

Report No.:SZ12030070W01

FCC TEST REPORT

Issued to

Brightstar.Corp

For

GSM Telephone

Model Name:

Avvio 199S, Avvio 299S

Trade Name:

Avvio

Brand Name:

Avvio

FCC ID:

WVBAX99S

Standard:

47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

Test date:

2012-3-13 to 2012-3-29

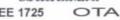
Issue date:

2012-3-29

Shenzhen Morlah ology Co., Ltd.

Tested by Zhomey Yom

Zhang Yan

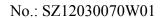

Date

Reviewed by Wu Yum.

Wu Xuewen

2012.03.78 Date

電訊管理局



The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it .or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

	TABLE OF CONTENTS
1.	GENERAL INFORMATION
1.1	EUT Description
1.2	Test Standards and Results
1.3	Facilities and Accreditations5
2.	47 CFR PART 2, PART 22H & 24E REQUIREMENTS6
2.1	Conducted RF Output Power6
2.2	99% Occupied Bandwidth11
2.3	Frequency Stability15
2.4	Conducted Out of Band Emissions
2.5	Band Edge
2.6	Transmitter Radiated Power (EIRP/ERP)28
2.7	Radiated Out of Band Emissions32

	Change History							
Issue	Date	Reason for change						
1.0	Mar 29, 2012	First edition						

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type GSM Telephone

Serial No. (n.a, marked #1 by test site)

Hardware Version 2212-1-10

Software Version TECO G65 V001 20120223 ENG POR SPA

Applicant Brightstar.Corp

9725 NW 117th Avenue, #300 Miam i, FL 33178

Manufacturer SHENZHEN UNITED TIME TECHNOLOGY CO.,LTD..

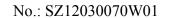
Room 1001 Microprofit Building,6 Ga oxin south Road, High-Tech

Park, Nanshan district ,Shenzhen, P.R. China.

Frequency Range GSM 850MHz:

Tx: 824.20 - 848.80MHz (at intervals of 200kHz);

Rx: 869.20 - 893.80MHz (at intervals of 200kHz)


GSM 1900MHz:

Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);

Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)

Modulation Type..... GSM Mode with GMSK Modulation

- Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the form—ula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).
- Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the for mula F(n) =1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel num bers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- Note 3: They are two SIM slot in mobile phone, that all same in software and hardware and use the same RF module. We tested both slots and only the worst SIM card test results were recroded in this test report.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 and Part 24 for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio T reaty Matters;
	(10-1-09 Edition)	General Rules and Regulations
2	47 CFR Part 22	Public Mobile Services
	(10-1-09 Edition)	
3	47 CFR Part 24	Personal Communications Services
	(10-1-09 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	2.1046	Conducted RF Output Power	PASS
2	2.1049	99% Occupied Bandwidth	PASS
3 2.1	055	Frequency Stability	PASS
	22.355		
	24.235		
4 2.1	051	Conducted Out of Band Emissions	PASS
	2.1057		
	22.917		
	24.238		
5 2.1	051	Band Edge	PASS
	2.1057		
	22.917		
	24.238		
6 22.	913	Transmitter Radiated Power (EIPR/ERP)	PASS
	24.232		
7 2.1	053	Radiated Out of Band Emissions	PASS
	2.1057		
	22.917		
	24.238		

NOTE: Measurement method according to TIA/EIA 603.D-2010

1.3 Facilities and Accreditations

1.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing or ganization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

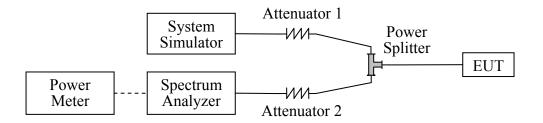
All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test seconstructed in conformance with the requesting rements of ANSI C63.7, ANSI C63.4 and Collection 22; the FCC registration number is 741109.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR PART 2, PART 22H & 24E REQUIREMENTS


2.1 Conducted RF Output Power

2.1.1 Requirement

According to FCC section 2.1046(a), for tran smitters oth er than sin gle sideban d, independ ent sideband and controlled carrier ra diotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2 Test Description

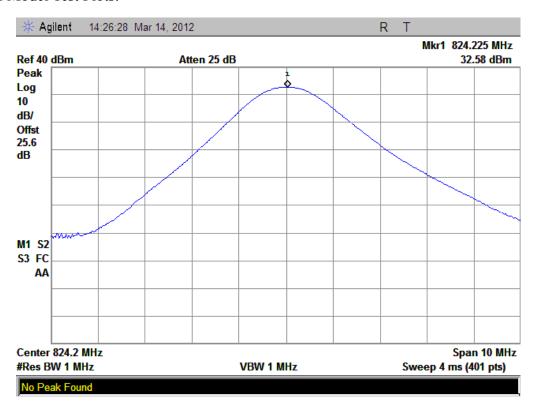
1. Test Setup:

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss—as the factor is calibrated to correct the reading. The EUT—is commanded by the SS to operate at the maximum output power i.e. Power Control L evel (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

The Power Meter was just used for the Conducted RF Output Power test of WCDMA Model.

