APPLICANT : Brightstar Corporation **EQUIPMENT** : Mobile phone **BRAND NAME** : Avvio MODEL NAME : Avvio L500 FCC ID : WVBAL500 **STANDARD** : FCC 47 CFR Part 2 (2.1093) ANSI/IEEE C95.1-1992 IEEE 1528-2003 We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Este huan Approved by: Jones Tsai / Manager **Report No. : FA441505** ## SPORTON INTERNATIONAL (SHENZHEN) INC. No. 101, Complex Building C, Guanlong Village, Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. C. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version.: 140422 FCC ID: WVBAL500 Page 1 of 56 ## **Table of Contents** Report No. : FA441505 Issued Date: Jun. 04, 2014 Form version. : 140422 | 1. Statement of Compliance | | |---|----| | 2. Administration Data | | | 3. Guidance Standard | | | 4. Equipment Under Test (EUT) | | | 4.1 General Information | 6 | | 4.2 Maximum Tune-up Limit | 7 | | 4.3 General LTE SAR Test and Reporting Considerations | | | 5. RF Exposure Limits | | | 5.1 Uncontrolled Environment | | | 5.2 Controlled Environment | 11 | | 6. Specific Absorption Rate (SAR) | | | 6.1 Introduction | 12 | | 6.2 SAR Definition | | | 7. System Description and Setup | 13 | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | 14 | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | | | 8.4 Zoom Scan | 16 | | 8.5 Volume Scan Procedures | | | 8.6 Power Drift Monitoring | | | 9. Test Equipment List | | | 10. System Verification | | | 10.1 Tissue Verification | | | 10.2 System Performance Check Results | | | 11. RF Exposure Positions | 20 | | 11.1 Ear and handset reference point | | | 11.2 Definition of the cheek position | | | 11.3 Definition of the tilt position | | | 11.4 Body Worn Accessory | | | 11.5 Wireless Router | 23 | | 12. Conducted RF Output Power (Unit: dBm) | | | 13. Bluetooth Exclusions Applied | | | 14. Antenna Location | | | 15. SAR Test Results | | | 15.1 Head SAR | | | 15.2 Hotspot SAR | | | 15.3 Body Worn Accessory SAR | | | 15.4 Repeated SAR Measurement | 44 | | 16.1 Head Exposure Conditions | | | 16.2 Hotspot Exposure Conditions | | | | | | 16.3 Body-Worn Accessory Exposure Conditions | | | 16.4 SPLSR Evaluation and Analysis | TC | | 18. References | | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Toot Setup Photos | | ## **Revision History** Report No. : FA441505 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA441505 | Rev. 01 | Initial issue of report | Jun. 04, 2014 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 3 of 56 ## 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Brightstar Corporation**, **Mobile phone**, **Avvio L500**, are as follows. Report No.: FA441505 | | | | Highest SAR Summary | | | | |--------------------------------|-------------------|-----------------------|---|---|--|------| | Equipment Frequency Class Band | Operating
Mode | Head
1g SAR (W/kg) | Body-worn
1g SAR (W/kg)
(Gap 1cm) | Wireless Router
1g SAR (W/kg)
(Gap 1cm) | Simultaneous
Transmission SAR
(W/kg) | | | | GSM850 | Voice/Data | 0.15 | 0.65 | 0.65 | | | | GSM1900 | Voice/Data | 0.34 | 0.69 | 0.87 | | | PCE | WCDMA Band V | Voice/Data | 0.29 | 0.73 | 0.73 | 4.50 | | PCE | WCDMA Band II | Voice/Data | 0.37 | 1.09 | 1.37 | 1.59 | | | LTE Band 4 | Data | 0.49 | 0.64 | 0.67 | | | | LTE Band 7 | Data | 0.18 | 1.31 | 1.43 | | | DTS | WLAN 2.4GHz Band | Data | 1.44 | 0.16 | 0.16 | 1.59 | | DSS | Bluetooth | Data | | | | 1.43 | | | Date of Testing: | | | 05/12/2014 | ~ 05/17/2014 | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. ### 2. Administration Data | Testing Laboratory | | | | | |---|---|--|--|--| | Test Site SPORTON INTERNATIONAL (SHENZHEN) INC. | | | | | | Test Site Location | No. 101, Complex Building C, Guanlong Village, Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. C. TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 | | | | **Report No. : FA441505** | Applicant | | | | |---|--|--|--| | Company Name Brightstar Corporation | | | | | Address 9725 NW 117th Ave., Miami, Florida, FL 33178, United States | | | | | Manufacturer | | | | | |--|--|--|--|--| | Company Name YULONG COMPUTER TELECOMMUNICATION SCIENTIFIC(SHENZHEN) CO., LTD | | | | | | Address Coolpad Information Harbor, 2nd Mengxi Road, High-Tech Industrial Park(North), NanShan District, ShenZhen, P. R. C. | | | | | ## 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - · IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r02 - FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r02 - FCC KDB 248227 D01 SAR meas for 802 11abg v01r02 - FCC KDB 941225 D01 SAR test for 3G devices v02 - FCC KDB 941225 D02 HSPA and 1x Advanced v02r02 - FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01 - FCC KDB 941225 D05 SAR for LTE Devices v02r03 - FCC KDB 941225 D06 Hotspot Mode SAR v01r01 ${\bf SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$ ## 4. Equipment Under Test (EUT) ### 4.1 General Information | | Product Feature & Specification | | | | | | |--|---|--|--|--|--|--| | Equipment Name | Mobile phone | | | | | | | Brand Name | Avvio | | | | | | | Model Name | Avvio L500 | | | | | | | FCC ID | WVBAL500 | | | | | | | IMEI Code | 864148020004794 | | | | | | | Wireless Technology and
Frequency Range | GSM850: 824.2 MHz ~ 848.8 MHz
GSM1900: 1850.2 MHz ~ 1909.8 MHz
WCDMA Band V: 826.4 MHz ~ 846.6 MHz
WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz
LTE Band 4: 1710.7 MHz ~ 1754.3 MHz
LTE Band 7: 2502.5 MHz ~ 2567.5 MHz
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz
Bluetooth: 2402 MHz ~ 2480 MHz | | | | | | | Mode | GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (Downlink Only) LTE: QPSK, 16QAM 802.11b/g/n/HT20/HT40 Bluetooth v3.0+EDR, Bluetooth v4.0 LE | | | | | | | HW Version | P1 | | | | | | | SW Version | P1 | | | | | | | GSM / (E)GPRS Transfer mode | er Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network. | | | | | | | EUT Stage | Identical Prototype | | | | | | | Remark: | | | | | | | Report No.: FA441505 #### Remark: - 1. This device 2.4GHz WLAN supports Hotspot operation. - This device supported VoIP in GPRS, EGPRS, WCDMA, LTE (e.g. 3rd party VoIP). This device supports GRPS/EGPRS mode up to multi-slot class12. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 6 of 56 ## 4.2 Maximum Tune-up Limit | Mode | Burst average power(dBm) | | | |-------------------------|--------------------------|----------|--| | Mode | GSM 850 | GSM 1900 | | | GSM (GMSK, 1 Tx slot) | 33.00 | 31.00 | | | GPRS (GMSK, 1 Tx slot) | 33.00 | 31.00 | | | GPRS (GMSK, 2 Tx slots) | 30.00 | 27.50 | | | GPRS (GMSK, 3 Tx slots) | 29.50 | 27.50 | | | GPRS (GMSK, 4 Tx slots) | 27.00 | 24.50 | | | EDGE (8PSK, 1 Tx slot) | 28.00 | 27.00 | | | EDGE (8PSK, 2 Tx slots) | 23.50 | 23.00 | | | EDGE (8PSK, 3 Tx slots) | 23.50 | 23.00 | | | EDGE (8PSK, 4 Tx slots) | 20.50 | 20.00 | | Report No. : FA441505 | Mode | Average power(dBm) | | | |--------------------|--------------------|---------------|--| | Mode | WCDMA Band V | WCDMA Band II | | | AMR 12.2Kbps | 24 | 25 | | | RMC 12.2Kbps | 24 | 25 | | | HSDPA Subtest-1 | 23 | 23.5 | | | DC-HSDPA Subtest-1 | 23 | 23 | | | HSUPA Subtest-5 | 23 | 23 | | | | LTE Band 4 | | | | | |---------------------|------------|---------|-----|--------------|--| | Average Power (dBm) | | | | | | | Modulation | BW (MHz) | RB size | MPR | Target Power | | | QPSK | 20 | ≤ 18 | 0 | 24 | | | QPSK | 20 | > 18 | 1 | 23 | | | 16QAM | 20 | ≤ 18 | 1 | 23 | | | 16QAM | 20 | > 18 |
2 | 22 | | | QPSK | 15 | ≤ 16 | 0 | 24 | | | QPSK | 15 | > 16 | 1 | 23 | | | 16QAM | 15 | ≤ 16 | 1 | 23 | | | 16QAM | 15 | > 16 | 2 | 22 | | | QPSK | 10 | ≤ 12 | 0 | 24 | | | QPSK | 10 | > 12 | 1 | 23 | | | 16QAM | 10 | ≤ 12 | 1 | 23 | | | 16QAM | 10 | > 12 | 2 | 22 | | | QPSK | 5 | ≤8 | 0 | 24 | | | QPSK | 5 | > 8 | 1 | 23 | | | 16QAM | 5 | ≤8 | 1 | 23 | | | 16QAM | 5 | > 8 | 2 | 22 | | | QPSK | 3 | ≤ 4 | 0 | 24 | | | QPSK | 3 | > 4 | 1 | 23 | | | 16QAM | 3 | ≤ 4 | 1 | 23 | | | 16QAM | 3 | > 4 | 2 | 22 | | | QPSK | 1.4 | ≤ 5 | 0 | 24 | | | QPSK | 1.4 | > 5 | 1 | 23 | | | 16QAM | 1.4 | ≤ 5 | 1 | 23 | | | 16QAM | 1.4 | > 5 | 2 | 22 | | Report No. : FA441505 | | LTE Band 7 | | | | | | |------------|---------------------|---------|-----|--------------|--|--| | | Average Power (dBm) | | | | | | | Modulation | BW (MHz) | RB size | MPR | Target Power | | | | QPSK | 20 | ≤ 18 | 0 | 23 | | | | QPSK | 20 | > 18 | 1 | 22 | | | | 16QAM | 20 | ≤ 18 | 1 | 22 | | | | 16QAM | 20 | > 18 | 2 | 21 | | | | QPSK | 15 | ≤ 16 | 0 | 23 | | | | QPSK | 15 | > 16 | 1 | 22 | | | | 16QAM | 15 | ≤ 16 | 1 | 22 | | | | 16QAM | 15 | > 16 | 2 | 21 | | | | QPSK | 10 | ≤ 12 | 0 | 23 | | | | QPSK | 10 | > 12 | 1 | 22 | | | | 16QAM | 10 | ≤ 12 | 1 | 22 | | | | 16QAM | 10 | > 12 | 2 | 21 | | | | QPSK | 5 | ≤ 8 | 0 | 23 | | | | QPSK | 5 | > 8 | 1 | 22 | | | | 16QAM | 5 | ≤ 8 | 1 | 22 | | | | 16QAM | 5 | > 8 | 2 | 21 | | | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 | Mode | | Maximum Average Power (dBm) | |--------------------|--------------|-----------------------------| | | 802.11b | 18 | | 2.4GHz | 802.11g | 12 | | 2.4GH2 | 802.11n-HT20 | 11 | | 802.11n-HT40 | | 10 | | Bluetooth v3.0+EDR | | 2.5 | | Bluetooth v4.0 LE | | 2.5 | Report No. : FA441505 ## 4.3 General LTE SAR Test and Reporting Considerations | Summarize | d necessary item | s address | ed in KD | B 94122 | 5 D05 v02 | 2r03 | | | | | | | | |--|--|--|------------|----------|-----------|-------------|-----------|----------|--|--|--|--|--| | FCC ID | WVBAL500 | | | | | | | | | | | | | | Equipment Name | Mobile phone | | | | | | | | | | | | | | Operating Frequency Range of each LTE transmission band | LTE Band 7: 2502 | LTE Band 4: 1710.7 MHz ~ 1754.3 MHz
LTE Band 7: 2502.5 MHz ~ 2567.5 MHz | | | | | | | | | | | | | Channel Bandwidth | LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz
LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz | | | | | | | | | | | | | | uplink modulations used | QPSK, and 16QAM | | | | | | | | | | | | | | LTE transmitter and antenna implementation (standalone or sharing hardware components / antennas) | A primary antenna is used for LTE and other wireless interfaces (GSM/WCDMA) for transmitting and receiving. LTE and other wireless interfaces (GSM/WCDMA) share the same antenna, and cannot transmit simultaneously A 2 nd antenna is used for LTE receiving only, standalone. | | | | | | | | | | | | | | LTE Voice / Data requirements | Data only | | | | | | | | | | | | | | | Table Modulation | | | | | PR) for Pov | | MPR (dB) | | | | | | | LTE MPR permanently built-in by design | | 1.4
MHz | 3.0
MHz | 5
MHz | 10
MHz | 15
MHz | 20
MHz | | | | | | | | | QPSK | >5 | >4 | >8 | > 12 | > 16 | > 18 | ≤1 | | | | | | | | 16 QAM | ≤5 | ≤ 4 | ≤8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | | | | | | | 16 QAM | >5 | >4 | >8 | > 12 | > 16 | > 18 | ≤2 | | | | | | | LTE A-MPR | In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI) | | | | | | | | | | | | | | Spectrum plots for RB configuration | (Maximum TTI) A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report. | | | | | | | | | | | | | **Report No. : FA441505** | | | | Transm | ission (H. N | 1 1) (| chann | nel number | rs and fred | Henc | ies in | each LTF | hand | | | | |---|---|----------------|------------|----------------|---------|--------|----------------|-------------|------------|------------|-----------|----------------|--------|--------|----------------| | | Transmission (H, M, L) channel numbers and frequencies in each LTE band LTE Band 4 | | | | | | | | | | | | | | | | | Bandwidtl | h 1.4 MHz | Bandwid | th 3 MHz | Bar | ndwidt | h 5 MHz | Bandwidt | h 10 N | ИНz | Bandwidtl | h 15 MHz | Ban | dwidt | h 20 MHz | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch | . # | Freq.
(MHz) | Ch. # | Fre
(MI | eq.
Hz) | Ch. # | Freq.
(MHz) | Ch | . # | Freq.
