

FCC RF Test Report

APPLICANT :	Brightstar Corporation
EQUIPMENT :	Mobile Phone
BRAND NAME :	Αννίο
MODEL NAME :	Avvio L800S,Avvio L800
FCC ID :	WVBAL800X
STANDARD :	FCC Part 15 Subpart C §15.247
CLASSIFICATION :	(DTS) Digital Transmission System

The product was received on Aug. 05, 2015 and testing was completed on Sep. 06, 2015. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

La

Reviewed by: Joseph Lin / Supervisor

Jones Tsur

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC. 1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID : WVBAL800X Page Number: 1 of 43Report Issued Date: Sep. 15, 2015Report Version: Rev. 01

TABLE OF CONTENTS

SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	result	12
	3.1	6dB Bandwidth Measurement	12
	3.2	Peak Output Power Measurement	15
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	23
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	41
4	LIST	OF MEASURING EQUIPMENT	42
5	UNC	ERTAINTY OF EVALUATION	43
AP	PEND	IX A. RADIATED TEST RESULTS	

APPENDIX B. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR580514B	Rev. 01	Initial issue of report	Sep. 15, 2015

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)(1)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 16.95 dB at 173.560 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.11 dB at 0.410 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Brightstar Corporation

9725 NW 117th Ave., Miami, Florida, FL 33178, United States

1.2 Manufacturer

Heng Da Chuang Xin Technology Limited

Rm14H Taibang Building, 4 Rd. High Tech South, Nanshan, SZ, P. R. C. 518000

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Mobile Phone		
Brand Name	Avvio		
Model Name	Avvio L800S,Avvio L800		
FCC ID	WVBAL800X		
	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+/DC-HSDPA/LTE/		
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n HT20/HT40/		
	Bluetooth v3.0 + EDR/Bluetooth v4.0 LE		
	Conducted: 358151060000352		
IMEI Code	Conduction: 358151060000311		
	Radiation: 358151060000345		
HW Version	M326B		
SW Version	AVVIO_L800_V1_0_1		
EUT Stage	Production Unit		

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- **2.** The difference of the two samples (Model Name: Avvio L800S, Avvio L800): Avvio L800 is single SIM card, Avvio L800S is dual SIM card. We only choose dual SIM sample to perform full tests.

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard		
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz	
Number of Channels	40	
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)	
Maximum Output Power to Antenna	-2.25 dBm (0.00060 W)	
Antenna Type	PIFA Antenna with gain -1.00 dBi	
Type of Modulation	Bluetooth LE : GFSK	

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.		
Test Site Location	1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili		
	Town, Nanshan District, Shenzhen, Guangdong, P. R. China		
	TEL: +86-755-8637-9589		
	FAX: +86-755-8637-9595		
Test Site No	Sportor	n Site No.	
Test Site No.	TH01-SZ	CO01-SZ	

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.		
No. 3 Building, the third floor of south, Shahe River west, FengTest Site Locationwarehouse, Nanshan District, Shenzhen, Guangdong, P. R. China			
	TEL: +86-755- 3320-2398		
Test Site No.	Sporton Site No.	FCC Registration No.	
Test She No.	03CH02-SZ	566869	

Note: The test site complies with ANSI C63.4 2009 requirement.

1.7 Applicable Standards

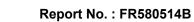
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test


2.1 Descriptions of Test Mode

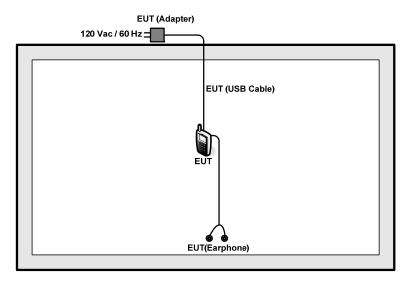
	Frequency	Bluetooth 4.0 – LE RF Output Power
Channel		Data Rate / Modulation
Channel		GFSK
		1Mbps
Ch00	2402MHz	<mark>-2.25</mark> dBm
Ch19	2440MHz	-3.51 dBm
Ch39	2480MHz	-3.32 dBm

The RF output power was recorded in the following table:

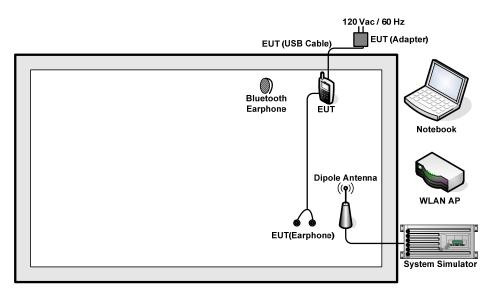
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

b. AC power line Conducted Emission was tested under maximum output power.