2. Equipments List:

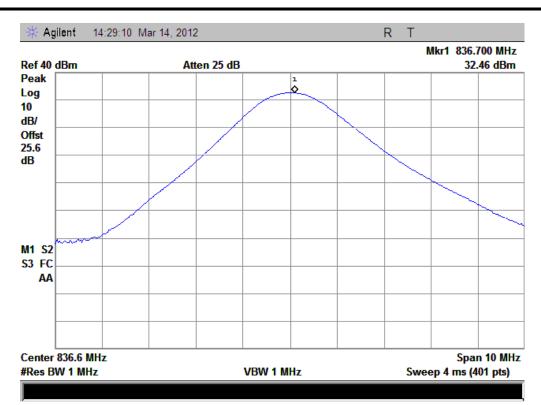
Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2011.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2011.05
Power Meter	Agilent	E4418B	GB43318055	2011.05
Power Splitter	Weinschel	1506A	NW521	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)

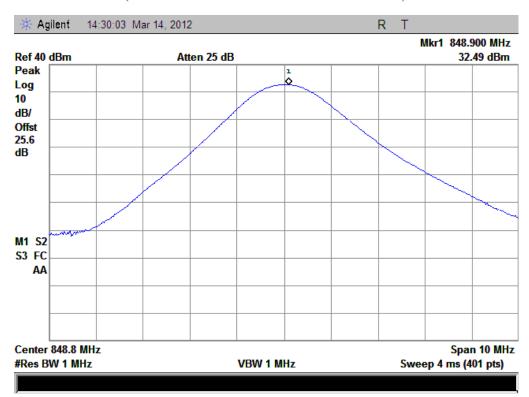

2.1.3 Test Results

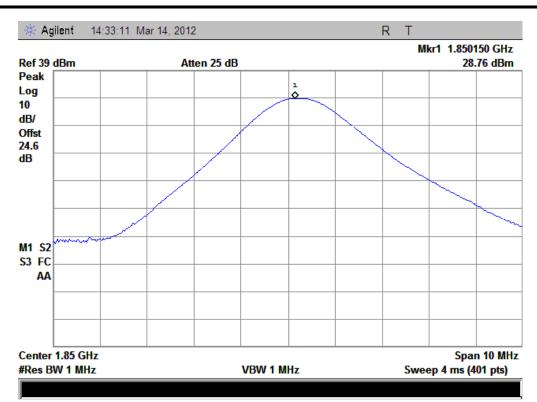
Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

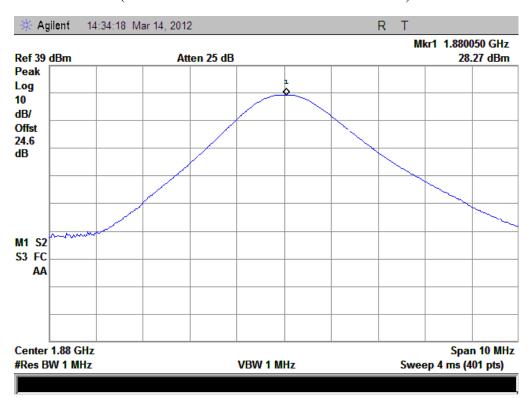
1. GSM Model Test Verdict:

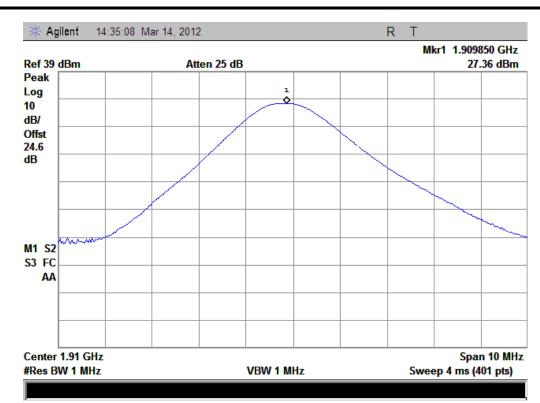
Band	Channel	Frequency	ency Measured Output Power		Limit	Verdict
Dallu	Chamie	(MHz)	dBm	Refer to Plot	dBm	verdict
CCM	128 824	2	32.58			PASS
GSM 850MHz	190 836	6	32.46	Plot A1 to A3	35	PASS
	251 848	8	32.49			PASS
CCM	512 185	0.2	28.76			PASS
GSM 1900MHz	661 188	0.0	28.27	Plot B1 to B3	32	PASS
1900MHZ	810 190	9.8	27.36			PASS


2. GSM Model Test Plots:


(Plot A1: GSM 850MHz Channel = 128)


(Plot A2: GSM 850MHz Channel = 190)


(Plot A3: GSM 850MHz Channel = 251)


(Plot B1: GSM 1900MHz Channel = 512)

(Plot B2: GSM 1900MHz Channel = 661)

(Plot B3: GSM 1900MHz Channel = 810)

2.2 99% Occupied Bandwidth

2.2.1 Definition

According to FCC section 2.1049, the occupied bandw idth is the frequency bandwidth such that, below its lower and above its upper frequency lim its, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

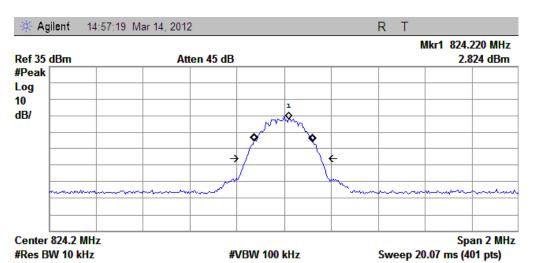
Occupied bandwidth is also known as the 99% emission bandwidth,

2.2.2 Test Description

See section 2.1.2 of this report.