(MHz) | | L | 19957 | 1710.7 | 19965 | 1711.5 | 199 | 75 | 1712.5 | 20000 | 17 | 15 | 20025 | 1717.5 | 200 |)50 | 1720 | | М | 20175 | 1732.5 | 20175 | 1732.5 | 201 | 75 | 1732.5 | 20175 | 173 | 32.5 | 20175 | 1732.5 | 201 | 75 | 1732.5 | | Н | 20393 | 1754.3 | 20385 | 1753.5 | 203 | 375 | 1752.5 | 20350 | 17 | 50 | 20325 | 1747.5 | 203 | 300 | 1745 | | | | | | | | | LTE Ba | nd 7 | | | | | | | | | | Bai | ndwidth 5 | MHz | Band | dwidth | n 10 N | ИHz | Ban | dwidt | h 15 N | ИHz | Ban | dwidtl | n 20 N | ИНz | | | Ch. # | F | req. (MHz) | Ch. # | | Fre | q. (MHz) | Ch. # | | Fre | q. (MHz) | Ch. # | | Fre | q. (MHz) | | L | 20775 | 5 | 2502.5 | 20800 | | | 2505 | 20825 | 5 | 2 | 2507.5 | 20850 |) | • | 2510 | | М | 21100 |) | 2535 | 21100 | | | 2535 | 21100 |) | 2535 | | 21100 | | • | 2535 | | Н | 21425 | 5 | 2567.5 | 21400 | | | 2565 | 21375 | 5 | 2 | 2562.5 | 21350 |) | • | 2560 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 10 of 56 SPORTON INTERNATIONAL (SHENZHEN) INC. ## 5. RF Exposure Limits #### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. **Report No. : FA441505** #### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ## 6. Specific Absorption Rate (SAR) #### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. **Report No. : FA441505** ## 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ## 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: **Report No. : FA441505** - A standard high
precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ### 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. **Report No. : FA441505** - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 FCC ID : WVBAL500 Page 14 of 56 Form version. : 140422 #### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. **Report No. : FA441505** #### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | ≤3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$
$4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test | on, is smaller than the above, must be \leq the corresponding device with at least one | #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. **Report No. : FA441505** Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | | | ≤3 GHz | > 3 GHz | |--|--------------|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx_{Zoom} , Δy_{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | unifor | | grid: Δz _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$
$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 1.5·∆z | Zoom(n-1) | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | 1 | | | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power
reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. SPORTON INTERNATIONAL (SHENZHEN) INC. When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 9. Test Equipment List | Managartana | Name of Employees | Town (84 o dod | O mist Normalism | Calib | ration | |---------------|---------------------------------|----------------|------------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d091 | Nov. 18, 2011 | Nov. 14, 2014 | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1090 | Mar. 27, 2013 | Mar. 25, 2015 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d118 | Nov. 21, 2011 | Nov. 14, 2014 | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 908 | Mar. 26, 2013 | Mar. 24. 2015 | | SPEAG | 2600MHz System Validation Kit | D2600V2 | 1061 | Mar. 26, 2013 | Mar. 24.2015 | | SPEAG | Data Acquisition Electronics | DAE4 | 910 | Dec.17, 2013 | Dec.16, 2014 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3819 | Nov. 27, 2013 | Nov. 26, 2014 | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1670 | NCR | NCR | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1671 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Anritsu | Radio communication analyzer | MT8820C | 6201091028 | Jul. 11, 2013 | Jul. 10, 2014 | | Agilent | Wireless Communication Test Set | E5515C | MY50267224 | Oct. 10, 2013 | Oct. 09, 2014 | | Agilent | Wireless Communication Test Set | E5515C | MY50266977 | May 06, 2014 | May 05, 2015 | | R&S | Network Analyzer | ZVB8 | 100106 | Nov 07, 2013 | Nov. 06, 2014 | | Speag | Dielectric Assessment KIT | DAK-3.5 | 1032 | NCR | NCR | | Anritsu | Power Meter | ML2495A | 1218010 | Mar. 03, 2014 | Mar. 02, 2015 | | Anritsu | Power Sensor | MA2411B | 1207253 | Mar. 03, 2014 | Mar. 02, 2015 | | ARRA | Power Divider | A3200-2 | N/A | NA | NA | | R&S | Spectrum Analyzer | FSP7 | 101230 | Jun. 13, 2013 | Jun. 12, 2014 | | Agilent | Dual Directional Coupler | 778D | 50422 | No | te 2 | | Woken | Attenuator | WK0602-XX | N/A | No | te 2 | | PE | Attenuator | PE7005-10 | N/A | No | te 2 | | PE | Attenuator | PE7005- 3 | N/A | No | te 2 | | AR | Power Amplifier | 5S1G4M2 | 0328767 | No | te 2 | | Mini-Circuits | Power Amplifier | ZVE-3W | 162601250 | Not | te 2 | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 13440021344 | No | te 2 | Report No.: FA441505 #### **General Note:** - 1. The calibration certificate of DASY can be referred to appendix C of this report. - 2. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. - 3. Referring to KDB 865664 D01v01r03, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - 4. The justification data of dipole D835V2, SN: 4d091, D1750V2, SN: 1090, D1900V2, SN: 5d118, D2450V2, SN: 908, D2600V2, SN: 1061 can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration. ## 10. System Verification ### 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target Report No.: FA441505 tissue parameters required for routine SAR evaluation. | tissuc parameters | 7 10 quii 0 u | ioi roduirio | Or till Ovalid | ation. | | | | | |--------------------|---------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------| | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | | | | | For Head | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 1750 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.37 | 40.1 | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | For Body | | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 1750 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.49 | 53.4 | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity
(σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|-------------------------|---------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|-----------| | 835 | Head | 22.7 | 0.900 | 42.153 | 0.90 | 41.50 | 0.00 | 1.57 | ±5 | 2014/5/16 | | 1750 | Head | 22.6 | 1.392 | 40.573 | 1.37 | 40.10 | 1.61 | 1.18 | ±5 | 2014/5/14 | | 1900 | Head | 22.6 | 1.422 | 38.942 | 1.40 | 40.00 | 1.57 | -2.65 | ±5 | 2014/5/13 | | 2450 | Head | 22.7 | 1.878 | 40.464 | 1.80 | 39.20 | 4.33 | 3.22 | ±5 | 2014/5/17 | | 2600 | Head | 22.6 | 2.049 | 37.739 | 1.96 | 39.00 | 4.54 | -3.23 | ±5 | 2014/5/14 | | 835 | Body | 22.7 | 1.000 | 54.086 | 0.97 | 55.20 | 3.09 | -2.02 | ±5 | 2014/5/12 | | 1750 | Body | 22.8 | 1.514 | 53.575 | 1.49 | 53.40 | 1.61 | 0.33 | ±5 | 2014/5/14 | | 1900 | Body | 22.8 | 1.542 | 53.532 | 1.52 | 53.30 | 1.45 | 0.44 | ±5 | 2014/5/12 | | 2450 | Body | 22.7 | 1.949 | 51.667 | 1.95 | 52.70 | -0.05 | -1.96 | ±5 | 2014/5/17 | | 2600 | Body | 22.8 | 2.201 | 52.823 | 2.16 | 52.50 | 1.90 | 0.62 | ±5 | 2014/5/13 | ### 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
SAR
(W/kg) | Targeted
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation (%) | |-----------|--------------------|----------------|------------------------|---------------|--------------|------------|---------------------------|---------------------------|-----------------------------|---------------| | 2014/5/16 | 835 | Head | 250 | 4d091 | 3819 | 910 | 2.27 | 9.40 | 9.08 | -3.40 | | 2014/5/14 | 1750 | Head | 250 | 1090 | 3819 | 910 | 8.89 | 36.90 | 35.56 | -3.63 | | 2014/5/13 | 1900 | Head | 250 | 5d118 | 3819 | 910 | 9.15 | 40.30 | 36.6 | -9.18 | | 2014/5/17 | 2450 | Head | 250 | 908 | 3819 | 910 | 13.70 | 54.00 | 54.8 | 1.48 | | 2014/5/14 | 2600 | Head | 250 | 1061 | 3819 | 910 | 13.60 | 58.60 | 54.4 | -7.17 | | 2014/5/12 | 835 | Body | 250 | 4d091 | 3819 | 910 | 2.27 | 9.42 | 9.08 | -3.61 | | 2014/5/14 | 1750 | Body | 250 | 1090 | 3819 | 910 | 9.49 | 38.10 | 37.96 | -0.37 | | 2014/5/12 | 1900 | Body | 250 | 5d118 | 3819 | 910 | 10.40 | 41.80 | 41.6 | -0.48 | | 2014/5/17 | 2450 | Body | 250 | 908 | 3819 | 910 | 12.90 | 50.40 | 51.6 | 2.38 | | 2014/5/13 | 2600 | Body | 250 | 1061 | 3819 | 910 | 14.50 | 55.60 | 58 | 4.32 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo Report No.: FA441505 ## 11. RF Exposure Positions #### 11.1 Ear and handset reference point Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek. Fig 9.1.1 Front, back, and side views of SAM twin phantom **Report No. : FA441505** Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations #### 11.2 Definition of the cheek position - 1. Ready the handset for talk operation, if necessary. For example, for
handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets. - 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. - 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. - 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. - 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report. Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case Fig 9.2.2 Handset vertical and horizontal reference lines—"clam-shell case" **Report No.: FA441505** Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated. SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 FCC ID : WVBAL500 Page 21 of 56 Form version. : 140422 ### 11.3 Definition of the tilt position - 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. - 3. Rotate the handset around the horizontal line by 15°. - 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point **Report No. : FA441505** Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated. #### 11.4 Body Worn Accessory Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB 648474 D04v01r02, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. **Report No. : FA441505** Fig 9.4 Body Worn Position #### 11.5 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC HDB Publication 941225 D06v01r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. ## 12. Conducted RF Output Power (Unit: dBm) #### <GSM Conducted Power> 1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction. **Report No. : FA441505** - 2. According to October 2013TCB Workshop, For GSM / EGPRS, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, Considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (3Tx slots) for GSM850/GSM1900 band due to its highest frame-average power. - 3. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS 3 Tx slots for GSM850/GSM1900 band due to its highest frame-average power. | Band GSM850 | Burst Average Power (dBm) | | Tune-up | Frame-A | e-up Frame-Average Power (di | | Tune-up | | |---|--|---|---|---|--|---|---|---| | TX Channel | 128 | 189 | 251 | Limit | 128 | 189 | 251 | Limit | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | (dBm) | 824.2 | 836.4 | 848.8 | (dBm) | | GSM (GMSK, 1 Tx slot) | <mark>32.48</mark> | 32.46 | 32.44 | 33.00 | 23.48 | 23.46 | 23.44 | 24.00 | | GPRS (GMSK, 1 Tx slot) – CS1 | 32.47 | 32.45 | 32.43 | 33.00 | 23.47 | 23.45 | 23.43 | 24.00 | | GPRS (GMSK, 2 Tx slots) – CS1 | 29.3 | 29.25 | 29.23 | 30.00 | 23.30 | 23.25 | 23.23 | 24.00 | | GPRS (GMSK, 3 Tx slots) – CS1 | 29.19 | 29.13 | 29.11 | 29.50 | <mark>24.93</mark> | 24.87 | 24.85 | 25.24 | | GPRS (GMSK, 4 Tx slots) – CS1 | 26.66 | 26.54 | 26.45 | 27.00 | 23.66 | 23.54 | 23.45 | 24.00 | | EDGE (8PSK, 1 Tx slot) – MCS5 | 27.11 | 27.14 | 27.12 | 28.00 | 18.11 | 18.14 | 18.12 | 19.00 | | EDGE (8PSK, 2 Tx slots) – MCS5 | 23.01 | 23.05 | 22.93 | 23.50 | 17.01 | 17.05 | 16.93 | 17.50 | | EDGE (8PSK, 3 Tx slots) – MCS5 |
22.91 | 22.97 | 22.85 | 23.50 | 18.65 | 18.71 | 18.59 | 19.24 | | EDGE (8PSK, 4 Tx slots) – MCS5 | 20.12 | 20.05 | 20 | 20.50 | 17.12 | 17.05 | 17.00 | 17.50 | | | Burst Average Power (dBm) | | | | | | | | | Band GSM1900 | Burst Av | erage Pow | er (dBm) | Tune-up | Frame-A | erage Pov | ver (dBm) | Tune-up | | Band GSM1900
TX Channel | Burst Av
512 | erage Pow
661 | er (dBm)
810 | Limit | Frame-Av
512 | erage Pov
661 | ver (dBm)
810 | Limit | | | | | · · · · · · | | | | · · · · · | | | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit | | TX Channel Frequency (MHz) | 512
1850.2 | 661
1880 | 810
1909.8 | Limit
(dBm) | 512
1850.2 | 661
1880 | 810
1909.8 | Limit
(dBm) | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) | 512
1850.2
29.88 | 661
1880
29.8 | 810
1909.8
29.43 | Limit
(dBm)
31.00 | 512
1850.2
20.88 | 661
1880
20.80 | 810
1909.8
20.43 | Limit
(dBm)
22.00 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 | 512
1850.2
29.88
29.85 | 661
1880
29.8
29.69 | 810
1909.8
29.43
29.42 | Limit (dBm) 31.00 31.00 | 512
1850.2
20.88
20.85 | 661
1880
20.80
20.69 | 810
1909.8
20.43
20.42 | Limit (dBm) 22.00 22.00 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 | 512
1850.2
29.88
29.85
26.97 | 661
1880
29.8
29.69
26.95 | 810
1909.8
29.43
29.42
26.73 | Limit (dBm) 31.00 31.00 27.50 | 512
1850.2
20.88
20.85
20.97 | 661
1880
20.80
20.69
20.95 | 810
1909.8
20.43
20.42
20.73 | Limit (dBm) 22.00 22.00 21.50 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 | 512
1850.2
29.88
29.85
26.97
26.96 | 661
1880
29.8
29.69
26.95
26.95 | 810
1909.8
29.43
29.42
26.73
26.74 | Limit (dBm) 31.00 31.00 27.50 27.50 | 512
1850.2
20.88
20.85
20.97
22.70 | 661
1880
20.80
20.69
20.95
22.64 | 810
1909.8
20.43
20.42
20.73
22.48 | Limit (dBm) 22.00 22.00 21.50 23.24 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 | 512
1850.2
29.88
29.85
26.97
26.96
24.1 | 661
1880
29.8
29.69
26.95
26.9
23.98 | 810
1909.8
29.43
29.42
26.73
26.74
23.87 | Limit (dBm) 31.00 31.00 27.50 27.50 24.50 | 512
1850.2
20.88
20.85
20.97
22.70
21.10 | 661
1880
20.80
20.69
20.95
22.64
20.98 | 810
1909.8
20.43
20.42
20.73
22.48
20.87 | Limit (dBm) 22.00 22.00 21.50 23.24 21.50 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 EDGE (8PSK, 1 Tx slot) – MCS5 | 512
1850.2
29.88
29.85
26.97
26.96
24.1
26.36 | 661
1880
29.8
29.69
26.95
26.9
23.98
26.32 | 810
1909.8
29.43
29.42
26.73
26.74
23.87
26.15 | Limit (dBm) 31.00 31.00 27.50 27.50 24.50 27.00 | 512
1850.2
20.88
20.85
20.97
22.70
21.10
17.36 | 661
1880
20.80
20.69
20.95
22.64
20.98
17.32 | 810
1909.8
20.43
20.42
20.73
22.48
20.87
