FCC SAR Test Report **APPLICANT**: Brightstar Corporation **EQUIPMENT**: 3G mobile phone **BRAND NAME**: Avvio MODEL NAME : Avvio 489, Avvio 489S FCC ID : WVBA489X **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** **IEEE 1528-2003** We, SPORTON INTERNATIONAL (XI'AN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (XI'AN) INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Cole mans Approved by: Jones Tsai / Manager lac-MRA Testi ## SPORTON INTERNATIONAL (XI'AN) INC. Page 1 of 43 1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P. R. China TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 FCC ID: WVBA489X Issued Date: Jul. 17, 2015 Form version: : 150415 **Report No. : FA562501** # **Table of Contents** | | Statement of Compliance | | |----|--|----| | | Administration Data | | | | Guidance Standard | | | 4. | Equipment Under Test (EUT) | 6 | | | 4.1 General Information | 6 | | | 4.2 Maximum Tune-up Limit | 7 | | 5. | RF Exposure Limits | 8 | | | 5.1 Uncontrolled Environment | 8 | | | 5.2 Controlled Environment | | | 6. | Specific Absorption Rate (SAR) | | | | 6.1 Introduction | | | | 6.2 SAR Definition | | | 7. | System Description and Setup | | | | Measurement Procedures | | | | 8.1 Spatial Peak SAR Evaluation | | | | 8.2 Power Reference Measurement | 12 | | | 8.3 Area Scan | | | | 8.4 Zoom Scan | | | | 8.5 Volume Scan Procedures | | | | 8.6 Power Drift Monitoring. | | | 9. | Test Equipment List | | | | System Verification | | | | 10.1 Tissue Verification | | | | 10.2 System Performance Check Results | 16 | | 11 | RF Exposure Positions | | | | 11.1 Ear and handset reference point | 17 | | | 11.2 Definition of the cheek position | 18 | | | 11.3 Definition of the tilt position | | | | 11.4 Body Worn Accessory | | | | 11.5 Wireless Router | | | 12 | . Conducted RF Output Power (Unit: dBm) | | | | . Bluetooth Exclusions Applied | | | 14 | Antenna Location | 28 | | 15 | SAR Test Results | 29 | | | 15.1 Head SAR | 30 | | | 15.2 Hotspot SAR | 31 | | | 15.3 Body Worn Accessory SAR | 33 | | | 15.4 Repeated SAR Measurement | 34 | | 16 | . Simultaneous Transmission Analysis | | | | 16.1 Head Exposure Conditions | 36 | | | 16.2 Hotspot Exposure Conditions | 37 | | | 16.3 Body-Worn Accessory Exposure Conditions | 39 | | | 16.4 SPLSR Evaluation and Analysis | 40 | | | Uncertainty Assessment | 41 | | | . References | 43 | | | pendix A. Plots of System Performance Check | | | | pendix B. Plots of High SAR Measurement | | | Αŗ | pendix C. DASY Calibration Certificate | | | ۸r | nandiy D. Tast Satun Photos | | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 FCC ID: WVBA489X # **Revision History** Report No. : FA562501 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA562501 | Rev. 01 | Initial issue of report | Jul. 17, 2015 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 Form version. : 150415 FCC ID: WVBA489X Page 3 of 43 ## 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Brightstar Corporation**, **3G mobile phone**, **Avvio 489**, **Avvio 489S** are as follows. **Report No. : FA562501** | | | | Hig | hest SAR Summ | ary | |--------------------|-------------------|------------------------------------|--|---|---| | Equipment
Class | Frequency
Band | Head
1g SAR (W/kg)
Gap(0 mm) | Body-worn
1g SAR (W/kg)
Gap(10 mm) | Wireless
Router
1g SAR (W/kg)
Gap(10 mm) | Highest Simultaneous
Transmission