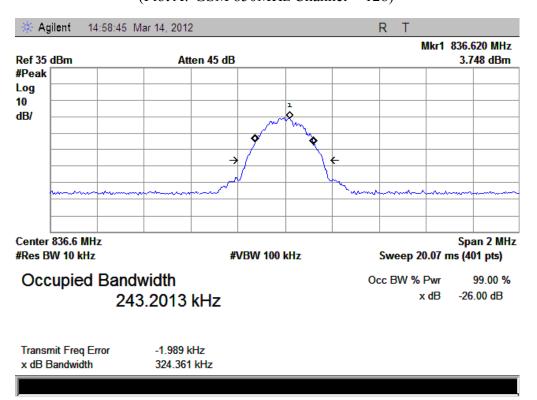
2.2.3 Test Verdict

Here the lowest, m iddle and highest channels are selected to perf orm testing to verify the 9 9% occupied bandwidth.

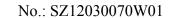

1. Test Verdict:

Band	Channel	Frequency	99% Occupied	Refer to
Danu	Chamiei	(MHz)	Bandwidth	Plot
	128 824	2	247.5346	Plot A
GSM 850MHz	190 836.	6	243.2013	Plot B
	251 848.	8	246.5760	Plot C
	512 1850	0.2	242.0599	Plot D
GSM 1900MHz	661 1880	0.0	242.1315	Plot E
	810 1909	9.8	247.6992	Plot F

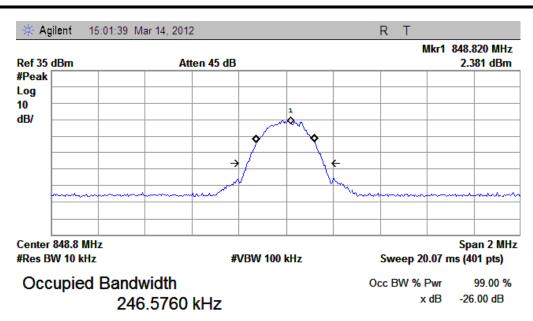
2. Test Plots:



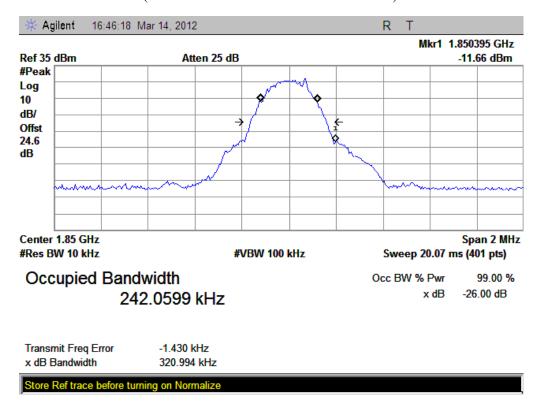
Occupied Bandwidth 247.5346 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

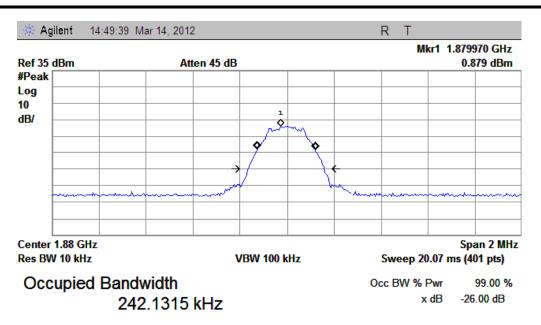
Transmit Freq Error -2.079 kHz x dB Bandwidth 314.493 kHz


(Plot A: GSM 850MHz Channel = 128)

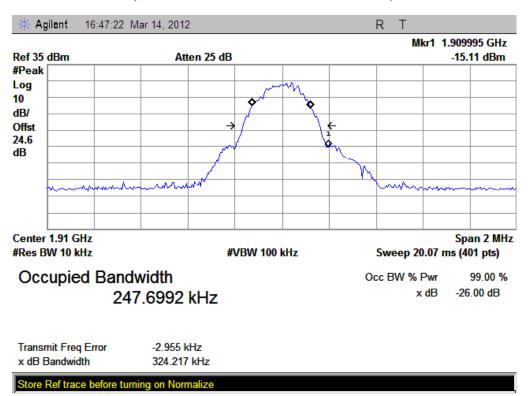
(Plot B: GSM 850MHz Channel = 190)



Transmit Freq Error -1.351 kHz x dB Bandwidth 320.583 kHz


(Plot C: GSM 850MHz Channel = 251)

(Plot D: GSM 1900MHz Channel = 512)

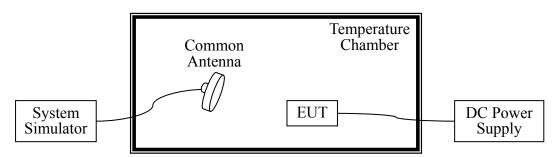


Transmit Freq Error -2.509 kHz x dB Bandwidth 320.682 kHz

(Plot E: GSM 1900MHz Channel = 661)

(Plot F: GSM 1900MHz Channel = 810)

2.3 Frequency Stability

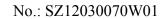

2.3.1 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundam ental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.3.2 Test Description

1. Test Setup:


The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2011.05
DC Power Supply	Good Will	GPS-3030DD	EF920938	2011.05
Temperature	YinHe Experim ental	HL4003T (n.a.)		2011.05
Chamber	Equip.			