17.15 | Limit (dBm) 22.00 22.00 21.50 23.24 21.50 18.00 | **Remark:** The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB SPORTON INTERNATIONAL (SHENZHEN) INC. #### <WCDMA Conducted Power> - 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. **Report No. : FA441505** For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement. A summary of these settings are illustrated below: #### **HSDPA Setup Configuration:** - a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting: - i. Set Gain Factors (β_c and β_d) and parameters were set according to each - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - iii. Set RMC 12.2Kbps + HSDPA mode. - iv. Set Cell Power = -86 dBm - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - vi. Select HSDPA Uplink Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - x. Set CQI Repetition Factor to 2 - xi. Power Ctrl Mode = All Up bits - d. The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βο | βa | β _d
(SF) | β∂βа | βнs
(Note1,
Note 2) | CM (dB)
(Note 3) | MPR (dB)
(Note 3) | |----------|-------------------|-------------------|------------------------|-------------------|---------------------------|---------------------|----------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15
(Note 4) | 15/15
(Note 4) | 64 | 12/15
(Note 4) | 24/15 | 1.0 | 0.0 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 30/15$ with $\beta_{ls} = 30/15 * \beta_c$. Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, $\Delta_{\rm ACK}$ and $\Delta_{\rm NACK}$ = 30/15 with β_{hs} = 30/15 * β_{c} , and $\Delta_{\rm CQI}$ = 24/15 with $\beta_{ls} = 24/15 * \beta_c$. Note 3: CM = 1 for β_d/β_d =12/15, β_{hs}/β_c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15. **Setup Configuration** #### **HSUPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting *: - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 **Report No. : FA441505** - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βς | βa | β _d
(SF) | βε/βα | βнs
(Note1) | βес | β _{ed}
(Note 5)
(Note 6) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2) | AG
Index
(Note
6) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4
4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15
(Note 4) | 15/15
(Note
4) | 64 | 15/15
(Note
4) | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | - Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . - CM = 1 for β_c/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference. - Note 3: For subtest 1 the β_C/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. - Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1,
TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. - Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. - Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. #### **Setup Configuration** SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 26 of 56 ## DC-HSDPA 3GPP release 8 Setup Configuration: - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below - The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting: C. - Set RMC 12.2Kbps + HSDPA mode. - Set Cell Power = -25 dBm - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii. - Select HSDPA Uplink Parameters iv. - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 **Report No. : FA441505** - a). Subtest 1: $\beta_c/\beta_d=2/15$ b). Subtest 2: $\beta_c/\beta_d=12/15$ - c). Subtest 3: $\beta_c/\beta_d=15/8$ - d). Subtest 4: $\beta_o/\beta_d=15/4$ Set Delta ACK, Delta NACK and Delta CQI = 8 - vii. Set Ack-Nack Repetition Factor to 3 - Set CQI Feedback Cycle (k) to 4 ms - Set CQI Repetition Factor to 2 ix. - Power Ctrl Mode = All Up bits - The transmitted maximum output power was recorded. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below: #### C.8.1.12 Fixed Reference Channel Definition H-Set 12 Table C.8.1.12: Fixed Reference Channel H-Set 12 | | Parameter | Unit | Value | | | | | |---|---------------------------------------|--------|-------|--|--|--|--| | Nominal | Avg. Inf. Bit Rate | kbps | 60 | | | | | | Inter-TTI | Distance | TTI's | 1 | | | | | | Number | of HARQ Processes | Proces | 6 | | | | | | | | ses | 0 | | | | | | Informati | on Bit Payload (N_{INF}) | Bits | 120 | | | | | | Number | Code Blocks | Blocks | 1 | | | | | | Binary C | hannel Bits Per TTI | Bits | 960 | | | | | | Total Av | ailable SML's in UE | SML's | 19200 | | | | | | Number | of SML's per HARQ Proc. | SML's | 3200 | | | | | | Coding F | Rate | | 0.15 | | | | | | Number | of Physical Channel Codes | Codes | 1 | | | | | | Modulati | | | QPSK | | | | | | Note 1: The RMC is intended to be used for DC-HSDPA | | | | | | | | | mode and both cells shall transmit with identical | | | | | | | | | parameters as listed in the table. | | | | | | | | | Note 2: Maximum number of transmission is limited to 1, i.e., | | | | | | | | | retransmission is not allowed. The redundancy and | | | | | | | | | | constellation version 0 shall be us | ed. | | | | | | Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK) #### **Setup Configuration** Form version. : 140422 FCC ID: WVBAL500 Page 27 of 56 #### <WCDMA Conducted Power> #### **General Note:** Applying the subtest setup in Table C.11.1.3 of 3GPP TS 34.121-1 V9.1.0 to Rel. 6 HSPA, and Tablet C.10.1.4 to DC-HSDPA. Report No.: FA441505 - 2. SAR testing in AMR configuration is not required when the maximum average output of each RF channel for AMR 12.2Kbps is less than 0.25dB higher than that measured in RMC 12.2Kbps - 3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA /DC-HSDPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit. - 4. Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA/DC-HSDPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded.</p> | | Ва | nd | | WCDMA V | | | WCDMA II | | |------|-------------|--------------------|-------|---------|-------|--------|--------------------|--------| | | TX Cł | nannel | 4132 | 4182 | 4233 | 9262 | 9400 | 9538 | | | Rx Ch | nannel | 4357 | 4407 | 4458 | 9662 | 9800 | 9938 | | | Frequen | cy (MHz) | 826.4 | 836.4 | 846.6 | 1852.4 | 1880 | 1907.6 | | MPR | 3GPP Rel 99 | AMR 12.2Kbps | 23.56 | 23.50 | 23.59 | 23.96 | 24.41 | 23.80 | | (dB) | 3GPP Rel 99 | RMC 12.2Kbps | 23.57 | 23.51 | 23.61 | 23.98 | <mark>24.43</mark> | 23.81 | | 0 | 3GPP Rel 6 | HSDPA Subtest-1 | 22.14 | 22.07 | 22.15 | 22.52 | 23.02 | 22.39 | | 0 | 3GPP Rel 6 | HSDPA Subtest-2 | 22.15 | 22.1 | 22.16 | 22.47 | 22.83 | 22.37 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-3 | 22.08 | 22.03 | 22.13 | 22.52 | 22.86 | 22.38 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-4 | 22.13 | 22.02 | 22.09 | 22.51 | 22.84 | 22.32 | | 0 | 3GPP Rel 8 | DC-HSDPA Subtest-1 | 22.10 | 22.02 | 22.08 | 22.46 | 22.86 | 22.35 | | 0 | 3GPP Rel 8 | DC-HSDPA Subtest-2 | 22.00 | 22.01 | 22.05 | 22.41 | 22.82 | 22.34 | | 0.5 | 3GPP Rel 8 | DC-HSDPA Subtest-3 | 21.94 | 21.96 | 22.05 | 22.46 | 22.77 | 22.35 | | 0.5 | 3GPP Rel 8 | DC-HSDPA Subtest-4 | 22.02 | 21.98 | 21.02 | 22.42 | 22.76 | 22.28 | | 0 | 3GPP Rel 6 | HSUPA Subtest-1 | 21.58 | 21.53 | 21.55 | 21.81 | 22.24 | 22.17 | | 2 | 3GPP Rel 6 | HSUPA Subtest-2 | 21.59 | 21.53 | 21.61 | 22.12 | 22.46 | 22.07 | | 1 | 3GPP Rel 6 | HSUPA Subtest-3 | 21.12 | 21.04 | 21.11 | 21.35 | 21.67 | 21.29 | | 2 | 3GPP Rel 6 | HSUPA Subtest-4 | 22.11 | 22.03 | 22.12 | 22.57 | 22.93 | 22.52 | | 0 | 3GPP Rel 6 | HSUPA Subtest-5 | 21.21 | 21.15 | 21.21 | 21.09 | 21.43 | 21.04 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 FCC ID: WVBAL500 Page 28 of 56 Form version.: 140422 #### <LTE Conducted Power> #### **General Note:** Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. **Report No. : FA441505** - 2. Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r03, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required. **SPORTON INTERNATIONAL (SHENZHEN) INC.**TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 #### <LTE Band 4> | DW | <u> a 4></u> | | 22 | Power | Power | Power | | | |-------------|-----------------|------------|--------------|-------------|-------------|--------------------|------------------------|-------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Low | Middle | High | T 1 2 2 | MDD | | [1411 12] | | | Olidet | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | Tune up Limit
(dBm) | MPR
(dB) | | | Cha | | | 20050 | 20175 | 20300 | (ubiii) | (GD) | | | Frequen | cy (MHz) | | 1720 | 1732.5 | 1745 | | | | 20 | QPSK | 1 | 0 | 23.24 | 23.34 | <mark>23.55</mark> | | | | 20 | QPSK | 1 | 49 | 23.08 | 23.36 | 23.46 | 24 | 0 | | 20 | QPSK | 1 | 99 | 23.12 | 23.29 | 23.50 | | | | 20 | QPSK | 50 | 0 | 22.17 | 22.33 | 22.50 | | | | 20 | QPSK | 50 | 24 | 22.15 | 22.26 | 22.48 | 23 | 0-1 | | 20 | QPSK | 50 | 49 | 22.15 | 22.32 | 22.46 | 23 | 0-1 | | 20 | QPSK | 100 | 0 | 22.10 | 22.28 | 22.43 | | | | 20 | 16QAM | 1 | 0 | 22.50 | 22.82 | 22.58 | | | | 20 | 16QAM | 1 | 49 | 22.21 | 22.83 | 22.64 | 23 | 0-1 | | 20 | 16QAM | 1 | 99 | 22.30 | 22.50 | 22.59 | | | | 20 | 16QAM | 50 | 0 | 21.17 | 21.18 | 21.36 | | | | 20 | 16QAM | 50 | 24 | 21.12 | 21.21 | 21.38 | 00 | 0.0 | | 20 | 16QAM | 50 | 49 | 21.11 | 21.19 | 21.36 | 22 | 0-2 | | 20 | 16QAM | 100 | 0 | 21.09 | 21.20 | 21.42 | | | | | Cha | nnel | | 20025 | 20175 | 20325 | Tune up Limit | MPR | | | Frequen | | | 1717.5 | 1732.5 | 1747.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 23.16 | 23.30 | 23.49 | | <u> </u> | | 15 | QPSK | 1 | 37 | 23.06 | 23.26 | 23.44 | 24 | 0 | | 15 | QPSK | 1 | 74 | 23.10 | 23.32 | 23.48 | | | | 15 | QPSK | 36 | 0 | 22.18 | 22.32 | 22.41 | | | | 15 | QPSK | 36 | 18 | 22.16 | 22.36 | 22.45 | _ | | | 15 | QPSK | 36 | 37 | 22.03 | 22.26 | 22.42 | 23 | 0-1 | | 15 | QPSK | 75 | 0 | 22.05 | 22.24 | 22.42 | - | | | 15 | 16QAM | 1 | 0 | 22.01 | 22.70 | 22.40 | | | | 15 | 16QAM | 1 | 37 | 22.05 |
22.65 | 22.84 | 23 | 0-1 | | 15 | 16QAM | 1 | 74 | 22.00 | 22.68 | 22.55 | _ 23 | 0-1 | | 15 | 16QAM | 36 | 0 | 21.17 | 21.18 | 21.47 | | | | | | | | 21.17 | 21.16 | 21.47 | | | | 15 | 16QAM | 36 | 18 | 20.95 | 21.16 | | 22 | 0-2 | | 15 | 16QAM | 36 | 37 | | | 21.36 | _ | | | 15 | 16QAM | 75 | 0 | 21.09 | 21.21 | 21.35 | | | | | Cha | | | 20000 | 20175 | 20350 | Tune up Limit
(dBm) | MPR
(dB) | | 4.0 | Frequence | , , | | 1715 | 1732.5 | 1750 | (иып) | (ub) | | 10 | QPSK | 1 | 0 | 23.19 | 23.32 | 23.41 | | | | 10 | QPSK | 1 | 24 | 23.10 | 23.22 | 23.48 | 24 | 0 | | 10 | QPSK | 1 | 49 | 23.00 | 23.30 | 23.45 | | | | 10 | QPSK | 25 | 0 | 22.25 | 22.28 | 22.45 | | | | 10 | QPSK | 25 | 12 | 22.10 | 22.22 | 22.46 | 23 | 0-1 | | 10 | QPSK | 25 | 24 | 22.07 | 22.31 | 22.31 | | | | 10 | QPSK | 50 | 0 | 22.01 | 22.29 | 22.41 | | | | 10 | 16QAM | 1 | 0 | 21.97 | 22.40 | 22.43 | | | | 10 | 16QAM | 1 | 24 | 21.99 | 22.20 | 22.45 | 23 | 0-1 | | 10 | 16QAM | 1 | 49 | 21.89 | 22.42 | 22.32 | | | | 10 | 16QAM | 25 | 0 | 21.00 | 21.24 | 21.50 | | | | 10 | 16QAM | 25 | 12 | 21.12 | 21.24 | 21.42 | 22 | 0.2 | | 10 | 16QAM | 25 | 24 | 21.02 | 21.30 | 21.43 | 22 | 0-2 | | 10 | 16QAM | 50 | 0 | 21.01 | 21.16 | 21.44 | | | Report No. : FA441505 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 30 of 56 | SPORTON LAB | FCC S | AR Test | Report | | | | Report No. | : FA44150 | |-------------|---------|----------|--------|--------|--------|--------|---------------|-----------| | | Cha | nnel | | 19975 | 20175 | 20375 | Tune up Limit | MPR | | | Frequen | cy (MHz) | | 1712.5 | 1732.5 | 1752.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 23.04 | 23.30 | 23.44 | | | | 5 | QPSK | 1 | 12 | 23.02 | 23.26 | 23.48 | 24 | 0 | | 5 | QPSK | 1 | 24 | 23.06 | 23.13 | 23.49 | | | | 5 | QPSK | 12 | 0 | 22.17 | 22.28 | 22.57 | | | | 5 | QPSK | 12 | 6 | 22.00 | 22.20 | 22.37 | | | | 5 | QPSK | 12 | 11 | 21.95 | 22.35 | 22.29 | 23 | 0-1 | | 5 | QPSK | 25 | 0 | 21.91 | 22.29 | 22.51 | | | | 5 | 16QAM | 1 | 0 | 22.06 | 22.21 | 22.76 | | | | 5 | 16QAM | 1 | 12 | 22.04 | 22.20 | 22.54 | 23 | 0-1 | | 5 | 16QAM | 1 | 24 | 22.02 | 22.23 | 22.35 | | | | 5 | 16QAM | 12 | 0 | 21.06 | 21.36 | 21.39 | | | | 5 | 16QAM | 12 | 6 | 21.01 | 21.17 | 21.40 | | | | 5 | 16QAM | 12 | 11 | 20.94 | 21.19 | 21.35 | | 0-2 | | 5 | 16QAM | 25 | 0 | 20.96 | 21.30 | 21.36 | | | | | Cha | | | 19965 | 20175 | 20385 | Tune up Limit | MPR | | | Frequen | | | 1711.5 | 1732.5 | 1753.5 | (dBm) | (dB) | | 3 | QPSK | 1 | 0 | 23.09 | 23.29 | 23.32 | | | | 3 | QPSK | 1 | 7 | 23.11 | 23.17 | 23.26 | 24 | 0 | | 3 | QPSK | 1 | 14 | 22.94 | 23.14 | 23.30 | | | | 3 | QPSK | 8 | 0 | 21.98 | 22.26 | 22.46 | | | | 3 | QPSK | 8 | 4 | 22.03 | 22.18 | 22.39 | | | | 3 | QPSK | 8 | 7 | 21.99 | 22.23 | 22.41 | 23 | 0-1 | | 3 | QPSK | 15 | 0 | 21.98 | 22.23 | 22.42 | | | | 3 | 16QAM | 1 | 0 | 21.85 | 22.07 | 22.11 | | | | 3 | 16QAM | 1 | 7 | 21.84 | 22.13 | 22.15 | 23 | 0-1 | | 3 | 16QAM | 1 | 14 | 21.80 | 22.10 | 22.13 | | | | 3 | 16QAM | 8 | 0 | 20.96 | 21.07 | 21.30 | | | | 3 | 16QAM | 8 | 4 | 20.90 | 21.23 | 21.22 | | | | 3 | 16QAM | 8 | 7 | 20.88 | 21.16 | 21.28 | 22 | 0-2 | | 3 | 16QAM | 15 | 0 | 21.01 | 21.19 | 21.27 | | | | | Cha | | | 19957 | 20175 | 20393 | Tune up Limit | MPR | | | Frequen | | | 1710.7 | 1732.5 | 1754.3 | (dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 22.95 | 23.26 | 23.46 | | , | | 1.4 | QPSK | 1 | 2 | 22.93 | 23.11 | 23.38 | | | | 1.4 | QPSK | 1 | 5 | 22.94 | 23.24 | 23.39 | | | | 1.4 | QPSK | 3 | 0 | 22.96 | 23.22 | 23.40 | 24 | 0 | | 1.4 | QPSK | 3 | 1 | 22.86 | 23.27 | 23.43 | | | | 1.4 | QPSK | 3 | 2 | 22.87 | 23.25 | 23.40 | | | | 1.4 | QPSK | 6 | 0 | 22.09 | 22.27 | 22.46 | 23 | 0-1 | | 1.4 | 16QAM | 1 | 0 | 21.92 | 22.36 | 22.28 | | , . | | 1.4 | 16QAM | 1 | 2 | 21.82 | 22.11 | 22.22 | | | | 1.4 | 16QAM | 1 | 5 | 21.95 | 22.18 | 22.35 | | | | 1.4 | 16QAM | 3 | 0 | 21.86 | 22.29 | 22.33 | 23 | 0-1 | | 1.4 | 16QAM | 3 | 1 | 21.83 | 22.39 | 22.26 | | , | | 1.4 | 16QAM | 3 | 2 | 21.80 | 22.39 | 22.30 | | | | 1.4 | 16QAM | 6 | 0 | 21.05 | 21.18 | 21.36 | 22 | 0-2 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID : WVBAL500 Page 31 of 56 #### <LTE Band 7> | <lie ban<="" th=""><th></th><th></th><th>22</th><th>Power</th><th>Power</th><th>Power</th><th></th><th></th></lie> | | | 22 | Power | Power | Power | | | |--|----------------|------------|--------------|---------------|--------------------|---------------|------------------------|-------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Low | Middle | High | | | | [IVII IZ] | | | Oliset | Ch. / Freq. | Ch. / Freq. | Ch. / Freq. | Tune up Limit
(dBm) | MPR