2.2 Test Mode


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases			
Test Item	Data Rate / Modulation		
Test item	Bluetooth 4.0 – LE / GFSK		
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps		
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps		
105	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps		
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps		
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps		
105	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps		
AC	Made 1: CSM850 Idle + Division the Link + W/LAN Link + Earphone + LISP Cable		
Conducted	Mode 1: GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable		
Emission	(Charging from Adapter)		
Remark: For Radiated TCs, The tests were performance with Adapter, Earphone, and USB Cable.			



2.3 Connection Diagram of Test System

<Bluetooth 4.0 LE Tx Mode>

<AC Conducted Emission Mode>

2.4	Support Unit	used in test	configuration	and system
A			conniguration	und System

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
3.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Nokia	BH-108	PYAHS-107W	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth v4.0 LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 5 + 10 = 15 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

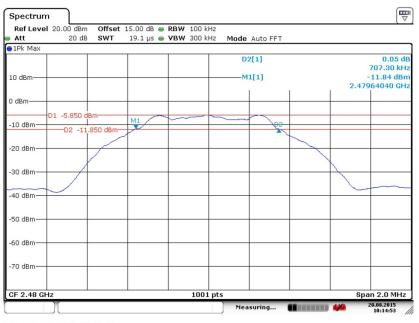

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Test Mode	:	Bluetoot	h 4.0 LE	Temperature :	24~26 ℃		
Test Engineer : Sam Zheng		ng Relative Humidity :		50~53%			
Channel		uency IHz)	6dB Band	lwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail	
00	2	402	0	.699	0.5	Pass	
19	2	440	0	.699	0.5	Pass	
39	2	480	0	.707	0.5	Pass	

6 dB Bandwidth Plot on Channel 00

Date: 20.AUG.2015 09:51:54



6 dB Bandwidth Plot on Channel 19

Date: 20.AUG.2015 10:09:55

6 dB Bandwidth Plot on Channel 39

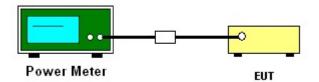
Date: 20.AUG.2015 10:14:54

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL : 86-755-8637-9589 FAX : 86-755-8637-9595 FCC ID : WVBAL800X

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r03 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

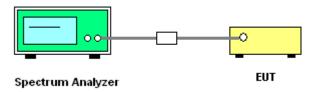
3.2.5 Test Result of Peak Output Power

Test Mode :			Temperature	Temperature : Relative Humidity :		
Test Engineer :			Relative Hum			
			RF Power (dBm)			
Channel	Frequency (MHz)	(GFSK		ax. Limits	
		1	Mbps		(dBm)	Pass/Fail
00	2402		-2.25		30.00	Pass
19	2440		-3.51		30.00	Pass
39	2480		-3.32		30.00	Pass

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

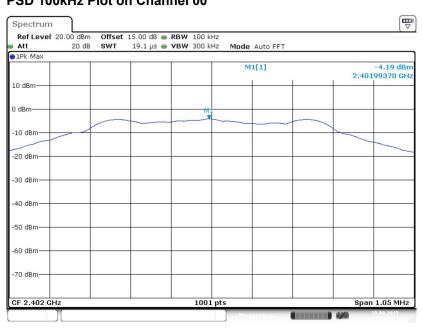
3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

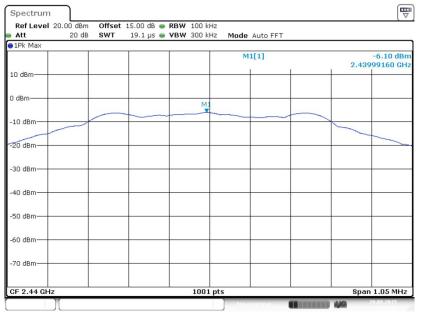
3.3.5 Test Result of Power Spectral Density

Test Mod	le :	Bluetooth 4.0 LE Temperature : 24~26°C				
Test Engineer :Sam ZhengRelative Humidity :50~53%						
Frequency		ncy	Power	Density	Max. Limits	Deco/Ecil
Channel	(MHz)	PSD/100kHz (dBm)	PSD/3kHz (dBm)	(dBm/3kHz)	Pass/Fail
00	2402	2	-4.19	-19.01	8	Pass
19	2440)	-6.10	-20.95	8	Pass
39	2480)	-5.83	-20.62	8	Pass