1g SAR (W/kg) | | | GSM850 | 0.68 | 1.21 | 1.21 | | | PCE | GSM1900 | 0.52 | 0.94 | 1.16 | 1 50 | | PCE | WCDMA Band V | 0.40 | 0.74 | 0.74 | 1.56 | | | WCDMA Band II | 0.53 | 0.91 | 1.12 | | | DTS | WLAN 2.4GHz Band | 1.08 | 0.16 | 0.16 | 1.56 | | Date of | of Testing: | | Jul. 0 | 1, 2015 ~ Jul. 03 | , 2015 | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. ## 2. Administration Data | Testing Laboratory | | | |--------------------|--|--| | Test Site | SPORTON INTERNATIONAL (XI'AN) INC. | | | Test Site Location | 1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P. R. China TEL: +86-029-8860-8767 FAX: +86-029-8860-8791 | | **Report No. : FA562501** | Applicant | | |------------------|---| | Company Name | Brightstar Corporation | | Address | 9725 NW 117th Ave., Miami, Florida, FL 33178, United States | | Manufacturer | | |--------------|--| | Company Name | Konka Telecommunications Techenology co., LTD. | | Address | Overseas Chinese Town, Nanshan District, Shenzhen, China | ## 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r02 - FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r02 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r01 - FCC KDB 941225 D01 3G SAR Procedures v03 - FCC KDB 941225 D06 Hotspot Mode SAR v02 ## 4. Equipment Under Test (EUT) ## 4.1 General Information | | Product Feature & Specification | |--|---| | Equipment Name | 3G mobile phone | | Brand Name | Avvio | | Model Name | Avvio 489, Avvio 489S | | FCC ID | WVBA489X | | IMEI Code | SIM1: 867499029998958
SIM2: 867499029998966 | | Wireless Technology and
Frequency Range | GSM850: 824.2 MHz ~ 848.8 MHz
GSM1900: 1850.2 MHz ~ 1909.8 MHz
WCDMA Band V: 826.4 MHz ~ 846.6 MHz
WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz
Bluetooth: 2402 MHz ~ 2480 MHz | | Mode | •GSM/GPRS/EGPRS •RMC/AMR 12.2Kbps •HSDPA •HSUPA •HSPA+ (Downlink Only) •802.11b/g/n HT20/HT40 •Bluetooth v3.0+EDR, Bluetooth v4.0 LE | | HW Version | V1.1 | | SW Version | Avvio _489_Claro _Colombia_SM_01 | | | Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network. | | EUT Stage | Pre-Production | **Report No.: FA562501** #### Remark: - 1. This device 2.4GHz WLAN supports hotspot operation. - 2. This device supported VoIP in GPRS, EGPRS, WCDMA (e.g. 3rd party VoIP). - 3. This device supports GRPS / EGPRS mode up to multi-slot class 12. - 4. The EUT do not support DTM function. - 5. There are two different types of EUT. They are single SIM card mobile(Avvio 489) and dual SIM card mobile(Avvio 489S). The others are the same including circuit design, PCB board, structure and all components. It is special to declare. After pre-scan two types of EUT, we found test result of the sample that dual SIM was the worst, so we chose dual SIM card mobile to perform all tests. - 6. For dual SIM slots device supports dual SIM dual Standby. The WWAN radio transmission will be enabled by either one SIM at a time (Single active). TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 Form version.: 150415 FCC ID: WVBA489X Page 6 of 43 ## 4.2 Maximum Tune-up Limit | Mode | Burst average power(dBm) | | | |-------------------------|--------------------------|----------|--| | Mode | GSM 850 | GSM 1900 | | | GSM (GMSK, 1 Tx slot) | 33.00 | 29.50 | | | GPRS (GMSK, 1 Tx slot) | 33.00 | 29.50 | | | GPRS (GMSK, 2 Tx slots) | 32.00 | 28.50 | | | GPRS (GMSK, 3 Tx slots) | 30.50 | 27.00 | | | GPRS (GMSK, 4 Tx slots) | 29.50 | 26.00 | | | EDGE (8PSK, 1 Tx slot) | 27.00 | 25.00 | | | EDGE (8PSK, 2 Tx slots) | 26.00 | 24.00 | | | EDGE (8PSK, 3 Tx slots) | 24.00 | 22.00 | | | EDGE (8PSK, 4 Tx slots) | 23.00 | 20.50 | | Report No. : FA562501 | Mode | Average power(dBm) | | | |-----------------|--------------------|---------------|--| | Mode | WCDMA Band V | WCDMA Band II | | | AMR 12.2Kbps | 23.00 | 22.50 | | | RMC 12.2Kbps | 23.00 | 22.50 | | | HSDPA Subtest-1 | 22.00 | 21.50 | | | HSDPA Subtest-2 | 22.00 | 21.50 | | | HSDPA Subtest-3 | 21.50 | 21.00 | | | HSDPA Subtest-4 | 21.50 | 21.00 | | | HSUPA Subtest-1 | 20.00 | 19.00 | | | HSUPA Subtest-2 | 20.00 | 19.50 | | | HSUPA Subtest-3 | 21.00 | 20.50 | | | HSUPA Subtest-4 | 19.50 | 19.00 | | | HSUPA Subtest-5 | 21.00 | 21.00 | | | | Mode | Maximum Average Power (dBm) | |--------|-----------------|-----------------------------| | | 802.11b | 18.50 | | 2.4GHz | 802.11g | 14.50 | | 2.46П2 | 802.11n-HT20 | 14.50 | | | 802.11n-HT40 | 14.00 | | Blu | etooth v3.0+EDR | 7.00 | | В | uetooth v4.0