(dB) | | | Cha | | | 20850 | 21100 | 21350 | (ubiii) | (ub) | | | Frequen | cy (MHz) | | 2510 | 2535 | 2560 | | | | 20 | QPSK | 1 | 0 | 22.43 | 22.65 | 22.66 | | | | 20 | QPSK | 1 | 49 | 22.20 | <mark>22.85</mark> | 22.69 | 23 | 0 | | 20 | QPSK | 1 | 99 | 22.36 | 22.75 | 22.57 | | | | 20 | QPSK | 50 | 0 | 21.06 | 21.63 | 21.70 | | | | 20 | QPSK | 50 | 24 | 21.09 | 21.72 | 21.76 | 22 | 0-1 | | 20 | QPSK | 50 | 49 | 21.21 | 21.78 | 21.77 | 22 | 0-1 | | 20 | QPSK | 100 | 0 | 21.30 | 21.68 | 21.63 | | | | 20 | 16QAM | 1 | 0 | 21.50 | 21.85 | 21.97 | | | | 20 | 16QAM | 1 | 49 | 21.45 | 21.77 | 21.96 | 22 | 0-1 | | 20 | 16QAM | 1 | 99 | 21.54 | 21.80 | 21.99 | | | | 20 | 16QAM | 50 | 0 | 20.07 | 20.66 | 20.67 | | | | 20 | 16QAM | 50 | 24 | 20.06 | 20.78 | 20.69 | 0.1 | 0.0 | | 20 | 16QAM | 50 | 49 | 20.22 | 20.82 | 20.60 | 21 | 0-2 | | 20 | 16QAM | 100 | 0 | 20.15 | 20.78 | 20.61 | | | | | Cha | nnel | | 20825 | 21100 | 21375 | Tune up Limit | MPR | | | Frequen | cv (MHz) | | 2507.5 | 2535 | 2562.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 22.19 | 22.68 | 22.76 | | <u> </u> | | 15 | QPSK | 1 | 37 | 22.16 | 22.57 | 22.72 | 23 | 0 | | 15 | QPSK | 1 | 74 | 22.08 | 22.78 | 22.78 | | · · | | 15 | QPSK | 36 | 0 | 21.11 | 21.60 | 21.78 | | | | 15 | QPSK | 36 | 18 | 21.12 | 21.73 | 21.76 | _ | | | 15 | QPSK | 36 | 37 | 21.12 | 21.80 | 21.76 | 22 | 0-1 | | 15 | QPSK | 75 | 0 | 21.15 | 21.30 | 21.73 | | | | 15 | 16QAM | 1 | 0 | 21.59 | 21.82 | 21.73 | | | | 15 | 16QAM | 1 | 37 | 21.63 | 21.83 | 21.69 | 22 | 0-1 | | 15 | 16QAM | 1 | 74 | 21.58 | 21.87 | 21.09 | | 0-1 | | 15 | 16QAM | 36 | 0 | 19.88 | 20.68 | 20.63 | | | | | _ | | | 20.00 | 20.00 | 20.68 | _ | | | 15 | 16QAM | 36
36 | 18 | 20.00 | 20.73 | 20.66 | 21 | 0-2 | | 15 | 16QAM | | 37 | | | | _ | | | 15 | 16QAM | 75 | 0 | 20.13 | 20.75 | 20.60 | | | | | Cha
Freguen | | | 20800
2505 | 21100
2535 | 21400
2565 | Tune up Limit (dBm) | MPR
(dB) | | 10 | | , , | | | | | (dbiii) | (UD) | | 10 | QPSK | 1 | 0 | 22.00 | 22.79 | 22.73 | - 00 | 0 | | 10 | QPSK | 1 | 24 | 21.95 | 22.76 | 22.81 | 23 | 0 | | 10 | QPSK | 1 | 49 | 21.99 | 22.70 | 22.62 | | | | 10 | QPSK | 25 | 0 | 21.03 | 21.66 | 21.76 | | | | 10 | QPSK | 25 | 12 | 20.99 | 21.71 | 21.83 | 22 | 0-1 | | 10 | QPSK | 25 | 24 | 20.94 | 21.78 | 21.69 | | | | 10 | QPSK | 50 | 0 | 20.88 | 21.71 | 21.59 | | | | 10 | 16QAM | 1 | 0 | 21.03 | 21.75 | 21.91 | | | | 10 | 16QAM | 1 | 24 | 21.07 | 21.66 | 21.86 | 22 | 0-1 | | 10 | 16QAM | 1 | 49 | 21.00 | 21.79 | 21.73 | | | | 10 | 16QAM | 25 | 0 | 19.94 | 20.74 | 20.57 | | | | 10 | 16QAM | 25 | 12 | 19.93 | 20.72 | 20.74 | 21 | 0-2 | | 10 | 16QAM | 25 | 24 | 19.90 | 20.82 | 20.66 | | Q Z | | 10 | 16QAM | 50 | 0 | 19.98 | 20.76 | 20.62 | | | Report No. : FA441505 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 FCC ID: WVBAL500 Page 32 of 56 Form version.: 140422 | SPORTON LA | FCC S | SAR Test | Report | | | | Report No. | : FA441505 | |------------|---------|----------|--------|--------|-------|--------|---------------|------------| | | Cha | nnel | | 20775 | 21100 | 21425 | Tune up Limit | MPR | | | Frequen | cy (MHz) | | 2502.5 | 2535 | 2567.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 22.00 | 22.67 | 22.78 | | | | 5 | QPSK | 1 | 12 | 21.94 | 22.71 | 22.70 | 23 | 0 | | 5 | QPSK | 1 | 24 | 21.98 | 22.68 | 22.79 | | | | 5 | QPSK | 12 | 0 | 20.87 | 21.70 | 21.87 | | | | 5 | QPSK | 12 | 6 | 21.02 | 21.72 | 21.72 | 22 | 0.1 | | 5 | QPSK | 12 | 11 | 20.97 | 21.74 | 21.61 | 22 | 0-1 | | 5 | QPSK | 25 | 0 | 20.93 | 21.76 | 21.74 | | | | 5 | 16QAM | 1 | 0 | 20.97 | 21.70 | 21.89 | | | | 5 | 16QAM | 1 | 12 | 20.90 | 21.65 | 21.80 | 22 | 0-1 | | 5 | 16QAM | 1 | 24 | 20.95 | 21.60 | 21.83 | | | | 5 | 16QAM | 12 | 0 | 19.85 | 20.65 | 20.79 | | | | 5 | 16QAM | 12 | 6 | 19.98 | 20.63 | 20.59 | 21 | 0-2 | | 5 | 16QAM | 12 | 11 | 19.91 | 20.66 | 20.58 | 21 | 0-2 | | 5 | 16QAM | 25 | 0 | 19.82 | 20.82 | 20.62 | | | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 33 of 56 #### <WLAN Conducted Power> #### **General Note:** For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were selected for SAR evaluation. 802.11g/n HT20/HT40 were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11b mode. Report No.: FA441505 | | WLAN 2.4GHz 802.11b Average Power (dBm) | | | | | | | | | | |---------|---|--------------------|---------------------|-----------|---------|--|--|--|--|--| | | Power vs. Channel | | Power vs. Data Rate | | | | | | | | | Channel | Frequency | Data Rate | 2Mbps | 5.5Mbps | 11Mbps | | | | | | | Charmer | (MHz) | 1Mbps | Zivibps | 5.5ivibps | THVIDPS | | | | | | | CH 1 | 2412 | 16.12 | | | | | | | | | | CH 6 | 2437 | <mark>17.81</mark> | 17.78 | 17.73 | 17.80 | | | | | | | CH 11 | 2462 | 17.14 | | | | | | | | | | | WLAN 2.4GHz 802.11g Average Power (dBm) | | | | | | | | | |----------
---|-----------|---------------------|----------|----------|-----------|----------|-----------|--------| | Po | wer vs. Chann | el | Power vs. Data Rate | | | | | | | | Channel | Frequency | Data Rate | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | Chamilei | (MHz) 6Mbps | | alviops | 12101005 | Tolvibps | 241010005 | Solvibbs | 401010005 | 34Mbh2 | | CH 1 | 2412 | 9.43 | | | | | | | | | CH 6 | 2437 | 11.29 | 11.27 | 11.26 | 11.25 | 11.26 | 11.21 | 11.23 | 11.20 | | CH 11 | 2462 | 10.38 | | | | | | | | | | WLAN 2.4GHz 802.11n-HT20 Average Power (dBm) | | | | | | | | | | |---------|--|-------|---------------------|--------|--------|-------|--------|--------|-------|--| | Pov | wer vs. Channe | el | Power vs. MCS Index | | | | | | | | | Channel | Channel Frequency MCS Index | | | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | Chamei | (MHz) | MCS0 | MCS1 | IVICOZ | IVICOS | 10004 | IVICOS | IVICOO | IVICO | | | CH 1 | 2412 | 8.36 | | | | | | | | | | CH 6 | 2437 | 10.29 | 10.23 | 10.22 | 9.18 | 10.19 | 10.21 | 10.26 | 10.21 | | | CH 11 | 2462 | 9.41 | | | | | | | | | | | WLAN 2.4GHz 802.11n-HT40 Average Power (dBm) | | | | | | | | | | |----------|--|-------------------|---------------------|--------|--------|------|--------|--------|------|--| | Pov | wer vs. Chann | el | Power vs. MCS Index | | | | | | | | | Channel | Frequency | MCS Index | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | Chamilei | (MHz) | MCS0 | IVICOT | IVICOZ | IVICOS | WC34 | IVICOO | IVICOU | WC37 | | | CH 3 | 2422 | 8.03 | | | | | | | | | | CH 6 | 2437 | 8.86 | 9.13 | 9.10 | 9.11 | 9.13 | 9.12 | 9.12 | 9.11 | | | CH 9 | 2452 | <mark>9.16</mark> | | | | | | | | | ## 13. Bluetooth Exclusions Applied | Mode Band | Average power(dBm) | | | | | | |------------------|--------------------|-------------------|--|--|--|--| | Mode Band | Bluetooth v3.0+EDR | Bluetooth v4.0 LE | | | | | | 2.4GHz Bluetooth | 2.5 | 2.5 | | | | | **Report No. : FA441505** #### Note: 1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds | | |---------------------------|--------------------------|-----------------|----------------------|--| | 2.5 | 0 | 2.48 | 0.63 | | #### Note: Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.63which is <= 3, SAR testing is not required. **SPORTON INTERNATIONAL (SHENZHEN) INC.** TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Report No.: FA441505 ## 14. Antenna Location | Distance of the Antenna to the EUT surface/edge | | | | | | | | |---|--------|--------|----------|-------------|------------|-----------|--| | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | | WWAN Main | ≤ 25mm | ≤ 25mm | 124mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | BT&WLAN | ≤ 25mm | ≤ 25mm | ≤ 25mm | 125mm | 56mm | ≤ 25mm | | | Positions for SAR tests; Hotspot mode | | | | | | | | | |---------------------------------------|------|-------|----------|-------------|------------|-----------|--|--| | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | | | BT&WLAN | Yes | Yes | Yes | No | No | Yes | | | **General Note:** Referring to KDB 941225 D06 v01r01, when the overall device length and width are \geq 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jun. 04, 2014 FCC ID: WVBAL500 Form version.: 140422 Page 36 of 56 # 15. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. **Report No. : FA441505** - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor WLAN2.4G 802.11b Duty Cycle: 97.62% - Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. According to October 2013TCB Workshop, For GSM / EGPRS, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, Considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (3Tx slots) for GSM850/GSM1900 band due to its highest frame-average power. - 4. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS 3 Tx slots for GSM850/GSM1900 band due to its highest frame-average power. - This device 2.4GHz WLAN supports hotspot operation. - 6. Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA/DC-HSDPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded. - Pre KDB648474 D04v01r02, when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Additional WLAN SAR with headset testing was performed for simultaneous transmission analysis. - 8. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 10. Per KDB 941225 D05v02r03, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 11. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required. - 12. Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required. SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Page 37 of 56 Form version. : 140422 FCC ID: WVBAL500 # 15.1 Head SAR ### <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|------------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 01 | GSM850 | GPRS(3 Tx slots) | Right Cheek | 128 | 824.2 | 29.19 | 29.5 | 1.074 | -0.05 | 0.141 | <mark>0.151</mark> | | | GSM850 | GPRS(3 Tx slots) | Right Tilted | 128 | 824.2 | 29.19 | 29.5 | 1.074 | -0.05 | 0.079 | 0.085 | | | GSM850 | GPRS(3 Tx slots) | Left Cheek | 128 | 824.2 | 29.19 | 29.5 | 1.074 | -0.07 | 0.14 | 0.150 | | | GSM850 | GPRS(3 Tx slots) | Left Tilted | 128 | 824.2 | 29.19 | 29.5 | 1.074 | -0.08 | 0.084 | 0.090 | | 02 | GSM1900 | GPRS(3 Tx slots) | Right Cheek | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | 0.03 | 0.296 | 0.335 | | | GSM1900 | GPRS(3 Tx slots) | Right Tilted | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | 0.02 | 0.142 | 0.161 | | | GSM1900 | GPRS(3 Tx slots) | Left Cheek | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | 0.08 | 0.233 | 0.264 | | | GSM1900 | GPRS(3 Tx slots) | Left Tilted | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | 0.04 | 0.128 | 0.145 | **Report No. : FA441505** # <WCDMA
SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|-----------|------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 03 | WCDMA V | RMC 12.2K | Right Cheek | 4233 | 846.6 | 23.61 | 24 | 1.094 | -0.01 | 0.265 | <mark>0.290</mark> | | | WCDMA V | RMC 12.2K | Right Tilted | 4233 | 846.6 | 23.61 | 24 | 1.094 | -0.01 | 0.123 | 0.135 | | | WCDMA V | RMC 12.2K | Left Cheek | 4233 | 846.6 | 23.61 | 24 | 1.094 | -0.02 | 0.191 | 0.209 | | | WCDMA V | RMC 12.2K | Left Tilted | 4233 | 846.6 | 23.61 | 24 | 1.094 | -0.02 | 0.116 | 0.127 | | | WCDMA II | RMC 12.2K | Right Cheek | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.08 | 0.282 | 0.322 | | | WCDMA II | RMC 12.2K | Right Tilted | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.01 | 0.197 | 0.225 | | 04 | WCDMA II | RMC 12.2K | Left Cheek | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.06 | 0.32 | <mark>0.365</mark> | | | WCDMA II | RMC 12.2K | Left Tilted | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.06 | 0.158 | 0.180 | # <LTE SAR> | Plot
No. | Band | BW
(MHz) | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------|--------------------|------------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 05 | LTE Band 4 | 20M | QPSK 1RB 0Offset | Right Cheek | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.06 | 0.443 | <mark>0.491</mark> | | | LTE Band 4 | 20M | QPSK 1RB 0Offset | Right Tilted | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.02 | 0.179 | 0.199 | | | LTE Band 4 | 20M | QPSK 1RB 0Offset | Left Cheek | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.08 | 0.37 | 0.410 | | | LTE Band 4 | 20M | QPSK 1RB 0Offset | Left Tilted | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.09 | 0.163 | 0.181 | | | LTE Band 4 | 20M | QPSK 50RB 0Offset | Right Cheek | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.04 | 0.357 | 0.401 | | | LTE Band 4 | 20M | QPSK 50RB 0Offset | Right Tilted | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.05 | 0.148 | 0.166 | | | LTE Band 4 | 20M | QPSK 50RB 0Offset | Left Cheek | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.06 | 0.298 | 0.334 | | | LTE Band 4 | 20M | QPSK 50RB 0Offset | Left Tilted | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.01 | 0.136 | 0.153 | | 06 | LTE Band 7 | 20M | QPSK 1RB 49Offset | Right Cheek | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.07 | 0.171 | <mark>0.177</mark> | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Right Tilted | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.03 | 0.05 | 0.052 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Left Cheek | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.02 | 0.105 | 0.109 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Left Tilted | 21100 | 2535 | 22.85 | 23 | 1.035 | -0.1 | 0.096 | 0.099 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Right Cheek | 21100 | 2535 | 21.78 | 22 | 1.052 | 0.11 | 0.14 | 0.147 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Right Tilted | 21100 | 2535 | 21.78 | 22 | 1.052 | -0.05 | 0.035 | 0.037 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Left Cheek | 21100 | 2535 | 21.78 | 22 | 1.052 | -0.02 | 0.087 | 0.092 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Left Tilted | 21100 | 2535 | 21.78 | 22 | 1.052 | -0.03 | 0.073 | 0.077 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 FCC ID: WVBAL500 Page 38 of 56 Form version.: 140422 # <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Data
Rate