Note:

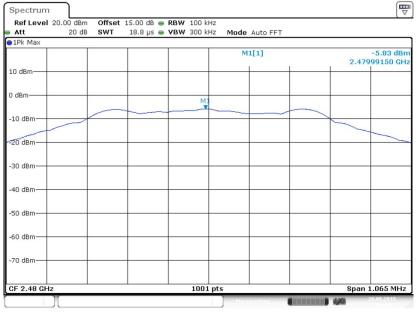
1. Measured power density (dBm) has offset with cable loss.

 The Measured power density (dBm)/ 100kHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

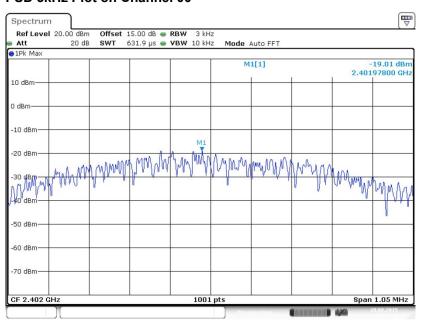

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

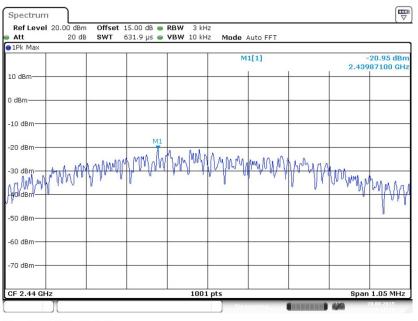
Date: 20.AUG.2015 09:53:49


PSD 100kHz Plot on Channel 19

Date: 20.AUG.2015 10:11:50

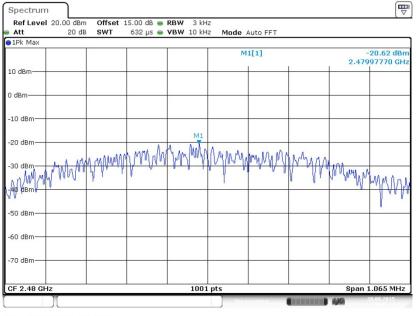

PSD 100kHz Plot on Channel 39

Date: 20.AUG.2015 10:18:39


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 20.AUG.2015 09:52:50


PSD 3kHz Plot on Channel 19

Date: 20.AUG.2015 10:10:18

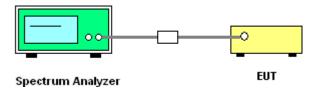
PSD 3kHz Plot on Channel 39

Date: 20.AUG.2015 10:15:15

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

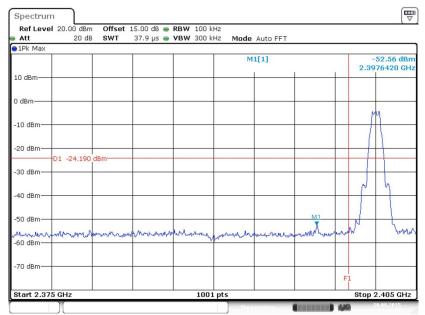

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

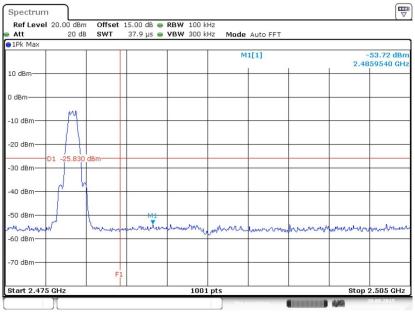
3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup



3.4.5 Test Result of Conducted Band Edges

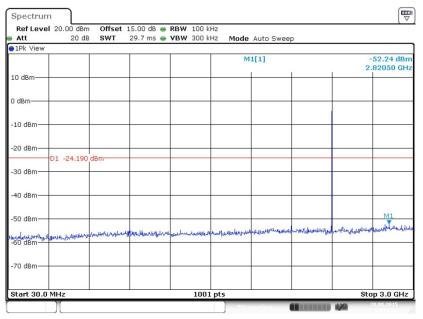

Test Mode :	Bluetooth 4.0 LE	Temperature :	24~26 ℃
Test Channel :	00 and 39	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

