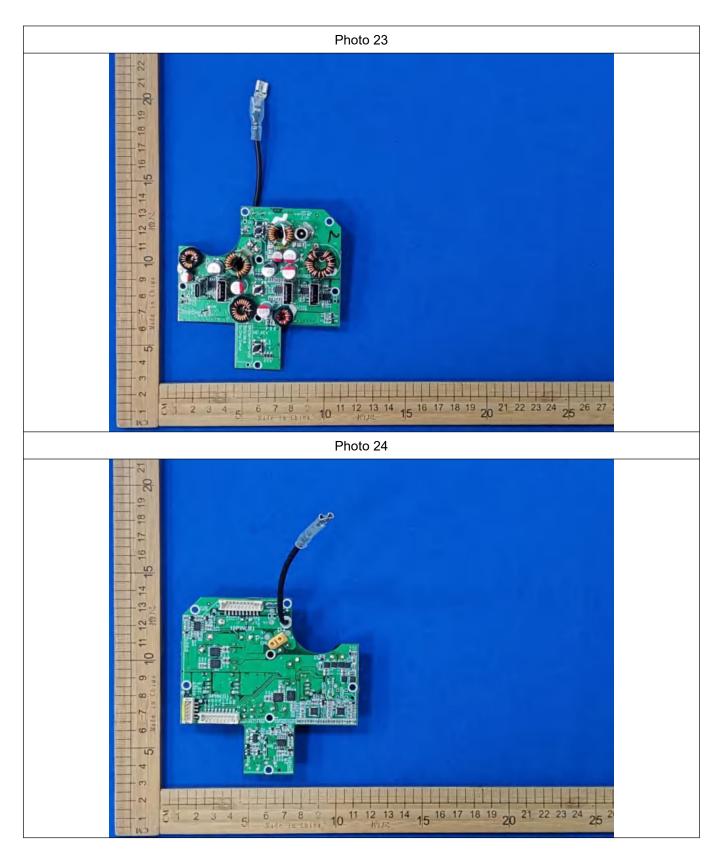


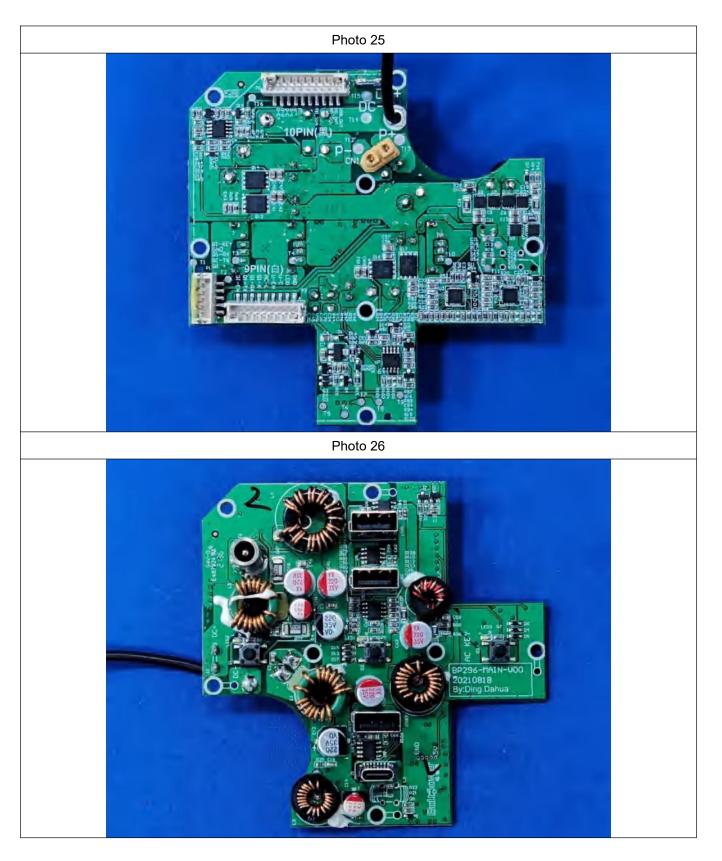












--THE END--