(bps) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|---------|------------------|-----|----------------|-----------------------|---------------------------|---------------------------|------------------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4G | 802.11b | Right Cheek | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | 0.08 | 0.807 | 0.862 | | | WLAN2.4G | 802.11b | Right Tilted | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.04 | 0.519 | 0.555 | | | WLAN2.4G | 802.11b | Left Cheek | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.04 | 0.328 | 0.351 | | | WLAN2.4G | 802.11b | Left Tilted | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.05 | 0.238 | 0.254 | | 07 | WLAN2.4G | 802.11b | Right Cheek | 1 | 2412 | 1M | 16.12 | 18 | 1.540 | 1.024 | -0.09 | 0.91 | <mark>1.435</mark> | | | WLAN2.4G | 802.11b | Right Cheek | 11 | 2462 | 1M | 17.14 | 18 | 1.218 | 1.024 | -0.05 | 0.756 | 0.943 | Report No.: FA441505 # 15.2 Hotspot SAR | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | | | | | |---|--------|--------|--------|--------|--------|--------|--|--|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | | | WWAN Main | ≤ 25mm | ≤ 25mm | 124mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | | | | | | BT&WLAN | ≤ 25mm | ≤ 25mm | ≤ 25mm | 125mm | 56mm | ≤ 25mm | | | | | | | | Report No. : FA441505 | Positions for SAR tests; Hotspot mode | | | | | | | | | | | | | |---|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | | | | | | | BT&WLAN | Yes | Yes | Yes | No | No | Yes | | | | | | | **General Note:** Referring to KDB 941225 D06 v01r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. #### <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS(3 Tx slots) | Front | 1 | 128 | 824.2 | 29.19 | 29.5 | 1.074 | 0.02 | 0.294 | 0.316 | | 08 | GSM850 | GPRS(3 Tx slots) | Back | 1 | 128 | 824.2 | 29.19 | 29.5 | 1.074 | -0.02 | 0.606 | <mark>0.651</mark> | | | GSM850 | GPRS(3 Tx slots) | Left Side | 1 | 128 | 824.2 | 29.19 | 29.5 | 1.074 | 0.06 | 0.334 | 0.359 | | | GSM850 | GPRS(3 Tx slots) | Right Side | 1 | 128 | 824.2 | 29.19 | 29.5 | 1.074 | -0.02 | 0.25 | 0.268 | | | GSM850 | GPRS(3 Tx slots) | Bottom Side | 1 | 128 | 824.2 | 29.19 | 29.5 | 1.074 | 0.04 | 0.093 | 0.100 | | | GSM1900 | GPRS(3 Tx slots) | Front | 1 | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | -0.06 | 0.597 | 0.676 | | | GSM1900 | GPRS(3 Tx slots) | Back | 1 | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | 0.01 | 0.605 | 0.685 | | | GSM1900 | GPRS(3 Tx slots) | Left Side | 1 | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | 0.02 | 0.161 | 0.182 | | | GSM1900 | GPRS(3 Tx slots) | Right Side | 1 | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | -0.02 | 0.326 | 0.369 | | | GSM1900 | GPRS(3 Tx slots) | Bottom Side | 1 | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | -0.01 | 0.762 | 0.863 | | 09 | GSM1900 | GPRS(3 Tx slots) | Bottom Side | 1 | 661 | 1880 | 26.9 | 27.5 | 1.148 | -0.02 | 0.76 | <mark>0.873</mark> | | | GSM1900 | GPRS(3 Tx slots) | Bottom Side | 1 | 810 | 1909.8 | 26.74 | 27.5 | 1.191 | -0.06 | 0.676 | 0.805 | #### <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|-------------------------------|------------------|-------------|--------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA V | RMC 12.2K | Front | 1 | 4233 | 846.6 | 23.61 | 24 | 1.094 | 0.05 | 0.398 | 0.435 | | 10 | WCDMA V | RMC 12.2K | Back | 1 | 4233 | 846.6 | 23.61 | 24 | 1.094 | -0.02 | 0.663 | <mark>0.725</mark> | | | WCDMA V | RMC 12.2K | Left Side | 1 | 4233 | 846.6 | 23.61 | 24 | 1.094 | 0.03 | 0.436 | 0.477 | | | WCDMA V | RMC 12.2K | Right Side | 1 | 4233 | 846.6 | 23.61 | 24 | 1.094 | -0.03 | 0.298 | 0.326 | | | WCDMA V | RMC 12.2K | Bottom Side | 1 | 4233 | 846.6 | 23.61 | 24 | 1.094 | 0.04 | 0.149 | 0.163 | | | WCDMA II | RMC 12.2K | Front | 1 | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.04 | 0.867 | 0.989 | | | WCDMA II | RMC 12.2K | Back | 1 | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.08 | 0.881 | 1.005 | | | WCDMA II | RMC 12.2K | Left Side | 1 | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.03 | 0.222 | 0.253 | | | WCDMA II | RMC 12.2K | Right Side | 1 | 9400 | 1880 | 24.43 | 25 | 1.140 | -0.06 | 0.466 | 0.531 | | 11 | WCDMA II | RMC 12.2K | Bottom Side | 1 | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.02 | 1.2 | 1.368 | | | WCDMA II | RMC 12.2K | Front | 1 | 9262 | 1852.4 | 23.98 | 25 | 1.265 | 0.04 | 0.829 | 1.048 | | | WCDMA II | RMC 12.2K | Front | 1 |
9538 | 1907.6 | 23.81 | 25 | 1.315 | 0.07 | 0.703 | 0.925 | | | WCDMA II | RMC 12.2K | Back | 1 | 9262 | 1852.4 | 23.98 | 25 | 1.265 | -0.08 | 0.862 | 1.090 | | | WCDMA II | RMC 12.2K | Back | 1 | 9538 | 1907.6 | 23.81 | 25 | 1.315 | 0.05 | 0.742 | 0.976 | | | WCDMA II | RMC 12.2K | Bottom Side | 1 | 9262 | 1852.4 | 23.98 | 25 | 1.265 | -0.01 | 1.02 | 1.290 | | | WCDMA II | CDMA II RMC 12.2K Bottom Side | 1 | 9538 | 1907.6 | 23.81 | 25 | 1.315 | 0.09 | 0.897 | 1.180 | | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 FCC ID: WVBAL500 Page 40 of 56 Form version.: 140422 # <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------|--------------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 4 | 20M | QPSK 1RB 0 Offset | Front | 1 | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.03 | 0.486 | 0.539 | | | LTE Band 4 | 20M | QPSK 1RB 0 Offset | Back | 1 | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.05 | 0.566 | 0.628 | | | LTE Band 4 | 20M | QPSK 1RB 0 Offset | Left Side | 1 | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.03 | 0.183 | 0.203 | | | LTE Band 4 | 20M | QPSK 1RB 0 Offset | Right Side | 1 | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.03 | 0.299 | 0.332 | | 12 | LTE Band 4 | 20M | QPSK 1RB 0Offset | Bottom Side | 1 | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.06 | 0.605 | 0.671 | | | LTE Band 4 | 20M | QPSK 50RB 0 Offset | Front | 1 | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.02 | 0.494 | 0.554 | | | LTE Band 4 | 20M | QPSK 50RB 0 Offset | Back | 1 | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.04 | 0.569 | 0.638 | | | LTE Band 4 | 20M | QPSK 50RB 0 Offset | Left Side | 1 | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.02 | 0.152 | 0.171 | | | LTE Band 4 | 20M | QPSK 50RB 0 Offset | Right Side | 1 | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.02 | 0.247 | 0.277 | | | LTE Band 4 | 20M | QPSK 50RB 0 Offset | Bottom Side | 1 | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.12 | 0.499 | 0.560 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Front | 1 | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.03 | 0.467 | 0.483 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.06 | 1.01 | 1.045 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Left Side | 1 | 21100 | 2535 | 22.85 | 23 | 1.035 | -0.08 | 0.05 | 0.052 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Right Side | 1 | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.04 | 0.14 | 0.145 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Bottom Side | 1 | 21100 | 2535 | 22.85 | 23 | 1.035 | -0.08 | 1.19 | 1.232 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | 20850 | 2510 | 22.2 | 23 | 1.202 | 0.04 | 0.815 | 0.980 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | 21350 | 2560 | 22.69 | 23 | 1.074 | 0.09 | 1.18 | 1.267 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Bottom Side | 1 | 20850 | 2510 | 22.2 | 23 | 1.202 | 0.08 | 0.953 | 1.146 | | 13 | LTE Band 7 | 20M | QPSK 1RB 49Offset | Bottom Side | 1 | 21350 | 2560 | 22.69 | 23 | 1.074 | -0.02 | 1.33 | 1.428 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Front | 1 | 21100 | 2535 | 21.78 | 22 | 1.052 | -0.02 | 0.412 | 0.433 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Back | 1 | 21100 | 2535 | 21.78 | 22 | 1.052 | 0.01 | 0.914 | 0.961 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Left Side | 1 | 21100 | 2535 | 21.78 | 22 | 1.052 | -0.02 | 0.041 | 0.043 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Right Side | 1 | 21100 | 2535 | 21.78 | 22 | 1.052 | -0.02 | 0.121 | 0.127 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Bottom Side | 1 | 21100 | 2535 | 21.78 | 22 | 1.052 | 0.03 | 1.04 | 1.094 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Back | 1 | 20850 | 2510 | 21.21 | 22 | 1.199 | -0.01 | 0.722 | 0.866 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Back | 1 | 21350 | 2560 | 21.77 | 22 | 1.054 | -0.05 | 0.909 | 0.958 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Bottom Side | 1 | 20850 | 2510 | 21.21 | 22 | 1.199 | -0.04 | 0.829 | 0.994 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Bottom Side | 1 | 21350 | 2560 | 21.77 | 22 | 1.054 | -0.05 | 1.11 | 1.170 | | | LTE Band 7 | 20M | QPSK 100RB 0Offset | Front | 1 | 21100 | 2535 | 21.68 | 22 | 1.076 | -0.02 | 0.386 | 0.416 | | | LTE Band 7 | 20M | QPSK 100RB 0Offset | Back | 1 | 21100 | 2535 | 21.68 | 22 | 1.076 | -0.03 | 0.814 | 0.876 | | | LTE Band 7 | 20M | QPSK 100RB 0Offset | Left Side | 1 | 21100 | 2535 | 21.68 | 22 | 1.076 | -0.02 | 0.045 | 0.048 | | | LTE Band 7 | 20M | QPSK 100RB 0Offset | Right Side | 1 | 21100 | 2535 | 21.68 | 22 | 1.076 | -0.09 | 0.066 | 0.071 | | | LTE Band 7 | 20M | QPSK 100RB 0Offset | Bottom Side | 1 | 21100 | 2535 | 21.68 | 22 | 1.076 | -0.08 | 0.983 | 1.058 | Report No.: FA441505 # <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Data
Rate
(bps) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|---------|------------------|-------------|-----|----------------|-----------------------|---------------------------|---------------------------|------------------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 14 | WLAN2.4G | 802.11b | Front | 1 | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.17 | 0.146 | <mark>0.156</mark> | | | WLAN2.4G | 802.11b | Back | 1 | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.04 | 0.09 | 0.096 | | | WLAN2.4G | 802.11b | Left Side | 1 | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.07 | 0.056 | 0.060 | | | WLAN2.4G | 802.11b | Top Side | 1 | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.06 | 0.034 | 0.036 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 41 of 56 # 15.3 Body Worn Accessory SAR # <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Headset | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|------------------|------------------|-------------|---------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS(3 Tx slots) | Front | 1 | - | 128 | 824.2 | 29.19 | 29.5 | 1.074 | 0.02 | 0.294 | 0.316 | | 08 | GSM850 | GPRS(3 Tx slots) | Back | 1 | - | 128 | 824.2 | 29.19 | 29.5 | 1.074 | -0.02 | 0.606 | 0.651 | | | GSM1900 | GPRS(3 Tx slots) | Front | 1 | - | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | -0.06 | 0.597 | 0.676 | | 18 | GSM1900 | GPRS(3 Tx slots) | Back | 1 | - | 512 | 1850.2 | 26.96 | 27.5 | 1.132 | 0.01 | 0.605 | 0.68 <mark>5</mark> | **Report No. : FA441505** # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Headset | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|-----------|------------------|-------------|---------|------|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------|------------------------------| | | WCDMA V | RMC 12.2K | Front | 1 | - | 4233 | 846.6 | 23.61 | 24 | 1.094 | 0.05 | 0.398 | 0.435 | | 10 | WCDMA V | RMC 12.2K | Back | 1 | - | 4233 | 846.6 | 23.61 | 24 | 1.094 | -0.02 | 0.663 | 0.725 | | | WCDMA II | RMC 12.2K | Front | 1 | - | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.04 | 0.867 | 0.989 | | | WCDMA II | RMC 12.2K | Back | 1 | - | 9400 | 1880 | 24.43 | 25 | 1.140 | 0.08 | 0.881 | 1.005 | | | WCDMA II | RMC 12.2K | Front | 1 | - | 9262 | 1852.4 | 23.98 | 25 | 1.265 | 0.04 | 0.829 | 1.048 | | | WCDMA II | RMC 12.2K | Front | 1 | - | 9538 | 1907.6 | 23.81 | 25 | 1.315 | 0.07 | 0.703 | 0.925 | | 15 | WCDMA II | RMC 12.2K | Back | 1 | - | 9262 | 1852.4 | 23.98 | 25 | 1.265 | -0.08 | 0.862 | 1.090 | | | WCDMA II | RMC 12.2K | Back | 1 | - | 9538 | 1907.6 | 23.81 | 25 | 1.315 | 0.05 | 0.742 | 0.976 | ### <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | Test
Position | Gap
(cm) | Headset | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|-------------|--------------------|------------------|-------------|---------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 4 | 20M | QPSK 1RB 0 Offset | Front | 1 | - | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.03 | 0.486 | 0.539 | | | LTE Band 4 | 20M | QPSK 1RB 0 Offset | Back | 1 | - | 20300 | 1745 | 23.55 | 24 | 1.109 | 0.05 | 0.566 | 0.628 | | | LTE Band 4 | 20M | QPSK 50RB 0 Offset | Front | 1 | - | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.02 | 0.494 | 0.554 | | 16 | LTE Band 4 | 20M | QPSK 50RB 0 Offset | Back | 1 | - | 20300 | 1745 | 22.5 | 23 | 1.122 | 0.04 | 0.569 | 0.638 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Front | 1 | - | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.03 | 0.467 | 0.483 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset |
Back | 1 | - | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.06 | 1.01 | 1.045 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | - | 20850 | 2510 | 22.2 | 23 | 1.202 | 0.04 | 0.815 | 0.980 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | - | 21350 | 2560 | 22.69 | 23 | 1.074 | 0.09 | 1.18 | 1.267 | | 17 | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | Headset | 21350 | 2560 | 22.69 | 23 | 1.074 | 0.04 | 1.22 | <mark>1.310</mark> | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | Headset | 20850 | 2510 | 22.2 | 23 | 1.202 | 0.03 | 0.848 | 1.020 | | | LTE Band 7 | 20M | QPSK 1RB 49Offset | Back | 1 | Headset | 21100 | 2535 | 22.85 | 23 | 1.035 | 0.09 | 1.06 | 1.097 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Front | 1 | - | 21100 | 2535 | 21.78 | 22 | 1.052 | -0.02 | 0.412 | 0.433 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Back | 1 | - | 21100 | 2535 | 21.78 | 22 | 1.052 | 0.01 | 0.914 | 0.961 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Back | 1 | - | 20850 | 2510 | 21.21 | 22 | 1.199 | -0.01 | 0.722 | 0.866 | | | LTE Band 7 | 20M | QPSK 50RB 49Offset | Back | 1 | - | 21350 | 2560 | 21.77 | 22 | 1.054 | -0.05 | 0.909 | 0.958 | | | LTE Band 7 | 20M | QPSK 100RB 0Offset | Front | 1 | - | 21100 | 2535 | 21.68 | 22 | 1.076 | -0.02 | 0.386 | 0.416 | | | LTE Band 7 | 20M | QPSK 100RB 0Offset | Back | 1 | - | 21100 | 2535 | 21.68 | 22 | 1.076 | -0.03 | 0.814 | 0.876 | Report No. : FA441505 #### <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Headset | Ch. | /MU- | Pate | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|---------|------------------|-------------|---------|-----|------|------|---------------------------|---------------------------|------------------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 14 | WLAN2.4G | 802.11b | Front | 1 | - | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.17 | 0.146 | <mark>0.156</mark> | | | WLAN2.4G | 802.11b | Back | 1 | - | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.04 | 0.09 | 0.096 | | | WLAN2.4G | 802.11b | Back | 1 | Headset | 6 | 2437 | 1M | 17.81 | 18 | 1.044 | 1.024 | -0.04 | 0.089 | 0.095 | # 15.4 Repeated SAR Measurement | No. | Band | BW
(MHz) | Mode | Test
Position | Gap
(cm) | | Freq.