LE | 0 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 Form version. : 150415 FCC ID: WVBA489X Page 7 of 43 ## 5. RF Exposure Limits #### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA562501 ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ## 6. Specific Absorption Rate (SAR) ### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. #### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. FCC ID: WVBA489X TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Page 9 of 43 Issued Date: Jul. 17, 2015 Form version.: 150415 **Report No.: FA562501** ## 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA562501 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, - The phantom, the device holder and other accessories according to the targeted measurement. ## 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. **Report No.: FA562501** - Read the WWAN RF power level from the base station simulator. - For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power - Place the EUT in the positions as Appendix D demonstrates. (b) - Set scan area, grid size and other setting on the DASY software. (c) - Measure SAR results for the highest power channel on each testing position. - Find out the largest SAR result on these testing positions of each band (e) - Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - Power reference measurement (a) - (b) Area scan - (c) Zoom scan - Power drift measurement #### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - Extraction of the measured data (grid and values) from the Zoom Scan - Calculation of the SAR value at every measurement point based on all stored data (A/D values and (b) measurement parameters) - Generation of a high-resolution mesh within the measured volume (c) - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface (e) - Calculation of the averaged SAR within masses of 1g and 10g Form version. : 150415 FCC ID: WVBA489X Page 11 of 43 #### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. **Report No.: FA562501** ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--
--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz} \le 12 \text{ mm}$
$4 - 6 \text{ GHz} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test | on, is smaller than the above,
must be \leq the corresponding
device with at least one | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 Form version.: 150415 FCC ID: WVBA489X Page 12 of 43 #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No. : FA562501 Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | | | ≤3 GHz | > 3 GHz | |--|---------------|---|--|---| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 1.5·Δz | Zoom(n-1) | | Minimum zoom scan
volume | num zoom scan | | ≥ 30 mm | $3 - 4 \text{ GHz: } \ge 28 \text{ mm}$
$4 - 5 \text{ GHz: } \ge 25 \text{ mm}$
$5 - 6 \text{ GHz: } \ge 22 \text{ mm}$ | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 FCC ID: WVBA489X Form version.: 150415 Page 13 of 43 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 9. Test Equipment List | Manufacturer | Name of Equipment | Type/Medal | Serial Number | Calib | ration | |---------------|---------------------------------|---------------|---------------|---------------|---------------| | Manuracturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d091 | Nov. 21, 2014 | Nov. 20, 2015 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d118 | Nov. 21, 2014 | Nov. 20, 2015 | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 840 | Nov. 19, 2014 | Nov. 18, 2015 | | SPEAG | Data Acquisition Electronics | DAE4 | 1358 | Apr. 28, 2015 | Apr. 27, 2016 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3911 | Oct. 02, 2014 | Oct. 01, 2015 | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1753 | NCR | NCR | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1754 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Agilent | Wireless Communication