Low Band Edge Plot on Channel 00

Date: 20.AUG.2015 09:54:07

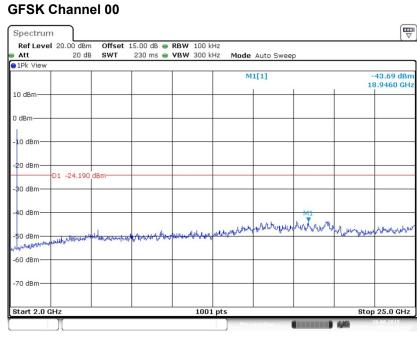
High Band Edge Plot on Channel 39

Date: 20.AUG.2015 10:18:57



3.4.6 Test Result of Conducted Spurious Emission

Test Mode :	Bluetooth 4.0 LE	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

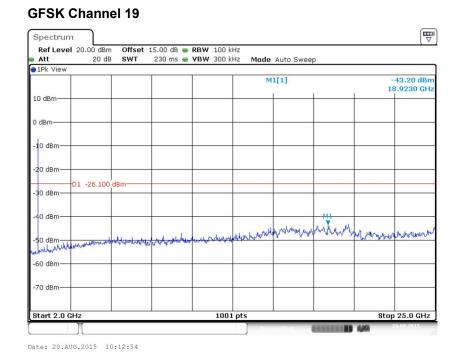
GFSK Channel 00

Date: 20.AUG.2015 09:54:30

Date: 20.AUG.2015 09:54:48

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL : 86-755-8637-9589
FAX : 86-755-8637-9595
FCC ID : WVBAL800X

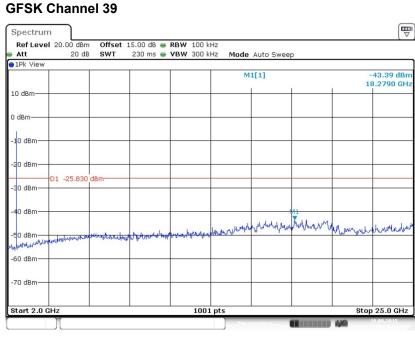
Page Number: 27 of 43Report Issued Date: Sep. 15, 2015Report Version: Rev. 01


Test Mode :	Bluetooth 4.0 LE	Temperature :	24~26 ℃
Test Channel :	19	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

GFSK Channel 19

Ref Level 20.0 Att	20 dB SWT	15.00 dB 👄 1 29.7 ms 👄 1			Auto Sweep)		
1Pk View								
				M	1[1]			-52.31 dBr
10 dBm								2.83830 GH
D dBm								
-10 dBm								
-20 dBm								
	26.100 dBm							
-30 dBm								
-40 dBm								
-50 dBm								M1
-50 dBm	der ought his sol with mark	Unawarahan	ante and the second second	ellope-Uldredussells	wherefilteristations	utorhungen Marshitz	an management	under the production of the second
-ou ubiii								
-70 dBm								
Start 30.0 MHz				L pts				op 3.0 GHz

Date: 20.AUG.2015 10:12:36


Test Mode :	Bluetooth 4.0 LE	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Sam Zheng

GFSK Channel 39

Att	20 dB SWT	29.7 ms 👄	VBW 300 k	Hz Mode	Auto Swee	0		
1Pk View				м	1[1]			-52.42 dBr .85610 GH
10 dBm								-
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm	-25.830 dBm							
40 dBm								
-50 dBm					. In the set		a no ana	M1
olifiel	with the state of	distlipatoriphikeringainskihed	hucherheitheitheitheithe	kongetonerede klassen	hada da manghalafa na manghalaga na manghalaga na manghalaga na manghalaga na manghalaga na manghalaga na mang Na sanghalaga na manghalaga	ularimitetsedia	Aver And	to defense 10. Junio
-70 dBm								

Date: 20.AUG.2015 10:20:46

Date: 20.AUG.2015 10:21:04

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

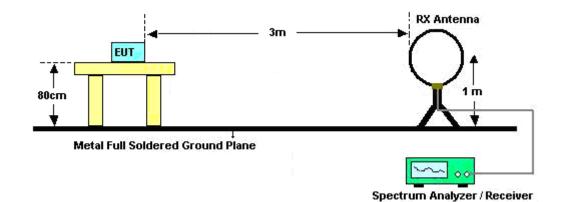
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