(MHz) | | Power | Tune-Up
Limit
(dBm) | Cooling | | Delfs | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|------------|-------------|-------------------|------------------|-------------|-------|----------------|----|-------|---------------------------|---------|-------|-------|------------------------------|-------|------------------------------| | 1st | WLAN2.4G | - | 802.11b | Right Cheek | | 1 | 2412 | 1M | 16.12 | 18 | 1.540 | 1.024 | -0.09 | 0.91 | 1 | 1.435 | | 2nd | WLAN2.4G | - | 802.11b | Right Cheek | • | 1 | 2412 | 1M | 16.12 | 18 | 1.540 | 1.024 | -0.02 | 0.873 | 1.042 | 1.377 | | 1st | WCDMA II | - | RMC 12.2K | Bottom Side | 1 | 9400 | 1880 | | 24.43 | 25 | 1.140 | - | 0.02 | 1.2 | 1 | 1.368 | | 2nd | WCDMA II | - | RMC 12.2K | Bottom Side | 1 | 9400 | 1880 | • | 24.43 | 25 | 1.140 | - | -0.07 | 1.15 | 1.043 | 1.311 | | 1st | LTE Band 7 | 20M | QPSK 1RB 49Offset | Bottom Side | 1 | 21350 | 2560 | | 22.69 | 23 | 1.074 | - | -0.02 | 1.33 | 1 | 1.428 | | 2nd | LTE Band 7 | 20M | QPSK 1RB 49Offset | Bottom Side | 1 | 21350 | 2560 | • | 22.69 | 23 | 1.074 | - | 0.05 | 1.31 | 1.015 | 1.407 | **Report No. : FA441505** #### **General Note:** - 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. **SPORTON INTERNATIONAL (SHENZHEN) INC.** TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 #### 16. Simultaneous Transmission Analysis | NO. | Circultura and Tanancia in Confirmation | P | ortable Hands | et | Note | |-----|--|------|---------------|---------|---------------------| | NO. | Simultaneous Transmission Configurations | Head | Body-worn | Hotspot | Note | | 1. | GSM(Voice) + WLAN2.4GHz(data) | Yes | Yes | - | - | | 2. | WCDMA(Voice) + WLAN2.4GHz(data) | Yes | Yes | - | - | | 3. | GSM(Voice) + Bluetooth(data) | Yes | Yes | - | - | | 4. | WCDMA((Voice) + Bluetooth(data) | Yes | Yes | - | - | | 5. | GPRS/EDGE(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 6. | WCDMA(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 7. | LTE(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 8. | GPRS/EDGE(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | | 9. | WCDMA(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | | 10. | LTE(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | **Report No. : FA441505** #### **General Note:** - 1. This device supported VoIP in GPRS/EGPRS, WCDMA, LTE (e.g. 3rd party VoIP). - 2. This device 2.4GHz WLAN supports Hotspot operation. - 3. WLAN 2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously. - 4. EUT will choose each of GSM, WCDMA and LTE according to the network signal condition; therefore, they will not transmit simultaneously at any moment. - 5. The Reported SAR summation is calculated based on the same configuration and test position. - 6. Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - 7. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]:[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. - iv) Bluetooth estimated SAR is conservatively determined by 5mm separation, for all applicable exposure positions. | Bluetooth | Exposure Position | Head | Hotspot | Body worn | |-----------|----------------------|------------|------------|------------| | Max Power | Test separation | 0 mm | 10 mm | 10 mm | | 2.5 dBm | Estimated SAR (W/kg) | 0.084 W/kg | 0.042 W/kg | 0.042 W/kg | FCC ID : WVBAL500 Page 45 of 56 Form version. : 140422 # 16.1 Head Exposure Conditions #### <WWAN + WLAN> | | | Exposure | WWAN | WLAN DTS | Summed | | | |------------|----------|--------------|---------------|---------------|-------------------|-------|---------| | WWAN E | Band | Position | SAR
(W/kg) | SAR
(W/kg) | SAR (W/kg) | SPLSR | Case No | | | | Right Cheek | 0.151 | 1.435 | <mark>1.59</mark> | | | | | GSM850 | Right Tilted | 0.085 | 0.555 | 0.64 | | | | | GSIVI850 | Left Cheek | 0.15 | 0.351 | 0.50 | | | | 0014 | | Left Tilted | 0.09 | 0.254 | 0.34 | | | | GSM | | Right Cheek | 0.335 | 1.435 | 1.77 | 0.03 | 1 | | | GSM1900 | Right Tilted | 0.161 | 0.555 | 0.72 | | | | | GSW1900 | Left Cheek | 0.264 | 0.351 | 0.62 | | | | | | Left Tilted | 0.145 | 0.254 | 0.40 | | | | | | Right Cheek | 0.29 | 1.435 | 1.73 | 0.03 | 2 | | | D 11/ | Right Tilted | 0.135 | 0.555 | 0.69 | | | | | Band V | Left Cheek | 0.209 | 0.351 | 0.56 | | | | 14/01/15/4 | | Left Tilted | 0.127 | 0.254 | 0.38 | | | | WCMDA | | Right Cheek | 0.322 | 1.435 | 1.76 | 0.03 | 3 | | | 5 | Right Tilted | 0.225 | 0.555 | 0.78 | | | | | Band II | Left Cheek | 0.365 | 0.351 | 0.72 | | | | | | Left Tilted | 0.18 | 0.254 | 0.43 | | | | | | Right Cheek | 0.491 | 1.435 | 1.93 | 0.03 | 4 | | | D 1.4 | Right Tilted | 0.199 | 0.555 | 0.75 | | | | | Band 4 | Left Cheek | 0.41 | 0.351 | 0.76 | | | | | | Left Tilted | 0.181 | 0.254 | 0.44 | | | | LTE | | Right Cheek | 0.177 | 1.435 | <mark>1.61</mark> | 0.02 | 5 | | | D 1.7 | Right Tilted | 0.052 | 0.555 | 0.61 | | | | | Band 7 | Left Cheek | 0.109 | 0.351 | 0.46 | | | | | | | | | | | | Report No.: FA441505 <WWAN + Bluetooth> | ### Access No. Sar (Wikg) S | _ | | Exposure | WWAN | Bluetooth DSS | Summed | | |
--|---------|----------|--------------|-------|---------------|------------|-------|---------| | GSM850 Right Tilted 0.085 0.084 0.17 0.23 GSM1900 Left Tilted 0.09 0.084 0.17 0.17 WCMDA Right Cheek 0.335 0.084 0.42 0.25 Right Tilted 0.161 0.084 0.25 0.084 Left Tilted 0.145 0.084 0.23 Left Tilted 0.145 0.084 0.23 Right Tilted 0.145 0.084 0.23 Right Tilted 0.135 0.084 0.22 Left Cheek 0.209 0.084 0.22 Left Tilted 0.127 0.084 0.29 Left Tilted 0.127 0.084 0.21 Right Tilted 0.225 0.084 0.41 Right Tilted 0.225 0.084 0.41 Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.45 Left Tilted 0.18 0.084 <t< th=""><th>WWAI</th><th>N Band</th><th></th><th></th><th></th><th>SAR (W/kg)</th><th>SPLSR</th><th>Case No</th></t<> | WWAI | N Band | | | | SAR (W/kg) | SPLSR | Case No | | GSM850 Left Cheek 0.15 0.084 0.23 Left Tilted 0.09 0.084 0.17 WCMDA Right Cheek 0.335 0.084 0.42 Right Tilted 0.161 0.084 0.25 Left Tilted 0.145 0.084 0.23 Left Tilted 0.145 0.084 0.23 Right Tilted 0.135 0.084 0.37 Right Tilted 0.135 0.084 0.22 Left Tilted 0.127 0.084 0.29 Left Tilted 0.127 0.084 0.21 Right Tilted 0.225 0.084 0.41 Right Tilted 0.225 0.084 0.41 Left Tilted 0.18 0.084 0.45 Left Tilted 0.18 0.084 0.26 Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.28 Left Cheek 0.41 0.084 0.27 | | | Right Cheek | 0.151 | 0.084 | 0.24 | | | | GSM Composition of | | CCMSEO | Right Tilted | 0.085 | 0.084 | 0.17 | | | | GSM Right Cheek 0.335 0.084 0.42 Right Tilted 0.161 0.084 0.25 Left Cheek 0.264 0.084 0.35 Left Cheek 0.29 0.084 0.23 Band V Right Cheek 0.29 0.084 0.23 Right Tilted 0.135 0.084 0.22 Left Cheek 0.209 0.084 0.29 Left Tilted 0.127 0.084 0.29 Left Tilted 0.127 0.084 0.21 Right Tilted 0.225 0.084 0.41 Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.26 Left Tilted 0.18 0.084 0.28 Left Cheek 0.41 0.084 0.28 Left Cheek 0.41 0.084 0.27 Left Tilted 0.181 0.084 0.27 Band 7 Right Cheek 0.177 0.084 0 | | GSIVIOSU | Left Cheek | 0.15 | 0.084 | 0.23 | | | | Right Cheek 0.335 0.084 0.42 Right Tilted 0.161 0.084 0.25 Left Cheek 0.264 0.084 0.35 Left Tilted 0.145 0.084 0.23 Right Cheek 0.29 0.084 0.37 Right Tilted 0.135 0.084 0.22 Left Cheek 0.209 0.084 0.29 Left Tilted 0.127 0.084 0.29 Left Tilted 0.127 0.084 0.21 Right Tilted 0.225 0.084 0.41 Right Tilted 0.225 0.084 0.41 Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.26 Right Cheek 0.491 0.084 0.26 Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.49 Left Cheek 0.41 0.084 0.26 Left Tilted 0.181 | CCM | | Left Tilted | 0.09 | 0.084 | 0.17 | | | | Left Cheek 0.264 0.084 0.35 | GSIVI | | Right Cheek | 0.335 | 0.084 | 0.42 | | | | Left Cheek 0.264 0.084 0.35 | | CSM1000 | Right Tilted | 0.161 | 0.084 | 0.25 | | | | WCMDA Right Cheek 0.29 0.084 0.37 Band V Right Tilted 0.135 0.084 0.22 Left Cheek 0.209 0.084 0.29 Left Tilted 0.127 0.084 0.21 Right Cheek 0.322 0.084 0.41 Right Tilted 0.225 0.084 0.41 Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.26 Right Cheek 0.491 0.084 0.58 Band 4 Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.49 Left Cheek 0.41 0.084 0.49 Left Tilted 0.181 0.084 0.27 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | | GSW1900 | Left Cheek | 0.264 | 0.084 | 0.35 | | | | WCMDA Right Tilted 0.135 0.084 0.22 Left Cheek 0.209 0.084 0.29 Left Tilted 0.127 0.084 0.21 Band II Right Cheek 0.322 0.084 0.41 Right Tilted 0.225 0.084 0.31 Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.26 Right Cheek 0.491 0.084 0.58 Band 4 Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.49 Left Tilted 0.181 0.084 0.27 Right Cheek 0.177 0.084 0.26 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | | | Left Tilted | 0.145 | 0.084 | 0.23 | | | | WCMDA Band V Left Cheek 0.209 0.084 0.29 Left Tilted 0.127 0.084 0.21 Right Cheek 0.322 0.084 0.41 Right Tilted 0.225 0.084 0.31 Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.26 Left Tilted 0.18 0.084 0.26 Right Cheek 0.491 0.084 0.28 Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.49 Left Tilted 0.181 0.084 0.27 Right Cheek 0.177 0.084 0.26 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | | | Right Cheek | 0.29 | 0.084 | 0.37 | | | | WCMDA Left Cheek 0.209 0.084 0.29 Left Tilted 0.127 0.084 0.21 Band II Right Cheek 0.322 0.084 0.41 Right Tilted 0.225 0.084 0.31 Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.26 Right Cheek 0.491 0.084 0.58 Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.49 Left Tilted 0.181 0.084 0.27 Right Cheek 0.177 0.084 0.26 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | | Dand V | Right Tilted | 0.135 | 0.084 | 0.22 | | | | Band II | | Band v | Left Cheek | 0.209 | 0.084 | 0.29 | | | | Band II | MOMPA | | Left Tilted | 0.127 | 0.084 | 0.21 | | | | Band II | WCIVIDA | | Right Cheek | 0.322 | 0.084 | 0.41 | | | | Left Cheek 0.365 0.084 0.45 Left Tilted 0.18 0.084 0.26 Right Cheek 0.491 0.084 0.58 Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.49 Left Tilted 0.181 0.084 0.27 Right Cheek 0.177 0.084 0.26 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | | Don'd II | Right Tilted | 0.225 | 0.084 | 0.31 | | | | Band 4 Right Cheek 0.491 0.084 0.58 | | Band II | Left Cheek | 0.365 | 0.084 | 0.45 | | | | LTE Right Tilted 0.199 0.084 0.28 Left Cheek 0.41 0.084 0.49 Left Tilted 0.181 0.084 0.27 Right Cheek 0.177 0.084 0.26 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | | | Left Tilted | 0.18 | 0.084 | 0.26 | | | | LTE Band 4 Left Cheek 0.41 0.084 0.49 | | | Right Cheek | 0.491 | 0.084 | 0.58 | | | | Left Cheek 0.41 0.084 0.49 Left Tilted 0.181 0.084 0.27 Right Cheek 0.177 0.084 0.26 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | | D = 1 4 | Right Tilted | 0.199 | 0.084 | 0.28 | | | | Right Cheek 0.177 0.084 0.26 | | Danu 4 | Left Cheek | 0.41 | 0.084 | 0.49 | | | | Band 7 Right Cheek 0.177 0.084 0.26 Right Tilted 0.052 0.084 0.14 Left Cheek 0.109 0.084 0.19 | LTC | | Left Tilted | 0.181 | 0.084 | 0.27 | | | | Band 7 Left Cheek 0.109 0.084 0.19 | LIE | | Right Cheek | 0.177 | 0.084 | 0.26 | | | | Left Cheek 0.109 0.084 0.19 | | Dand 7 | Right Tilted | 0.052 | 0.084 | 0.14 | | | | Left Tilted 0.099 0.084 0.18 | | Danu / | Left Cheek | 0.109 | 0.084 | 0.19 | | | | | | | Left Tilted | 0.099 | 0.084 | 0.18 | | | Report No. : FA441505 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 47 of 56 # 16.2 Hotspot Exposure Conditions ### <WWAN + WLAN> | <wwan +="" th="" v<=""><th></th><th>Exposure</th><th>WWAN</th><th>WLAN DTS</th><th>Summed</th><th></th><th></th></wwan> | | Exposure | WWAN | WLAN DTS | Summed | | | |---|---------|-------------|---------------|---------------|------------|-------|---------| | WWA | N Band | Position | SAR
(W/kg) | SAR
(W/kg) | SAR (W/kg) | SPLSR | Case No | | | | Front | 0.316 | 0.156 | 0.47 | | | | | | Back | 0.651 | 0.096 | 0.75 | | | | | 0014050 | Left side | 0.359 | 0.06 | 0.42 | | | | | GSM850 | Right side | 0.268 | | 0.27 | | | | | | Top side | | 0.036 | 0.04 | | | | 0014 | | Bottom side | 0.1 | | 0.10 | | | | GSM | | Front | 0.676 | 0.156 | 0.83 | | | | | | Back | 0.685 | 0.096 | 0.78 | | | | | GSM1900 | Left side | 0.182 | 0.06 | 0.24 | | | | | GSW1900 | Right side | 0.369 | | 0.37 | | | | | | Top side | | 0.036 | 0.04 | | | | | | Bottom side | 0.873 | | 0.87 | | | | | | Front | 0.435 | 0.156 | 0.59 | | | | | | Back | 0.725 | 0.096 | 0.82 | | | | | Dd-V | Left side | 0.477 | 0.06 | 0.54 | | | | | Band V | Right side | 0.326 | | 0.33 | | | | | | Top side | | 0.036 | 0.04 | | | | MOMPA | | Bottom side | 0.163 | | 0.16 | | | | WCMDA | | Front | 1.048 | 0.156 | 1.20 | | | | | | Back | 1.09 | 0.096 | 1.19 | | | | | D | Left side | 0.253 | 0.06 | 0.31 | | | | | Band II | Right side | 0.531 | | 0.53 | | | | | | Top side | | 0.036 | 0.04 | | | | | | Bottom side | 1.368 | |
1.37 | | | | | | Front | 0.554 | 0.156 | 0.71 | | | | | | Back | 0.638 | 0.096 | 0.73 | | | | | David 4 | Left side | 0.203 | 0.06 | 0.26 | | | | | Band 4 | Right side | 0.332 | | 0.33 | | | | | | Top side | | 0.036 | 0.04 | | | | | | Bottom side | 0.671 | | 0.67 | | | | LTE | | Front | 0.483 | 0.156 | 0.64 | | | | | | Back | 1.267 | 0.096 | 1.36 | | | | | Dand 7 | Left side | 0.052 | 0.06 | 0.11 | | | | | Band 7 | Right side | 0.145 | | 0.15 | | | | | | Top side | | 0.036 | 0.04 | | | | | | Bottom side | 1.428 | | 1.43 | | | **Report No. : FA441505** TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 48 of 56 ### <WWAN + Bluetooth> | | siuetootn> | Exposure | WWAN | Bluetooth DSS | Summed | | | |-------|------------|-------------|---------------|-------------------------|------------|-------|---------| | WWA | N Band | Position | SAR