2.3.3 Test Verdict

The nominal, highest and lowest extrem e vol tages are s eparately 3.7VDC, 4.2VDC and 3.4VDC, which are s pecified by the applicant; the normal temperature here used is 25°C. The frequency

deviation limit of 850MHz band is $\pm 2.5 ppm$, and 1900MHz is $\pm 1 ppm$

1. GSM 850MHz Band

Test (Conditions		Frequency Deviation					
Power (VDC)	Temperature		el = 128 2MHz)		el = 190 6MHz)		nel = 251 .8MHz)	Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30 10.18			-9.52		-7.13		
	-20 -1	1.17	±2060.5	18.70		7.49		
	-10 23.28			-11.09		0.19		P ASS
	0 -3.03			21.06		34.30		
3.7	+10 -3.03			13	13.07 22.99			
	+20 -1	1.32		-15.76	±2091.5	-16.58	±2122 P	
	+30 27.75)		-2.05		19.46		
	+40 5.31			-3.77		-6.80		
	+50 -20.1	8		5.39		7.58		
4.2 +2	5	23.74		19.65		23.11		
3.4 +2	5	25.29		-20.70		-14.93		

2. GSM 1900MHz Band

Test Conditions		Frequency Deviation						
Power	Temperatur		Channel = 512 (1850.2MHz)		Channel = 661 (1880.0MHz)		Channel = 810 (1909.8MHz)	
(VDC)	e (°C)	(`		`		
		Hz	Limits	Hz	Limits	Hz	Limits	
	-30 27.12	2		21.02		25.47		
	-20 21.33	3		32.08		36.73		ASS
	-10 -17.5	5	±1850.2	20.65		-5.51	±1909.8 P	
	0 -21.75			-3.82		22.29		
3.7	+10 -18.7	16		42.75		41.22		
	+20 32.5	4		-2.32	±1880.0	-8.03		
	+30 -18.8	39		23.12		-11.01		
	+40 24.19	9		11.33		0.52		
	+50 40.72	2		-17.55		25.40		
4.2 +2	5	19.15		38.10		-6.06		
3.4 +2	5	32.34		-22.06		-21.86		

2.4 Conducted Out of Band Emissions

2.4.1 Requirement

According to FCC section 22.917(a) and FCC s ection 24.238(a), the power of any emission outside of the authorized operating frequency ranges m ust be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

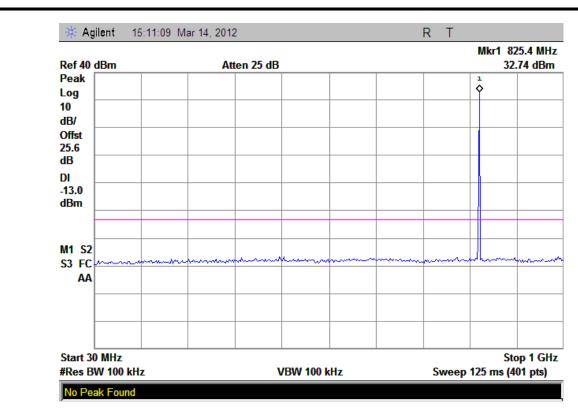
2.4.2 Test Description

See section 2.1.2 of this report.

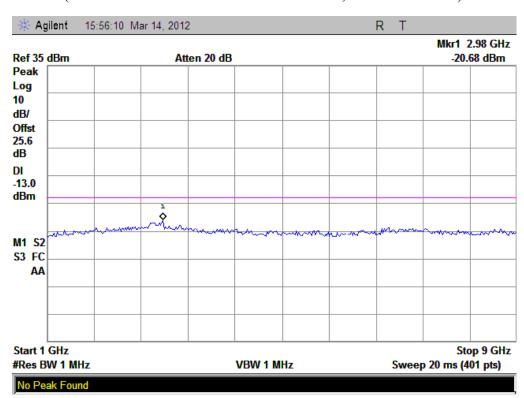
2.4.3 Test Result

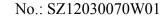
The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

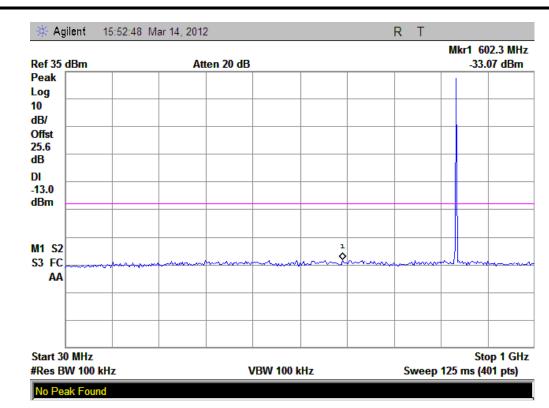
1. Test Verdict:

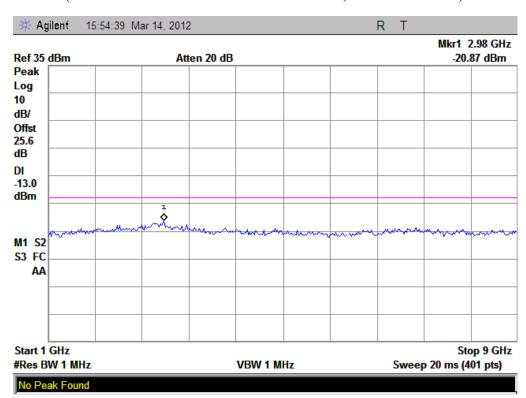

Band	Channe 1	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdic t
GSM	128 82	4.2	-20.68	Plot A1toA1.1		PASS
850MHz	190 83	6.6	-20.87	Plot A2toA2.1	-13	PASS
830MITZ	251 84	8.8	-18.36	Plot A3toA3.1		PASS
CCM	512 18	50.2	-22.19	Plot B1toB1.1		PASS
GSM 1900MHz	661 18	80.0	-21.56	Plot B2toB2.1	-13	PASS
1900MITZ	810 19	09.8	-21.94	Plot B3toB3.1		PASS

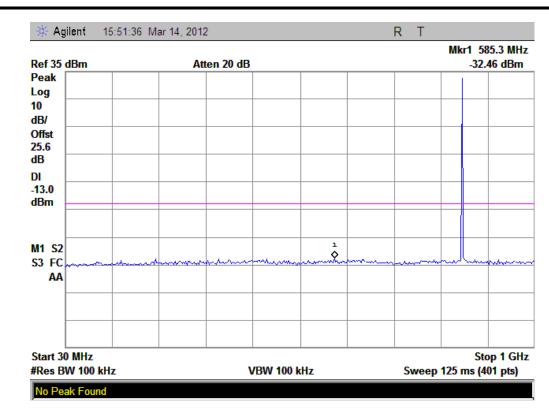
2. Test Plots for the Whole Measurement Frequency Range:

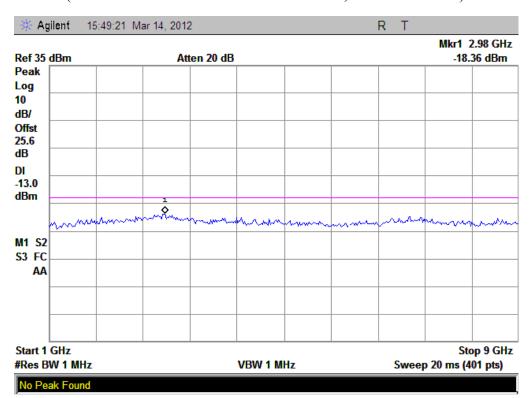

Note: the power of the EUT transmitting frequency should be ignored.

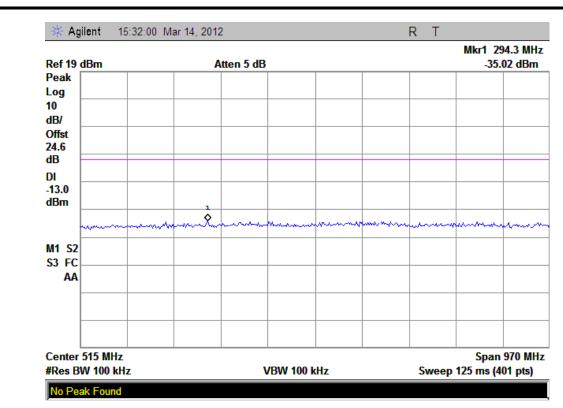


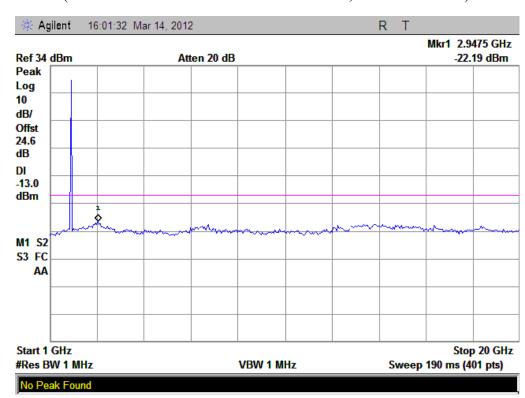

(Plot A1: GSM 850MHz Channel = 128, 30MHz to 1GHz)

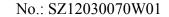

(Plot A1.1: GSM 850MHz Channel = 128, 1GHz to 9GHz)