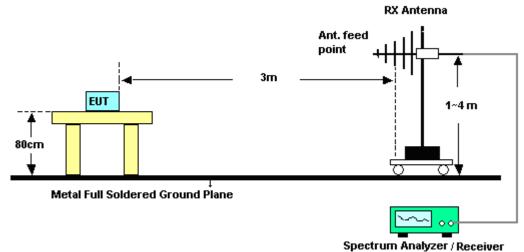
3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

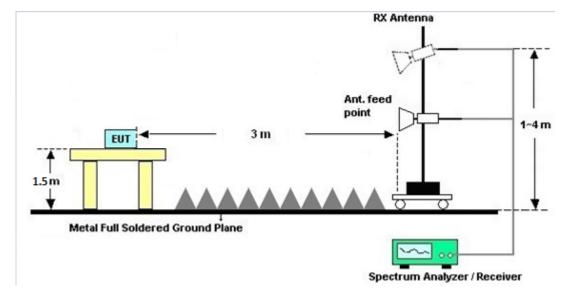
3.5.3 Test Procedures


- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥ 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth 4.0 LE	60.18	0.38	2.65	3kHz


3.5.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

opoor an inageor / Recen

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

3.6 AC Conducted Emission Measurement

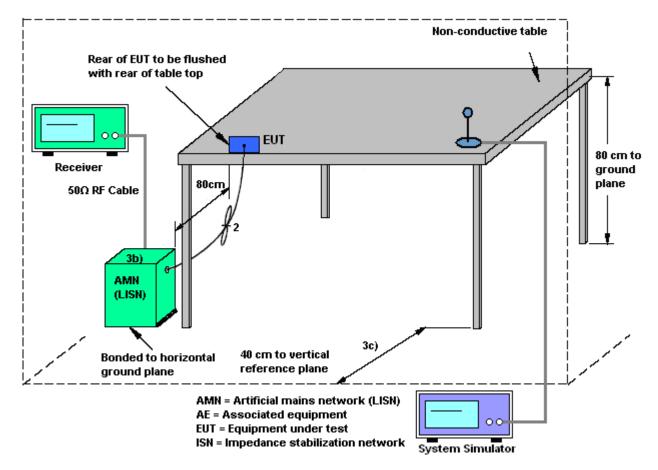
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)						
Frequency of emission (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

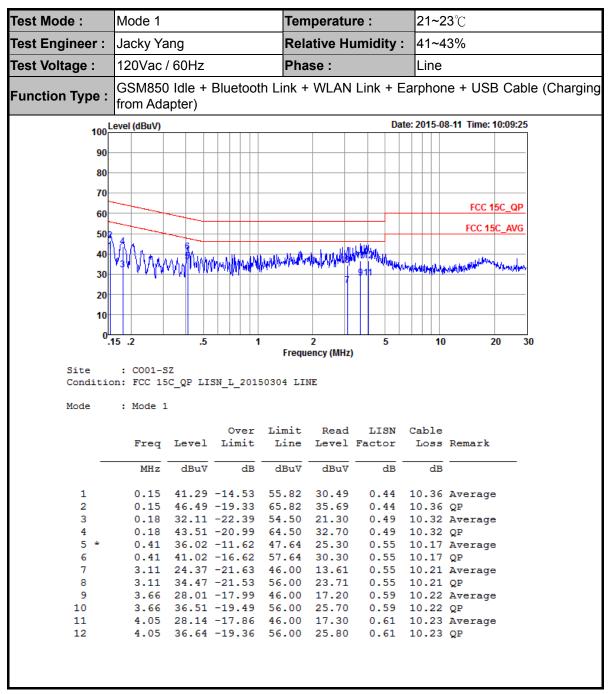
*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