(W/kg) | Estimated
SAR (W/kg) | SAR (W/kg) | SPLSR | Case No | | | | Front | 0.316 | 0.042 | 0.36 | | | | | | Back | 0.651 | 0.042 | 0.69 | | | | | GSM850 | Left side | 0.359 | 0.042 | 0.40 | | | | | GSIVIOSU | Right side | 0.268 | | 0.27 | | | | | | Top side | | 0.042 | 0.04 | | | | GSM | | Bottom side | 0.1 | | 0.10 | | | | GSIVI | | Front | 0.676 | 0.042 | 0.72 | | | | | | Back | 0.685 | 0.042 | 0.73 | | | | | CCM4000 | Left side | 0.182 | 0.042 | 0.22 | | | | | GSM1900 | Right side | 0.369 | | 0.37 | | | | | | Top side | | 0.042 | 0.04 | | | | | | Bottom side | 0.873 | | 0.87 | | | | | | Front | 0.435 | 0.042 | 0.48 | | | | | | Back | 0.725 | 0.042 | 0.77 | | | | | 5 11/ | Left side | 0.477 | 0.042 | 0.52 | | | | | Band V | Right side | 0.326 | | 0.33 | | | | | | Top side | | 0.042 | 0.04 | | | | MOMBA | | Bottom side | 0.163 | | 0.16 | | | | WCMDA | | Front | 1.048 | 0.042 | 1.09 | | | | | | Back | 1.09 | 0.042 | 1.13 | | | | | 5 | Left side | 0.253 | 0.042 | 0.30 | | | | | Band II | Right side | 0.531 | | 0.53 | | | | | | Top side | | 0.042 | 0.04 | | | | | | Bottom side | 1.368 | | 1.37 | | | | | | Front | 0.554 | 0.042 | 0.60 | | | | | | Back | 0.638 | 0.042 | 0.68 | | | | | 5 | Left side | 0.203 | 0.042 | 0.25 | | | | | Band 4 | Right side | 0.332 | | 0.33 | | | | | | Top side | | 0.042 | 0.04 | | | | | | Bottom side | 0.671 | | 0.67 | | | | LTE | | Front | 0.483 | 0.042 | 0.53 | | | | | | Back | 1.267 | 0.042 | 1.31 | | | | | D | Left side | 0.052 | 0.042 | 0.09 | | | | | Band 7 | Right side | 0.145 | | 0.15 | | | | | | Top side | | 0.042 | 0.04 | | | | | | Bottom side | 1.428 | | 1.43 | | | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 FCC ID: WVBAL500 Page 49 of 56 Issued Date : Jun. 04, 2014 Form version. : 140422 Report No.: FA441505 # 16.3 Body-Worn Accessory Exposure Conditions ### < WWAN + WLAN > | | | | WWAN | WLAN DTS | Summed | | | |-------|----------|-------------------|---------------|---------------|------------|-------|---------| | AWW | N Band | Exposure Position | SAR
(W/kg) | SAR
(W/kg) | SAR (W/kg) | SPLSR | Case No | | | GSM850 | Front | 0.316 | 0.156 | 0.47 | | | | CCM | GSIVIOSU | Back | 0.651 | 0.096 | 0.75 | | | | GSM | CCM4000 | Front | 0.676 | 0.156 | 0.83 | | | | | GSM1900 | Back | 0.685 | 0.096 | 0.78 | | | | | Dand V | Front | 0.435 | 0.156 | 0.59 | | | | WCMDA | Band V | Back | 0.725 | 0.096 | 0.82 | | | | WCMDA | Donall | Front | 1.048 | 0.156 | 1.20 | | | | | Band II | Back | 1.09 | 0.096 | 1.19 | | | | | Daniel 4 | Front | 0.554 | 0.156 | 0.71 | | | | | Band 4 | Back | 0.638 | 0.096 | 0.73 | | | | LTE | | Front | 0.483 | 0.156 | 0.64 | | | | | Band 7 | Back | 1.267 | 0.096 | 1.36 | | | | | | Back with Headset | 1.31 | 0.095 | 1.41 | | | **Report No. : FA441505** #### < WWAN + Bluetooth > | | | | WWAN | Bluetooth DSS | Summed | | | |-------|-----------|-------------------|---------------|-------------------------|------------|-------|---------| | 1AWW | N Band | Exposure Position | SAR
(W/kg) | Estimated
SAR (W/kg) | SAR (W/kg) | SPLSR | Case No | | | GSM850 | Front | 0.316 | 0.042 | 0.36 | | | | GSM | GSIVIOSO | Back | 0.651 | 0.042 | 0.69 | | | | GSIVI | GSM1900 | Front | 0.676 | 0.042 | 0.72 | | | | | GSW1900 | Back | 0.685 | 0.042 | 0.73 | | | | | Daniel V | Front | 0.435 | 0.042 | 0.48 | | | | MCMDA | Band V | Back | 0.725 | 0.042 | 0.77 | | | | WCMDA | Daniel II | Front | 1.048 | 0.042 | 1.09 | | | | | Band II | Back | 1.09 | 0.042 | 1.13 | | | | | David 4 | Front | 0.554 | 0.042 | 0.60 | | | | | Band 4 | Back | 0.638 | 0.042 | 0.68 | | | | LTE | | Front | 0.483 | 0.042 | 0.53 | | | | | Band 7 | Back | 1.267 | 0.042 | 1.31 | | | | | | Back with Headset | 1.31 | 0.042 | 1.35 | | | **Report No. : FA441505** # 16.4 SPLSR Evaluation and Analysis #### **General Note:** SPLSR = (SAR₁ + SAR₂)^{1.5} / (min. separation distance, mm). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary | | David | Decision. | SAR | Gap | SAR p | eak location | n (m) | 3D | Summed | SPLSR | Simultaneous | |--------|----------|------------------------|--------|------|--------|--------------|--------|------------------|---------------|---------|--------------| | Coop 1 | Band | Position | (W/kg) | (cm) | Х | Υ | Z | distance
(mm) | SAR
(W/kg) | Results | SAR | | Case 1 | GSM1900 | Right Cheek | 0.335 | 0 | 0.0663 | -0.253 | -0.173 | 80.7 | 1.77 | 0.03 | Not required | | | WLAN2.4G | Right Cheek | 1.435 | 0 | 0.0342 | -0.327 | -0.174 | 6U. <i>1</i> | 1.77 | 0.03 | Not required | | | | dB
<mark>□</mark> 0 | | - | | | | - | | | | | | | | | | | | WLAN | | | | | | | | -10.00 | | | | | | | | | | | | | -20.00 | | | | | | | | | | | | | -30.00 | | | WWAN | | | | | | | | | | -40.00 | | | | | | | | | | | | | -50.00 | - | | | | | | | | | | | Band | Danisia | SAR | Gap | SAR p | peak location (m) | | 3D | Summed | SPLSR | Simultaneous | |--------|----------|--------------------------------------|--------|------|--------|-------------------|--------|------------------|---------------|---------|--------------| | Case 2 | | Position | (W/kg) | (cm) | Х | Υ | Z | distance
(mm) | SAR
(W/kg) | Results | SAR | | Case 2 | WCDMA V | - Right Cheek | 0.29 | 0 | 0.0646 | -0.264 | -0.174 | 70.0 | 1.73 | 0.03 | Not required | | | WLAN2.4G | | 1.435 | 0 | 0.0342 | -0.327 | -0.174 | | | | | | | | -10.00
-20.00
-30.00
-40.00 | 1 | | www | AN | WLAN | | | | | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 Form version. : 140422 FCC ID: WVBAL500 Page 51 of 56 | SPORTON LAB. FCC SAR Test Report No.: FA44 | | | | | | | | | | .:FA441505 | | | |--|----------|----------------|--------|------|--------|-------------|----------------|----------------|-------------------------|------------------|---------------------|---| | | Band | Position | SAR | Gap | SAR p | eak locatio | ocation (m) 3D | 3D
distance | Summed
SAR
(W/kg) | SPLSR
Results | Simultaneous
SAR | Ī | | Case 3 | | Position | (W/kg) | (cm) | Х | Υ | Z | (mm) | | | | | | | WCDMA II | Pight Chook | 0.322 | 0 | 0.0698 | -0.25 | -0.172 | 04.0 | 1.76 | 0.03 | Not required | | | | WLAN2.4G | Right Cheek | 1.435 | 0 | 0.0342 | -0.327 | -0.174 | 84.9 | 1.76 | dB
0 | | | | | | | | | | | | | | -10.00 | | | | | WLAN | | | | | | | | | -10.00 | | | | | | | | | | | | | | -20.00 | | | | | | | | | | | | | | -30.00 | | | WWAN | | | | | | | | | | | -30.00 | | | | | | | - | | | | | | | -40.00 | | | | | | | | | | | | | | 50.00 | 4 | | | | | | 7.1 | | | | | | | - 50.00 | y | | | 1000 |] | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 FCC ID: WVBAL500 Page 52 of 56 Issued Date: Jun. 04, 2014 Form version: 140422 | Case 5 | Band | Danisia | SAR | Gap | SAR peak location (m) | | | 3D | Summed | SPLSR | Simultaneous | |--------|------------|--------------------------------------|--------|------|-----------------------|--------|--------|------------------|---------------|---------|--------------| | | | Position | (W/kg) | (cm) | Х | Υ | Z | distance
(mm) | SAR
(W/kg) | Results | SAR | | | LTE Band 7 | Right Cheek | 0.177 | 0 | 0.0601 | -0.248 | -0.173 | 83.1 | 4.04 | 0.02 | Not required | | | WLAN2.4G | | 1.435 | 0 | 0.0342 | -0.327 | -0.174 | | 1.61 | | | | | | -10.00
-20.00
-30.00
-40.00 | 1 | | ww | | WLAN | | | | | Report No. : FA441505 Test Engineer: Luke Lu # 17. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. **Report No.: FA441505** A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or
obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor ### **Table 17.1 Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jun. 04, 2014 FCC ID: WVBAL500 Page 54 of 56 Form version.: 140422 | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |-------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | • | | | | | • | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | ı | | | | • | ± 11.0 % | ± 10.8 % | | Coverage Factor for 95 % | K: | =2 | | | | | | | Expanded Uncertainty | | | | | | ± 22.0 % | ± 21.5 % | Report No.: FA441505 Table 17.2 Uncertainty Budget for frequency range 300 MHz to 3 GHz # 18. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" **Report No. : FA441505** - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014 - [7] FCC KDB 648474 D04 v01r02, "SAR Evaluation Considerations for Wireless Handsets", Dec 2013. - [8] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007 - [9] FCC KDB 941225 D02 v02r02, "SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced", May 2013. - [10] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008 - [11] FCC KDB 941225 D05 v02r03, "SAR Evaluation Considerations for LTE Devices", Dec 2013 - [12] FCC KDB 941225 D06 v01r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", May 2013. - [13] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014. - [14] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013. # Appendix A. Plots of System Performance Check Report No.: FA441505 The plots are shown as follows. SPORTON INTERNATIONAL (SHENZHEN) INC. #### System Check Head 835MHz 140516 ### **DUT: Dipole 835 MHz** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL_835_140516 Medium parameters used: f = 835 MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 42.153$; $\rho = 0.9$ Medium: $\epsilon_r = 42.153$ 1000 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.68, 9.68, 9.68); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15m, dy=15m Maximum value of SAR (interpolated) = 2.86 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.316 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.34 W/kg SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.49 W/kgMaximum value of SAR (measured) = 2.87 W/kg #### System Check Head 1750MHz 140514 # **DUT: Dipole 1750 MHz** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL_1800_140514 Medium parameters used: f = 1750 MHz; $\sigma = 1.392$ S/m; $\varepsilon_r = 40.573$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.26, 8.26, 8.26); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.7 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 96.132 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 8.89 W/kg; SAR(10 g) = 4.66 W/kgMaximum value of SAR (measured) = 12.6 W/kg 0 dB = 12.6 W/kg #### System Check Head 1900MHz 140513 # **DUT: Dipole 1900 MHz** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900_140513 Medium parameters used: f = 1900 MHz; $\sigma = 1.422$ S/m; $\varepsilon_r = 38.942$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8, 8, 8); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.2 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 94.378 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.15 W/kg; SAR(10 g) = 4.75 W/kgMaximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg #### System Check Head 2450MHz 140517 # **DUT: Dipole 2450 MHz** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450_140517 Medium parameters used: f = 2450 MHz; $\sigma = 1.878$ S/m; $\epsilon_r = 40.464$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.22, 7.22, 7.22); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 21.3 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:**
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.458 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.19 W/kgMaximum value of SAR (measured) = 21.4 W/kg ## System Check Head 2600MHz 140514 #### **DUT: D2600V2** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: HSL 2600 140514 Medium parameters used: f = 2600 MHz; $\sigma = 2.049$ S/m; $\varepsilon_r = 37.739$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.06, 7.06, 7.06); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 23.0 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 5.99 W/kgMaximum value of SAR (measured) = 21.3 W/kg 0 dB = 21.3 W/kg #### System Check Body 835MHz 140512 # **DUT: Dipole 835 MHz** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL_835_140512 Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\epsilon_r = 54.086$; $\rho = 1$ 1000 kg/m^3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.45 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.652 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.5 W/kgMaximum value of SAR (measured) = 2.44 W/kg #### System Check Body 1750MHz 140514 # **DUT: Dipole 1750 MHz** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL_1800_140514 Medium parameters used: f = 1750 MHz; $\sigma = 1.514$ S/m; $\epsilon_r = 53.575$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4°C; Liquid Temperature: 22.8°C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.01, 8.01, 8.01); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.4 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 94.855 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.49 W/kg; SAR(10 g) = 5.07 W/kgMaximum value of SAR (measured) = 13.3 W/kg 0 dB = 13.3 W/kg #### System Check Body 1900MHz 140512 # **DUT: Dipole 1900 MHz** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL_1900_140512 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\varepsilon_r = 53.532$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.6 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.580 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.47 W/kgMaximum value of SAR (measured) = 14.6 W/kg 0 dB = 14.6 W/kg ## System Check Body 2450MHz 