Test Set | E5515C | MY52102600 | Dec. 09, 2014 | Dec. 08, 2015 | | Agilent | ENA Series Network Analyzer | E5071C | MY46317418 | Dec. 09, 2014 | Dec. 08, 2015 | | Agilent | Dielectric Probe Kit | 85070E | MY44300751 | NCR | NCR | | Anritsu | Power Senor | MA2411B | 0917070 | Jan. 23, 2015 | Jan. 22, 2016 | | Anritsu | Power Meter | ML2495A | 1218010 | Jan. 23, 2015 | Jan. 22, 2016 | | R&S | Spectrum Analyzer | FSP7 | 101045 | Dec. 09, 2014 | Dec. 08, 2015 | | Agilent | Dual Directional Coupler | 778D | 50422 | No | te1 | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te1 | | PE | Attenuator 2 | PE7005-10 | N/A | No | te1 | | PE | Attenuator 3 | PE7005- 3 | N/A | No | te1 | | AR | Power Amplifier | 5S1G4M2 | 0328767 | No | te1 | | Mini-Circuits | Power Amplifier | ZVE-3W | 162601250 | Note1 | | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 13440021344 | No | te1 | **Report No. : FA562501** #### **General Note:** Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 FCC ID: WVBA489X Form version.: 150415 Page 14 of 43 ## 10. System Verification ## 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. | 1100010 0011011101010 | 7 . 0 9 0 0 0. | | | | | | | | |-------------------------|----------------|-------|-----------|----------|-----------|------|--------------|--------------| | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | (σ) | (εr) | | | | | | For Head | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | | For Body | | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | ## <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity
(σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta
(σ)
(%) | Delta
(ε _r)
(%) | Limit
(%) | Date | |--------------------|----------------|-------------------------|---------------------|-----------------------------------|----------------------------|--|---------------------|-----------------------------------|--------------|---------------| | 835 | Head | 22.6 | 0.913 | 40.859 | 0.90 | 41.50 | 1.44 | -1.54 | ±5 | Jul. 02, 2015 | | 1900 | Head | 22.6 | 1.455 | 40.844 | 1.40 | 40.00 | 3.93 | 2.11 | ±5 | Jul. 02, 2015 | | 2450 | Head | 22.5 | 1.810 | 37.626 | 1.80 | 39.20 | 0.56 | -4.02 | ±5 | Jul. 02, 2015 | | 835 | Body | 22.7 | 0.970 | 53.680 | 0.97 | 55.20 | 0.00 | -2.75 | ±5 | Jul. 02, 2015 | | 1900 | Body | 22.5 | 1.534 | 55.327 | 1.52 | 53.30 | 0.92 | 3.80 | ±5 | Jul. 01, 2015 | | 2450 | Body | 22.3 | 1.949 | 53.894 | 1.95 | 52.70 | -0.05 | 2.27 | ±5 | Jul. 03, 2015 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 FCC ID: WVBA489X Page 15 of 43 Issued Date : Jul. 17, 2015 Form version. : 150415 **Report No. : FA562501** ## 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz)
| Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
SAR
(W/kg) | Targeted
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation
(%) | |---------------|--------------------|----------------|------------------------|---------------|--------------|------------|---------------------------|---------------------------|-----------------------------|------------------| | Jul. 02, 2015 | 835 | Head | 250 | 4d091 | 3911 | 1358 | 2.35 | 9.11 | 9.4 | 3.18 | | Jul. 02, 2015 | 1900 | Head | 250 | 5d118 | 3911 | 1358 | 10.10 | 40.10 | 40.4 | 0.75 | | Jul. 02, 2015 | 2450 | Head | 250 | 840 | 3911 | 1358 | 12.30 | 52.30 | 49.2 | -5.93 | | Jul. 02, 2015 | 835 | Body | 250 | 4d091 | 3911 | 1358 | 2.42 | 9.60 | 9.68 | 0.83 | | Jul. 01, 2015 | 1900 | Body | 250 | 5d118 | 3911 | 1358 | 9.81 | 40.00 | 39.24 | -1.90 | | Jul. 03, 2015 | 2450 | Body | 250 | 840 | 3911 | 1358 | 12.80 | 51.00 | 51.2 | 0.39 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo **Report No.: FA562501** ## 11. RF Exposure Positions #### 11.1 Ear and handset reference point Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek. Fig 9.1.1 Front, back, and side views of SAM twin phantom Fig 9.1.2 Close-up side view of phantom showing the ear region. Report No.: FA562501 Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 Page 17 of 43 Form version.: 150415 FCC ID: WVBA489X #### 11.2 Definition of the cheek position - 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets. - 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. - 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. - 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. - 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report. Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case **Report No.: FA562501** Fig 9.2.2 Handset vertical and horizontal reference lines—"clam-shell case" Form version. : 150415 Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated. Page 18 of 43 #### 11.3 Definition of the tilt position 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. **Report No.: FA562501** - 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. - 3. Rotate the handset around the horizontal line by 15°. - 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated. #### 11.4 Body Worn Accessory Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB 648474 D04v01r02, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v05r02 should be used to test for body-worn accessorv SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. Report No.: FA562501 Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Fig 9.4 Body Worn Position #### 11.5 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC HDB Publication 941225 D06 v02 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a
time. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 Form version. : 150415 FCC ID: WVBA489X ## 12. Conducted RF Output Power (Unit: dBm) #### <GSM Conducted Power> Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test 1. reduction. **Report No.: FA562501** - 2. Per KDB 941225 D01v03, considering the possibility of e.g. 3rd party VoIP operation for Head and body-worn SAR test reduction for GSM and GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850/GSM1900. - Per KDB 941225 D01v03, for Hotspot SAR test reduction for GPRS and EDGE modes is determined by the 3. source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the EUT was set in GPRS (4Tx slots) for GSM850/GSM1900. #### SIM1: | 5 | | _ | / ID \ | | | | / I5 \ | | |--|---|---|---|---|---|---|---|---| | Band GSM850 | | | | | | | wer (dBm) | | | TX Channel | 128 | 189 | 251 | Limit | 128 | 189 | 251 | Limit | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | (dBm) | 824.2 | 836.4 | 848.8 | (dBm) | | GSM (GMSK, 1 Tx slot) | <mark>32.65</mark> | 32.55 | 32.56 | 33.00 | 23.65 | 23.55 | 23.56 | 24.00 | | GPRS (GMSK, 1 Tx slot) – CS1 | 32.64 | 32.53 | 32.55 | 33.00 | 23.64 | 23.53 | 23.55 | 24.00 | | GPRS (GMSK, 2 Tx slots) – CS1 | 31.70 | 31.57 | 31.59 | 32.00 | 25.70 | 25.57 | 25.59 | 26.00 | | GPRS (GMSK, 3 Tx slots) – CS1 | 29.94 | 29.81 | 29.83 | 30.50 | 25.68 | 25.55 | 25.57 | 26.24 | | GPRS (GMSK, 4 Tx slots) – CS1 | 29.12 | 29.03 | 29.05 | 29.50 | <mark>26.12</mark> | 26.03 | 26.05 | 26.50 | | EDGE (8PSK, 1 Tx slot) | 26.89 | 26.83 | 26.85 | 27.00 | 17.89 | 17.83 | 17.85 | 18.00 | | EDGE (8PSK, 2 Tx slots) | 25.81 | 25.81 | 25.84 | 26.00 | 19.81 | 19.81 | 19.84 | 20.00 | | EDGE (8PSK, 3 Tx slots) | 23.71 | 23.64 | 23.65 | 24.00 | 19.45 | 19.38 | 19.39 | 19.74 | | EDGE (8PSK, 4 Tx slots) | 22.55 | 22.45 | 22.46 | 23.00 | 19.55 | 19.45 | 19.46 | 20.00 | | | | | | | | | | | | Band GSM1900 | Burst Ave | erage Pov | ver (dBm) | Tune-up | Frame-Av | erage Poر | wer (dBm) | Tune-up | | Band GSM1900 TX Channel | Burst Ave | erage Pov
661 | ver (dBm)
810 | Limit | Frame-Av
512 | erage Pov
661 | wer (dBm)
810 | Limit | | | | | | | | | | | | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit | | TX Channel
Frequency (MHz) | 512
1850.2 | 661
1880 | 810
1909.8 | Limit
(dBm) | 512
1850.2 | 661
1880 | 810
1909.8 | Limit (dBm) | | TX Channel
Frequency (MHz)