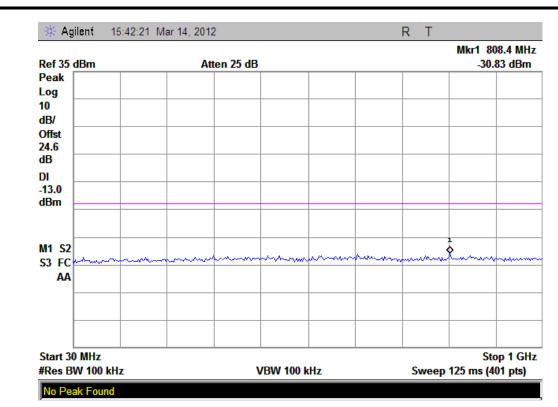

(Plot A2: GSM 850MHz Channel = 190, 30MHz to 1GHz)

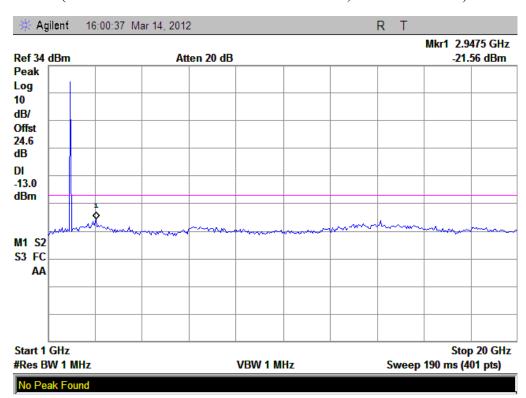

(Plot A2.1: GSM 850MHz Channel = 190, 1GHz to 9GHz)

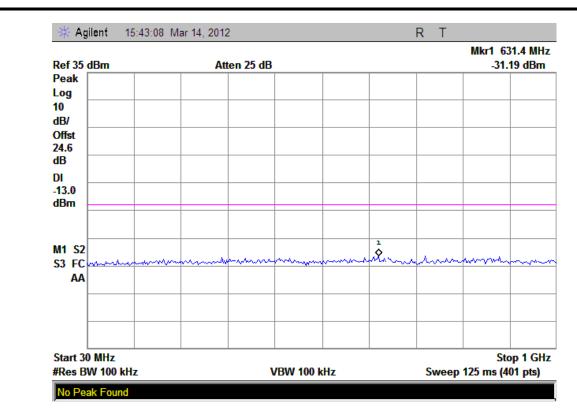

(Plot A3: GSM 850MHz Channel = 251, 30MHz to 1GHz)

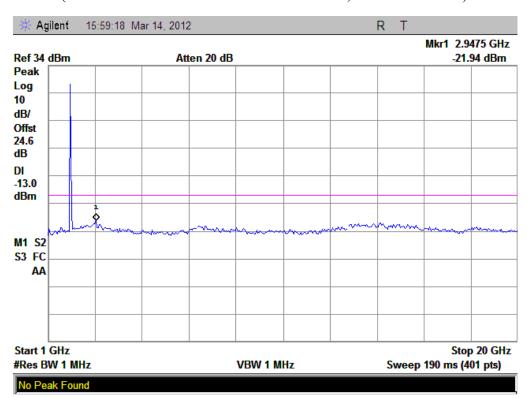

(Plot A3.1: GSM 850MHz Channel = 251, 1GHz to 9GHz)




(Plot B1: GSM 1900MHz Channel = 512, 30MHz to 1GHz)


(Plot B1.1: GSM 1900MHz Channel = 512, 1GHz to 20GHz)


(Plot B2: GSM 1900MHz Channel = 661, 30MHz to 1GHz)


(Plot B2.1: GSM 1900MHz Channel = 661, 1GHz to 20GHz)

(Plot B3: GSM 1900MHz Channel = 810, 30MHz to 1GHz)

(Plot B3.1: GSM 1900MHz Channel = 810, 1GHz to 20GHz)

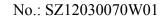
2.5 Band Edge

2.5.1 Requirement

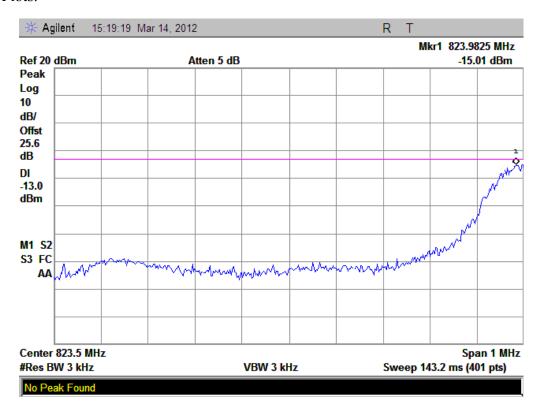
According to FCC section 22.917(b) and FCC sect ion 24.238(b), in the 1MHz bands imm ediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26 dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.5.2 Test Description

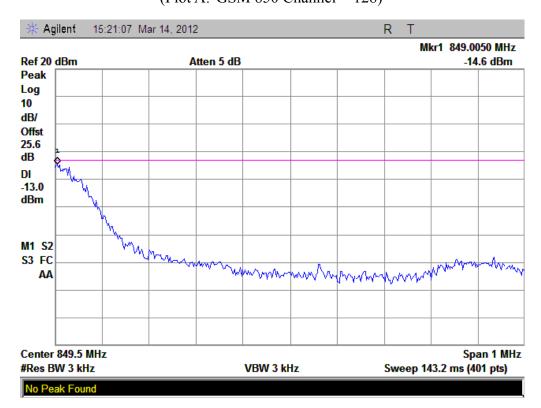
See section 2.1.2 of this report.