140517 # **DUT: Dipole 2450 MHz** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL_2450_140517 Medium parameters used: f = 2450 MHz; $\sigma = 1.949$ S/m; $\varepsilon_r = 51.667$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4°C; Liquid Temperature: 22.7°C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 19.8 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.583 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.97 W/kgMaximum value of SAR (measured) = 19.7 W/kg Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014.05.13 ## System Check Body 2600MHz 140513 #### **DUT: D2600V2** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: MSL_2600_140513 Medium parameters used: f = 2600 MHz; $\sigma = 2.201$ S/m; $\varepsilon_r = 52.823$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(6.79, 6.79, 6.79); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 22.6 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.41 W/kgMaximum value of SAR (measured) = 21.7 W/kg # Appendix B. Plots of High SAR Measurement Report No.: FA441505 The plots are shown as follows. SPORTON INTERNATIONAL (SHENZHEN) INC. #### 01 GSM850 GPRS(3 Tx slots) Right Cheek Ch128 Communication System: UID 0, GPRS/EDGE11 (0); Frequency: 824.2 MHz; Duty Cycle: 1:2.77 Medium: HSL_835_140516 Medium parameters used: f = 824.2 MHz; $\sigma = 0.889$ S/m; $\epsilon_r = 42.305$; $\rho = 1000$ kg/m³ Date: 2014.05.16 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.68, 9.68, 9.68); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch128/Area Scan (71x121x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.153 W/kg Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.095 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.170 W/kg SAR(1 g) = 0.141 W/kg; SAR(10 g) = 0.112 W/kg Maximum value of SAR (measured) = 0.158 W/kg -1.74 -3.48 -5.21 -6.95 -8.69 0 dB = 0.158 W/kg #### 02 GSM1900 GPRS(3 Tx slots) Right Cheek Ch512 Communication System: UID 0, GPRS/EDGE11 (0); Frequency: 1850.2 MHz; Duty Cycle: 1:2.77 Medium: HSL_1900_140513 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.373$ S/m; $\varepsilon_r = 39.162$; $\rho = 1000$ kg/m³ Date: 2014.05.13 Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8, 8, 8); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Ch512/Area Scan (71x121x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.366 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.423 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.452 W/kg SAR(1 g) = 0.296 W/kg; SAR(10 g) = 0.186 W/kg Maximum value of SAR (measured) = 0.371 W/kg ## 03 WCDMA V RMC 12.2K Right Cheek Ch4233 Communication System: UID 0, UMTS (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL_835_140516 Medium parameters used: f = 846.6 MHz; $\sigma = 0.913$ S/m; $\varepsilon_r = 42.02$; $\rho 0.913$ S/m; $\varepsilon_r = 42.02$; $\rho = 0.913$ S/m; $\varepsilon_r 0.91$ 1000 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.68, 9.68, 9.68); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch4233/Area Scan (71x121x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.290 W/kg Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.953 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.327 W/kg SAR(1 g) = 0.265 W/kg; SAR(10 g) = 0.206 W/kg Maximum value of SAR (measured) = 0.297 W/kg ## 04 WCDMA II RMC 12.2K Left Cheek Ch9400 Communication System: UID 0, UMTS (0); Frequency: 1880 MHz; Duty Cycle: 1:1 $Medium:
HSL_1900_140513 \ Medium \ parameters \ used: \ f=1880 \ MHz; \ \sigma=1.403 \ S/m; \ \epsilon_r=39.034;$ $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8, 8, 8); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch9400/Area Scan (71x121x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.386 W/kg Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.345 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.490 W/kg SAR(1 g) = 0.320 W/kg; SAR(10 g) = 0.199 W/kg Maximum value of SAR (measured) = 0.405 W/kg 0 dB = 0.405 W/kg ## 05 LTE Band 4 20M QPSK 1RB 0offset Right Cheek Ch20300 Communication System: UID 0, LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 $Medium: HSL_1800_140514 \ Medium \ parameters \ used: \ f=1745 \ MHz; \ \sigma=1.386 \ S/m; \ \epsilon_r=40.553;$ Date: 2014.05.14 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.6 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.26, 8.26, 8.26); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Ch20300/Area Scan (71x121x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.545 W/kg Ch20300/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.071 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.652 W/kg SAR(1 g) = 0.443 W/kg; SAR(10 g) = 0.285 W/kg Maximum value of SAR (measured) = 0.539 W/kg 0 dB = 0.539 W/kg ## 06 LTE Band 7 20M QPSK 1RB 49offset Right Cheek Ch21100 Communication System: UID 0, LTE (0); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: HSL_2600_140514 Medium parameters used: f = 2535 MHz; $\sigma = 1.973$ S/m; $\epsilon_r = 38.013$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.06, 7.06, 7.06); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch21100/Area Scan (81x141x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.348 W/kg **Ch21100/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.343 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.315 W/kg SAR(1 g) = 0.171 W/kg; SAR(10 g) = 0.089 W/kgMaximum value of SAR (measured) = 0.240 W/kg 0 dB = 0.240 W/kg ## 07 WLAN2.4G 802.11b Right Cheek Ch1 Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1.024 Medium: HSL 2450 140517 Medium parameters used: f = 2412 MHz; $\sigma = 1.834$ S/m; $\varepsilon_r = 40.615$; Date: 2014.05.17 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.22, 7.22, 7.22); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Ch1/Area Scan (81x141x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.44 W/kg Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.021 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.80 W/kg SAR(1 g) = 0.910 W/kg; SAR(10 g) = 0.403 W/kg Maximum value of SAR (measured) = 1.39 W/kg ## 08 GSM850 GPRS(3 Tx slots) Back 1cm Ch128 Communication System: UID 0, GPRS/EDGE11 (0); Frequency: 824.2 MHz; Duty Cycle: 1:2.77 Medium: MSL_835_140512 Medium parameters used: f = 824.2 MHz; $\sigma = 0.987$ S/m; $\epsilon_r = 54.206$; $\rho = 1000$ kg/m³ Date: 2014.05.12 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch128/Area Scan (71x121x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.671 W/kg Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.507 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.722 W/kg SAR(1 g) = 0.606 W/kg; SAR(10 g) = 0.471 W/kgMaximum value of SAR (measured) = 0.678 W/kg 0 dB = 0.678 W/kg ## 09GSM1900 GPRS(3 Tx slots) Bottom Side 1cm Ch661 Communication System: UID 0, GPRS/EDGE11 (0); Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium: MSL_1900_140512 Medium parameters used: f = 1880 MHz; $\sigma = 1.517$ S/m; $\epsilon_r = 53.569$; $\rho = 1000$ kg/m³ Date: 2014.05.12 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch661/Area Scan (41x71x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.06 W/kg Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.182 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.760 W/kg; SAR(10 g) = 0.398 W/kg Maximum value of SAR (measured) = 1.07 W/kg ## 10 WCDMA V RMC 12.2K Back 1cm Ch4233 Communication System: UID 0, UMTS (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: MSL_835_140512 Medium parameters used: f = 846.6 MHz; $\sigma = 1.015$ S/m; $\epsilon_r = 53.97$; $\rho = 1.0001$ 1000 kg/m^3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) # **Ch4233/Area Scan (71x121x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.728 W/kg **Ch4233/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.254 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.805 W/kg SAR(1 g) = 0.663 W/kg; SAR(10 g) = 0.512 W/kg Maximum value of SAR (measured) = 0.753 W/kg 0 dB = 0.753 W/kg ## 11 WCDMA II RMC 12.2K Bottom Side 1cm Ch9400 Communication System: UID 0, UMTS (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL_1900_140512 Medium parameters used: f = 1880 MHz; $\sigma = 1.517$ S/m; $\epsilon_r = 53.569$; Date: 2014.05.12 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch9400/Area Scan (41x71x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.59 W/kg Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.471 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.11 W/kg SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.622 W/kg Maximum value of SAR (measured) = 1.71 W/kg ## 12 LTE Band 4 20M QPSK 1RB 0offset Bottom Side 1cm Ch20300 Communication System: UID 0, LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: MSL_1800_140514 Medium parameters used: f = 1745 MHz; $\sigma = 1.509$ S/m; $\epsilon_r = 53.565$; Date: 2014.05.14 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4°C; Liquid Temperature: 22.8°C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.01, 8.01, 8.01); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Ch20300/Area Scan (41x71x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.819 W/kg Ch20300/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.360 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.605 W/kg; SAR(10 g) = 0.326 W/kg Maximum value of SAR (measured) = 0.846 W/kg 0 dB = 0.846 W/kg # 13 LTE Band 7_20M_QPSK 1RB 49offset_Bottom Side_1cm_Ch21350 Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: MSL_2600_140513 Medium parameters used: f = 2560 MHz; σ = 2.149 S/m; ϵ_r = 52.782; Date: 2014.05.13 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(6.79, 6.79, 6.79); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch21350/Area Scan (41x81x1):** Interpolated grid: dx=12mm, dy=12mm
Maximum value of SAR (interpolated) = 2.29 W/kg Ch21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.065 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.86 W/kg SAR(1 g) = 1.33 W/kg; SAR(10 g) = 0.605 W/kg Maximum value of SAR (measured) = 2.04 W/kg ## 14 WLAN2.4G 802.11b Front 1cm Ch6 Communication System: UID 0, WIFI; Frequency: 2437 MHz; Duty Cycle: 10246 Medium: MSL 2450 140517 Medium parameters used: f = 2437 MHz; $\sigma = 1.931$ S/m; $\varepsilon_r = 51.715$; Date: 2014.05.17 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Ch6/Area Scan (81x141x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.191 W/kg Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.618 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.504 W/kg SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.058 W/kg Maximum value of SAR (measured) = 0.238 W/kg 0 dB = 0.238 W/kg ## 15 WCDMA II RMC 12.2K Back 1cm Ch9262 Communication System: UID 0, UMTS (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL 1900 140512 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.486$ S/m; $\varepsilon_r =$ Date: 2014.05.12 53.622; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch9262/Area Scan (71x121x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.15 W/kg Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.536 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.862 W/kg; SAR(10 g) = 0.556 W/kg Maximum value of SAR (measured) = 1.11 W/kg 0 dB = 1.11 W/kg ## 16 LTE Band 4 20M QPSK 50RB 0offset Back 1cm Ch20300 Communication System: UID 0, LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: MSL_1800_140514 Medium parameters used: f = 1745 MHz; σ = 1.509 S/m; ϵ_r = 53.565; Date: 2014.05.14 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.8 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.01, 8.01, 8.01); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Ch20300/Area Scan (71x121x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.743 W/kg Ch20300/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.116 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.858 W/kg SAR(1 g) = 0.569 W/kg; SAR(10 g) = 0.369 W/kg Maximum value of SAR (measured) = 0.719 W/kg 0 dB = 0.719 W/kg # 17 LTE Band 7_20M_QPSK 1RB 49offset_Back_1cm_Ch21350_Headset Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: MSL_2600_140513 Medium parameters used: f = 2560 MHz; σ = 2.149 S/m; ϵ_r = 52.782; Date: 2014.05.13 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(6.79, 6.79, 6.79); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Ch21350/Area Scan (81x141x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.82 W/kg Ch21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.245 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.37 W/kg SAR(1 g) = 1.22 W/kg; SAR(10 g) = 0.588 W/kg Maximum value of SAR (measured) = 1.79 W/kg 0 dB = 1.79 W/kg ## 18 GSM1900 GPRS(3 Tx slots) Back 1cm Ch512 Communication System: UID 0, GPRS/EDGE11 (0); Frequency: 1850.2 MHz; Duty Cycle: 1:2.77 Medium: MSL 1900 140512 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.483$ S/m; $\varepsilon_r =$ 53.628; $\rho = 1000 \text{ kg/m}^3$ Date: 2014.05.12 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn910; Calibrated: 2013.12.17 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) Ch512/Area Scan (71x121x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.800 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.698 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.969 W/kgSAR(1 g) = 0.605 W/kg; SAR(10 g) = 0.382 W/kg Maximum value of SAR (measured) = 0.784 W/kg 0 dB = 0.784 W/kg