GSM (GMSK, 1 Tx slot) | 512
1850.2
28.99 | 661
1880
28.43 | 810
1909.8
28.72 | Limit
(dBm)
29.50 | 512
1850.2
19.99 | 661
1880
19.43 | 810
1909.8
19.72 | Limit (dBm) | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 | 512
1850.2
28.99
28.95 | 661
1880
28.43
28.42 | 810
1909.8
28.72
28.70 | Limit (dBm) 29.50 29.50 | 512
1850.2
19.99
19.95 | 661
1880
19.43
19.42 | 810
1909.8
19.72
19.70 | Limit (dBm) 20.50 20.50 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 | 512
1850.2
28.99
28.95
28.08 | 661
1880
28.43
28.42
27.59 | 810
1909.8
28.72
28.70
28.07 | Limit (dBm) 29.50 29.50 28.50 | 512
1850.2
19.99
19.95
22.08 | 661
1880
19.43
19.42
21.59 | 810
1909.8
19.72
19.70
22.07 | Limit (dBm) 20.50 20.50 22.50 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 | 512
1850.2
28.99
28.95
28.08
26.28 | 661
1880
28.43
28.42
27.59
25.86 | 810
1909.8
28.72
28.70
28.07
26.57 | Limit (dBm) 29.50 29.50 28.50 27.00 | 512
1850.2
19.99
19.95
22.08
22.02 | 661
1880
19.43
19.42
21.59
21.60 | 810
1909.8
19.72
19.70
22.07
22.31 | Limit (dBm) 20.50 20.50 22.50 22.74 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 | 512
1850.2
28.99
28.95
28.08
26.28
25.39 | 661
1880
28.43
28.42
27.59
25.86
24.97 | 810
1909.8
28.72
28.70
28.07
26.57
25.74 | Limit (dBm) 29.50 29.50 28.50 27.00 26.00 | 512
1850.2
19.99
19.95
22.08
22.02
22.39 | 661
1880
19.43
19.42
21.59
21.60
21.97 | 810
1909.8
19.72
19.70
22.07
22.31
22.74 | Limit (dBm) 20.50 20.50 22.50 22.74 23.00 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 EDGE (8PSK, 1 Tx slot) | 512
1850.2
28.99
28.95
28.08
26.28
25.39
24.68 | 661
1880
28.43
28.42
27.59
25.86
24.97
24.33 | 810
1909.8
28.72
28.70
28.07
26.57
25.74
24.43 | Limit (dBm) 29.50 29.50 28.50 27.00 26.00 25.00 | 512
1850.2
19.99
19.95
22.08
22.02
22.39
15.68 | 661
1880
19.43
19.42
21.59
21.60
21.97
15.33 | 810
1909.8
19.72
19.70
22.07
22.31
22.74
15.43 | Limit (dBm) 20.50 20.50 22.50 22.74 23.00 16.00 | Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB SPORTON INTERNATIONAL (XI'AN) INC. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 Form version.: 150415 FCC ID: WVBA489X Page 21 of 43 ## FCC SAR Test Report #### SIM2: | Band GSM850 | Burst Ave | erage Pov | ver (dBm) | Tune-up | Frame-Av | erage Pov | wer (dBm) | Tune-up | |--|---|---|---|---|---|---|---|---| | TX Channel | 128 | 189 | 251 | Limit | 128 | 189 | 251 | Limit | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | (dBm) | 824.2 | 836.4 | 848.8 | (dBm) | | GSM (GMSK, 1 Tx slot) | <mark>32.57</mark> | 32.49 | 32.51 | 33.00 | 23.57 | 23.49 | 23.51 | 24.00 | | GPRS (GMSK, 1 Tx slot) – CS1 | 32.56 | 32.48 | 32.49 | 33.00 | 23.56 | 23.48 | 23.49 | 24.00 | | GPRS (GMSK, 2 Tx slots) – CS1 | 31.64 | 31.53 | 31.55 | 32.00 | 25.64 | 25.53 | 25.55 | 26.00 | | GPRS (GMSK, 3 Tx slots) – CS1 | 29.90 | 29.78 | 29.79 | 30.50 | 25.64 | 25.52 | 25.53 | 26.24 | | GPRS (GMSK, 4 Tx slots) – CS1 | 29.08 | 28.99 | 29.00 | 29.50 | <mark>26.08</mark> | 25.99 | 26.00 | 26.50 | | EDGE (8PSK, 1 Tx slot) | 26.86 | 26.79 | 26.83 | 27.00 | 17.86 | 17.79 | 17.83 | 18.00 | | EDGE (8PSK, 2 Tx slots) | 25.80 | 25.72 | 25.84 | 26.00 | 19.80 | 19.72 | 19.84 | 20.00 | | EDGE (8PSK, 3 Tx slots) | 23.71 | 23.64 | 23.65 | 24.00 | 19.45 | 19.38 | 19.39 | 19.74 | | EDGE (8PSK, 4 Tx slots) | 22.53 | 22.44 | 22.41 | 23.00 | 19.53 | 19.44 | 19.41 | 20.00 | | | | | | | | | | | | Band GSM1900 | Burst Ave | erage Pov | ver (dBm) | Tune-up | Frame-Av | erage Pov | wer (dBm) | | | Band GSM1900
TX Channel | Burst Ave
512 | erage Pov
661 | ver (dBm)
810 | Limit | Frame-Av
512 | erage Pov
661 | wer (dBm)
810 | Tune-up
Limit | | | | | | | | | | Tune-up | | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Tune-up
Limit | | TX Channel
Frequency (MHz) | 512
1850.2 | 661
1880 | 810
1909.8 | Limit (dBm) | 512
1850.2 | 661
1880 | 810
1909.8 | Tune-up
Limit
(dBm) | | TX Channel
Frequency (MHz)
GSM (GMSK, 1 Tx slot) | 512
1850.2