3.6.4 Test Setup



3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Spectrum Analyzer	R&S	FSV40	101078	9kHz~40GHz	May 05, 2015	Aug. 20, 2015	May 04, 2016	Conducted (TH01-SZ)	
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 28, 2015	Aug. 20, 2015	Jan. 27, 2016	Conducted (TH01-SZ)	
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Jan. 28, 2015	Aug. 20, 2015	Jan. 27, 2016	Conducted (TH01-SZ)	
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz; Max 30dBm	Oct. 14, 2014	Sep. 06, 2015	Oct. 13, 2015	Radiation (03CH02-SZ)	
Spectrum Analyzer	R&S	FSV40	101041	10kHz~40GHz; Max 30dBm	Oct. 15, 2014	Sep. 06, 2015	Oct. 14, 2015	Radiation (03CH02-SZ)	
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 06, 2015	Sep. 06, 2015	May 05, 2016	Radiation (03CH02-SZ)	
Bilog Antenna	TeseQ	CBL6112D	23188	30MHz~2GHz	Nov. 07, 2014	Sep. 06, 2015	Nov. 06, 2015	Radiation (03CH02-SZ)	
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1285	1GHz~18GHz	Jan. 20, 2015	Sep. 06, 2015	Jan. 19, 2016	Radiation (03CH02-SZ)	
SHF-EHF Horn	com-power	AH-840	101071	18GHz~40GHz	Sep. 03, 2015	Sep. 06, 2015	Sep. 02, 2016	Radiation (03CH02-SZ)	
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz / 30 dB	Jan. 28, 2015	Sep. 06, 2015	Jan. 27, 2016	Radiation (03CH02-SZ)	
Amplifier	Agilent	8449B	3008A01023	1GHz~26.5GHz	Oct. 29, 2014	Sep. 06, 2015	Oct. 28, 2015	Radiation (03CH02-SZ)	
AC Power Source	Chroma	61601	6160100024 70	N/A	NCR	Sep. 06, 2015	NCR	Radiation (03CH02-SZ)	
Turn Table	Chaintek	T-200	N/A	0~360 degree	NCR	Sep. 06, 2015	NCR	Radiation (03CH02-SZ)	
Antenna Mast	Chaintek	MBS-400	N/A	1 m~4 m	NCR	Sep. 06, 2015	NCR	Radiation (03CH02-SZ)	
EMI Receiver	R&S	ESCI7	100724	9kHz~3GHz;	Jan. 28, 2015	Aug. 11, 2015	Jan. 27, 2016	Conduction (CO01-SZ)	
AC LISN	EMCO	3816/2SH	103892	9kHz~30MHz	Feb. 02, 2015	Aug. 11, 2015	Feb. 01, 2016	Conduction (CO01-SZ)	
AC LISN (for auxiliary equipment)	MessTec	AN3016	16850	9kHz~30MHz	Feb. 02, 2015	Aug. 11, 2015	Feb. 01, 2016	Conduction (CO01-SZ)	
AC Power Source	Chroma	61602	6160200008 91	100Vac~250Vac	Sep. 29, 2014	Aug. 11, 2015	Sep. 28, 2015	Conduction (CO01-SZ)	
Pulse Limiter	COM-POWER	LIT-153 Transient Limiter	53139	150kHz~30MHz	Oct. 24, 2014	Aug. 11, 2015	Oct. 23, 2015	Conduction (CO01-SZ)	

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.3 08

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.5 dB
--	--------

Appendix A. Radiated Test Results

15C 2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2371.29	42.02	-31.98	74	42.72	27.19	9.32	37.21	185	135	Р	н
		2381.91	29.89	-24.11	54	30.59	27.19	9.32	37.21	185	135	А	Н
	*	2402	72.38	-	-	73.04	27.25	9.32	37.23	185	135	Р	н
BLE CH 00	*	2402	71.62	-	-	72.28	27.25	9.32	37.23	185	135	А	н
2402MHz		2387.13	42.63	-31.37	74	43.29	27.25	9.32	37.23	150	95	Ρ	V
240210112		2367.78	29.98	-24.02	54	30.84	27.13	9.2	37.19	150	95	А	V
	*	2402	70.28	-	-	70.94	27.25	9.32	37.23	150	95	Ρ	V
	*	2402	69.49	-	-	70.15	27.25	9.32	37.23	150	95	А	V
		2377.5	42.41	-31.59	74	43.11	27.19	9.32	37.21	151	128	Ρ	н
		2385.24	30	-24	54	30.7	27.19	9.32	37.21	151	128	А	н
	*	2440	68.85	-	-	69.27	27.42	9.43	37.27	151	128	Ρ	н
	*	2440	67.98	-	-	68.4	27.42	9.43	37.27	151	128	А	н
		2498.28	43.96	-30.04	74	44.02	27.6	9.66	37.32	151	128	Ρ	н
BLE CH 19		2498	30.53	-23.47	54	30.59	27.6	9.66	37.32	151	128	А	н
2440MHz		2381.19	42.1	-31.9	74	42.8	27.19	9.32	37.21	150	119	Ρ	V
		2363.01	29.75	-24.25	54	30.61	27.13	9.2	37.19	150	119	А	V
	*	2440	66.51	-	-	66.93	27.42	9.43	37.27	150	119	Р	V
	*	2440	65.52	-	-	65.94	27.42	9.43	37.27	150	119	Α	V
		2487.32	43.29	-30.71	74	43.5	27.54	9.55	37.3	150	119	Р	V
		2497.44	30.52	-23.48	54	30.58	27.6	9.66	37.32	150	119	А	V