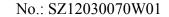

2.5.3 Test Result

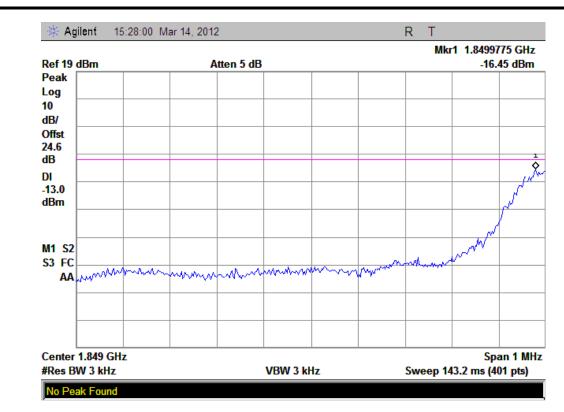
The lowest and highest channels are tested to verify the band edge emissions.

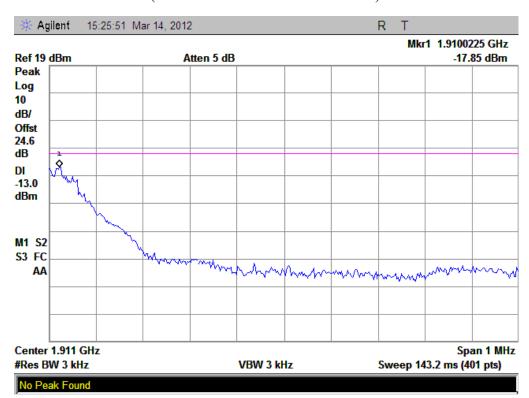

1. Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Band Edge Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM	128 824	4.2	-15.01	Plat A	-13	PASS
850MHz	251 848	3.8	-14.60	Plot B	-13	PASS
GSM	512 183	50.2	-16.45	Plat C	-13	PASS
1900MHz	810 190	9.8	-17.85	Plot D	-13	PASS



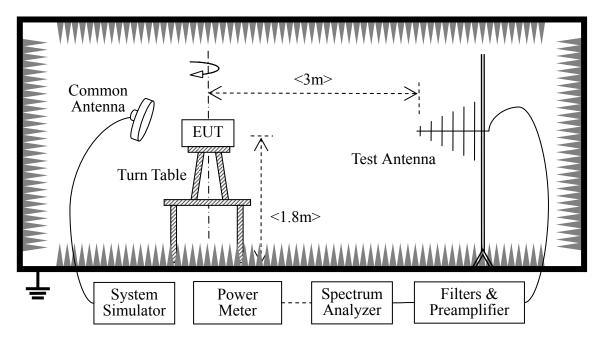

2. Test Plots:


(Plot A: GSM 850 Channel = 128)


(Plot B: GSM 850 Channel = 251)

(Plot C: GSM 1900 Channel = 512)

(Plot D: GSM 1900 Channel = 810)


2.6 Transmitter Radiated Power (EIRP/ERP)

2.6.1 Requirement

According to FCC section 22.913, the Ef fective Radi ated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

2.6.2 Test Description

1. Test Setup:

The EUT, which is powered by the Battery char ged with the AC Adapter , is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the E UT and the SS via a Common Antenna. The E UT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850M Hz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded.

- GSM Maximum RF output power: GSM850 32.58dBm, GSM 1900 28.76dBm,
- Step size (dB): 3dB
- Minimum RF power: GSM850 3.2dBm, GSM 1900 0.3dBm

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Ho rn one (used for above 3GHz),

and it's located at the sa me height as the EUT . The Filters consists of Notch Filters and High Pass Filter.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2011.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2011.05
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2011.05
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2011.05
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2011.05

2.6.3 Test Result

The Turn Table is a ctuated to turn from 0° to 360° , and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST TX} is signal generator level,

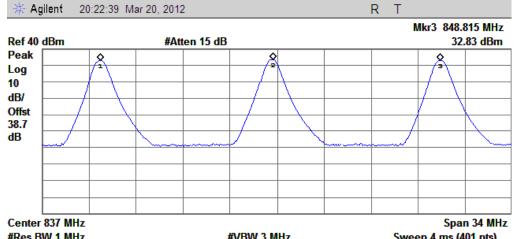
P_{SUBST RX} is receiver level,

L_{SUBST CABLES} is cable losses including TX cable,

 $G_{SUBST_TX_ANT}$ is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

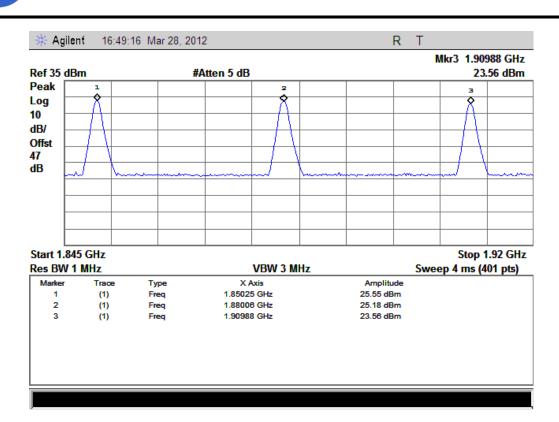
During the test, the data of A $_{TOT}$ was added in the T $_{est}$ Spectrum Analyze, s o Spectrum Analyze reading is the final values which contain the data of A_{TOT} .