28.96 | 661
1880
28.42 | 810
1909.8
28.68 | Limit
(dBm)
29.50 | 512
1850.2
19.96 | 661
1880
19.42 | 810
1909.8
19.68 | Tune-up
Limit
(dBm)
20.50 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 |
512
1850.2
28.96
28.93 | 661
1880
28.42
28.40 | 810
1909.8
28.68
28.65 | Limit (dBm) 29.50 29.50 | 512
1850.2
19.96
19.93 | 661
1880
19.42
19.40 | 810
1909.8
19.68
19.65 | Tune-up
Limit
(dBm)
20.50
20.50 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 | 512
1850.2
28.96
28.93
28.05 | 661
1880
28.42
28.40
27.55 | 810
1909.8
28.68
28.65
28.04 | Limit (dBm) 29.50 29.50 28.50 | 512
1850.2
19.96
19.93
22.05 | 661
1880
19.42
19.40
21.55 | 810
1909.8
19.68
19.65
22.04 | Tune-up
Limit
(dBm)
20.50
20.50
22.50 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 | 512
1850.2
28.96
28.93
28.05
26.27 | 661
1880
28.42
28.40
27.55
25.86 | 810
1909.8
28.68
28.65
28.04
26.52 | Limit (dBm) 29.50 29.50 28.50 27.00 | 512
1850.2
19.96
19.93
22.05
22.01 | 661
1880
19.42
19.40
21.55
21.60 | 810
1909.8
19.68
19.65
22.04
22.26 | Tune-up
Limit
(dBm)
20.50
20.50
22.50
22.74 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 EDGE (8PSK, 1 Tx slot) EDGE (8PSK, 2 Tx slots) | 512
1850.2
28.96
28.93
28.05
26.27
25.34 | 661
1880
28.42
28.40
27.55
25.86
24.94 | 810
1909.8
28.68
28.65
28.04
26.52
25.71 | Limit (dBm) 29.50 29.50 28.50 27.00 26.00 | 512
1850.2
19.96
19.93
22.05
22.01
22.34 | 661
1880
19.42
19.40
21.55
21.60
21.94 | 810
1909.8
19.68
19.65
22.04
22.26
22.71 | Tune-up
Limit
(dBm)
20.50
20.50
22.50
22.74
23.00 | | TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 EDGE (8PSK, 1 Tx slot) | 512
1850.2
28.96
28.93
28.05
26.27
25.34
24.67 | 661
1880
28.42
28.40
27.55
25.86
24.94
24.32 | 810
1909.8
28.68
28.65
28.04
26.52
25.71
24.42 | Limit (dBm) 29.50 29.50 28.50 27.00 26.00 25.00 | 512
1850.2
19.96
19.93
22.05
22.01
22.34
15.67 | 661
1880
19.42
19.40
21.55
21.60
21.94
15.32 | 810
1909.8
19.68
19.65
22.04
22.26
22.71
15.42 | Tune-up
Limit
(dBm)
20.50
20.50
22.50
22.74
23.00
16.00 | **Report No. : FA562501** Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 FCC ID: WVBA489X Form version.: 150415 Page 22 of 43 #### <WCDMA Conducted Power> - 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. Report No. : FA562501 A summary of these settings are illustrated below: #### **HSDPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting: - i. Set Gain Factors (β_c and β_d) and parameters were set according to each - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - iii. Set RMC 12.2Kbps + HSDPA mode. - iv. Set Cell Power = -86 dBm - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - vi. Select HSDPA Uplink Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - x. Set CQI Repetition Factor to 2 - xi. Power Ctrl Mode = All Up bits - d. The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | | | | | (Note1,
Note 2) | (Note 3) | (Note 3) | |-----------------------------|--|---|--|--|---|--| | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 12/15
(Note 4) | 15/15
(Note 4) | 64 | 12/15
(Note 4) | 24/15 | 1.0 | 0.0 | | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | | or the HS-E
Magnitude (E | PCCH powe
EVM) with HS | r mask requi | rement test in di
st in clause 5.13. | 1A, and HSDP | A EVM with ph | ase | | | (Note 4)
15/15
15/15
ACK, ANACK &
For the HS-D
Magnitude (B | (Note 4) (Note 4) 15/15 8/15 15/15 4/15 ΔCK, ΔΝΑCK AND ΔCQI = 30. For the HS-DPCCH power flagnitude (EVM) with HS | (Note 4) (Note 4) 15/15 8/15 64 15/15 4/15 64 ACK, Δ NACK and Δ CQI = 30/15 with β Is for the HS-DPCCH power mask required fragnitude (EVM) with HS-DPCCH test | (Note 4) (Note 4) (Note 4) (Note 4) 15/15 8/15 64 15/8 15/15 4/15 64 15/4 ACK, Δ NACK and Δ CQI = 30/15 with β _{Is} = 30/15 * β _c . For the HS-DPCCH power mask requirement test in clause 5.13. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (Note 4) (Note 4) (Note 4) 15/15 8/15 64 15/8 30/15 1.5 15/15 4/15 64 15/4 30/15 1.5 | with β_{hs} = 24/15 * β_c . Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15. **Setup Configuration** #### **HSUPA Setup Configuration:** - a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting *: - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 **Report No.: FA562501** - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - v. Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - d. The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βс | βa | β _d