BLE (Band Edge @ 3m)

	*	2480	67.36	-	-	67.57	27.54	9.55	37.3	229	133	Р	н
	*	2480	66.42	-	-	66.63	27.54	9.55	37.3	229	133	А	Н
		2494.04	43.68	-30.32	74	43.74	27.6	9.66	37.32	229	133	Р	Н
BLE		2499.6	30.59	-23.41	54	30.65	27.6	9.66	37.32	229	133	А	Н
CH 39 2480MHz	*	2480	61.61	-	-	61.82	27.54	9.55	37.3	202	149	Ρ	V
240011112	*	2480	60.39	-	-	60.6	27.54	9.55	37.3	202	149	А	V
		2495.16	43.22	-30.78	74	43.28	27.6	9.66	37.32	202	149	Р	V
		2497.72	30.72	-23.28	54	30.78	27.6	9.66	37.32	202	149	А	V
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	e.						

				В	LE (Harm	onic @	3m)						
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	($dB\mu V/m$)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		4804	38.76	-35.24	74	30.77	31.22	13.27	36.5	150	360	Р	н
CH 00													
2402MHz		4804	38.97	-35.03	74	30.98	31.22	13.27	36.5	150	360	Ρ	V
BLE CH 19 2440MHz		4880	39.75	-34.25	74	31.36	31.36	13.48	36.45	150	360	Ρ	Н
		7320	45.38	-28.62	74	30.44	35.98	16.59	37.63	150	360	Ρ	Н
		4880	38.06	-35.94	74	29.67	31.36	13.48	36.45	150	360	Ρ	V
244010112		7320	43.63	-30.37	74	28.69	35.98	16.59	37.63	150	360	Ρ	V
		4960	39.23	-34.77	74	30.4	31.53	13.69	36.39	150	360	Ρ	н
		7440	45.31	-28.69	74	30.09	36.16	16.7	37.64	150	360	Р	н
CH 39 2480MHz		4960	39.1	-34.9	74	30.27	31.53	13.69	36.39	150	360	Р	V
		7440	43.98	-30.02	74	28.76	36.16	16.7	37.64	150	360	Ρ	V
Remark		o other spurio results are P		st Peak	and Averag	e limit lin	e.						

15C 2.4GHz 2400~2483.5MHz

15C Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		173.56	26.55	-16.95	43.5	42.93	11.49	2.58	30.45	112	325	Р	Н
		284.14	27.36	-18.64	46	40.84	13.76	3.06	30.3	-	-	Р	н
		355.92	20.35	-25.65	46	32.02	15.04	3.48	30.19	-	-	Р	н
		425.76	20.25	-25.75	46	30.12	16.34	3.86	30.07	-	-	Р	Н
		542.16	23.33	-22.67	46	30.23	18.55	4.42	29.87	-	-	Ρ	Н
2.4GHz		682.81	26.21	-19.79	46	31.24	19.76	4.88	29.67	-	-	Ρ	Н
BLE LF		183.26	15.42	-28.08	43.5	32.19	11.09	2.58	30.44	-	-	Р	V
		286.08	17.77	-28.23	46	31.25	13.76	3.06	30.3	-	-	Р	V
		444.19	20.28	-25.72	46	29.39	17.07	3.86	30.04	-	-	Р	V
		632.37	23.72	-22.28	46	29.3	19.46	4.69	29.73	-	-	Ρ	V
		720.64	24.2	-21.8	46	28.89	19.9	5.01	29.6	-	-	Ρ	V
		843.83	27.45	-18.55	46	29.76	21.53	5.5	29.34	114	265	Ρ	V
Remark		o other spurio I results are F		st limit li	ne.								

Note symbol

	Fundamental Frequency which can be ignored. However, the level of any
*	unwanted emissions shall not exceed the level of the fundamental frequency per
	15.209(c).
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

```
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)
```

```
= 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) - 35.86 (dB)
```

- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- = 55.45(dBµV/m) 74(dBµV/m)
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".