1. GSM Model Test Verdict:

Band	Channel	Frequency	Frequency	Frequency PCL Measured ERP		ERP	Limit		Verdict
Dallu	Chamilei	(MHz)	PCL	dBm	W	Refer to Plot	dBm	W	verdict
CCM	128 824	.20	5	32.79	1.901078				PASS
GSM 850MHz	190 836	.60	5	33.31	2.142891	Plot A	38.5 7	7	PASS
	251 848	.80	5	32.83	1.918669				PASS

Band	Channal	Frequency PCL		Measured EIRP			Limit		
Dalla	Channel	(MHz)	PCL	dBm	W	Refer to Plot	dBm	W	Verdict
GSM 1900MHz	512 185	0.2	0	25.55	0.358922	Plot B	33 2		PASS
	661 188	0.0	0	25.18	0.329610			2	PASS
	810 190	9.8	0	23.56	0.226986				PASS


2. Test Plots:

Res BW 1 MHz			#VBW 3 MHz	Sweep 4 ms (401 pts)	
Marker	Trace	Type	X Axis	Amplitude	
1	(1)	Freq	824.250 MHz	32.79 dBm	
2	(1)	Freq	836.660 MHz	33.31 dBm	
3	(1)	Freq	848.815 MHz	32.83 dBm	

(Plot A: GSM 850MHz Channel = 128, 190, 251)

(Plot B: GSM 1900MHz Channel = 512, 661, 810)

2.7 Radiated Out of Band Emissions

2.7.1 Requirement

According to FCC section 22.917(a) and section 24.238(a), the power of any emission outside of the authorized operating f requency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.7.2 Test Description

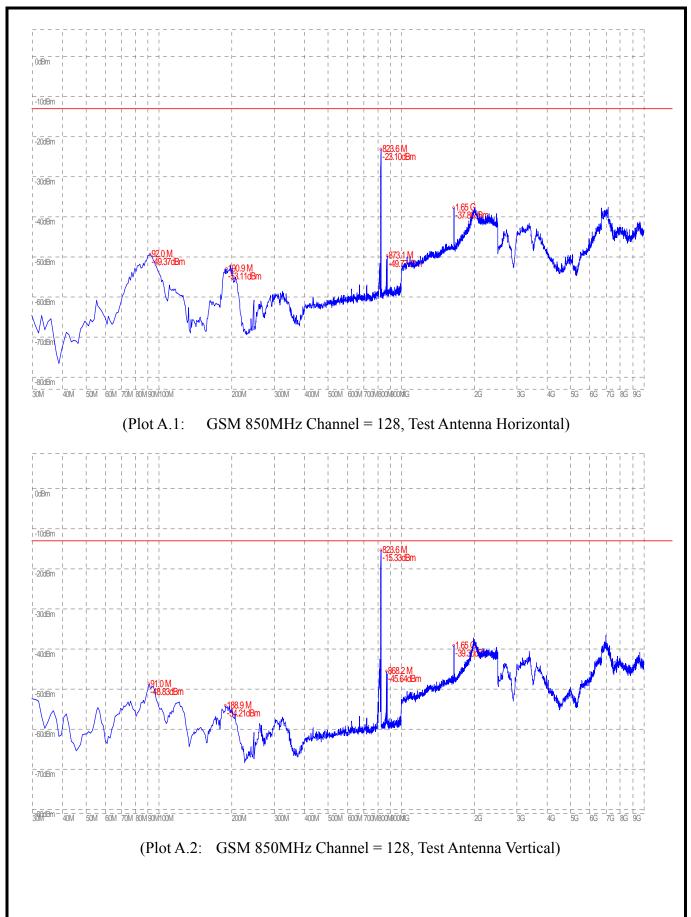
See section 2.6.2 of this report.

Note: when doing m easurements above 1GHz, the EU T has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.7.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is a ctuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

1. Test Verdict:


Band	Channe 1	Frequenc y (MHz)		ax. Spurious n (dBm)		T: :/	Verdict
			Test Antenna	Test Antenna	Refer to Plot	Limit (dBm)	
			Horizontal	Vertical			
CCM	128	824.2	< -25	< -25	Plot A.1/A.2		PASS
GSM 850MHz	190	836.6	< -25	< -25	Plot A.3/A.4	-13	PASS
830MITZ	251	848.8	< -25	< -25	Plot A.5/A.6		PASS
CCM	512	1850.2	< -25	< -25	Plot B.1/B.2		PASS
GSM 1900MHz	661	1880.0	< -25	< -25	Plot B.3/B.4	-13	PASS
	810	1909.8	< -25	< -25	Plot B.5/B.6		PASS

2. Test Plots for the Whole Measurement Frequency Range:

Note: the power of the EUT transmitting frequency should be ignored.