(SF) | βc/βd | βнs
(Note1) | βес | β _{ed}
(Note 5)
(Note 6) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2) | AG
Index
(Note
6) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|---------------------------|----------------------------|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4
4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15
(Note 4) | 15/15
(Note
4) | 64 | 15/15
(Note
4) | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | - Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . - Note 2: CM = 1 for $\beta_0/\beta_d = 12/15$, $\beta_{1s}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. - Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. -
Note 4: For subtest 5 the β_0/β_0 ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by - setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. - Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. **Setup Configuration** SPORTON INTERNATIONAL (XI'AN) INC. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 FCC ID: WVBA489X Page 24 of 43 Form version.: 150415 #### <WCDMA Conducted Power> #### **General Note:** Per KDB 941225 D01v03, SAR for Head / Hotspot / Body-worn exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". **Report No.: FA562501** Per KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ 1/4 dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA. #### SIM1: | <u> </u> | | | | | | | | | |----------|-------------|-----------------|-------|----------|--------------------|--------|----------|--------------| | | Ba | and | W | CDMA Ban | d V | WC | CDMA Ban | d II | | | TX CI | hannel | 4132 | 4182 | 4233 | 9262 | 9400 | 9538 | | | Rx Cl | nannel | 4357 | 4407 | 4458 | 9662 | 9800 | 9938 | | | Frequen | cy (MHz) | 826.4 | 836.4 | 846.6 | 1852.4 | 1880 | 1907.6 | | MPR | 3GPP Rel 99 | 22.45 | 22.43 | 22.46 | 21.60 | 21.58 | 21.85 | | | (dB) | 3GPP Rel 99 | RMC 12.2Kbps | 22.46 | 22.44 | <mark>22.47</mark> | 21.62 | 21.59 | 21.86 | | 0 | 3GPP Rel 6 | HSDPA Subtest-1 | 21.53 | 21.50 | 21.54 | 20.76 | 20.75 | 20.97 | | 0 | 3GPP Rel 6 | HSDPA Subtest-2 | 21.52 | 21.49 | 21.53 | 20.75 | 20.74 | 20.96 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-3 | 21.02 | 21.00 | 21.03 | 20.33 | 20.31 | 20.52 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-4 | 21.01 | 20.98 | 21.02 | 20.31 | 20.30 | 20.50 | | 0 | 3GPP Rel 6 | HSUPA Subtest-1 | 19.49 | 19.47 | 19.50 | 18.72 | 18.71 | 18.89 | | 2 | 3GPP Rel 6 | HSUPA Subtest-2 | 19.50 | 19.48 | 19.51 | 18.76 | 18.75 | 18.95 | | 1 | 3GPP Rel 6 | HSUPA Subtest-3 | 20.46 | 20.45 | 20.47 | 19.76 | 19.74 | 19.92 | | 2 | 3GPP Rel 6 | HSUPA Subtest-4 | 19.00 | 18.97 | 19.01 | 18.24 | 18.21 | 18.49 | | 0 | 3GPP Rel 6 | HSUPA Subtest-5 | 20.86 | 20.84 | 20.87 | 20.41 | 20.40 | 20.60 | #### SIM2: | | Ba | and | WC | DMA Ban | d V | WC | CDMA Ban | d II | |------|-------------|-----------------|-------|---------|--------------|--------|----------|--------------------| | | TX Cł | nannel | 4132 | 4182 | 4233 | 9262 | 9400 | 9538 | | | Rx Ch | nannel | 4357 | 4407 | 4458 | 9662 | 9800 | 9938 | | | Frequen | cy (MHz) | 826.4 | 836.4 | 846.6 | 1852.4 | 1880 | 1907.6 | | MPR | 3GPP Rel 99 | AMR 12.2Kbps | 22.40 | 22.40 | 22.42 | 21.57 | 21.55 | 21.81 | | (dB) | 3GPP Rel 99 | RMC 12.2Kbps | 22.42 | 22.41 | 22.43 | 21.60 | 21.57 | <mark>21.84</mark> | | 0 | 3GPP Rel 6 | HSDPA Subtest-1 | 21.50 | 21.48 | 21.52 | 20.74 | 20.71 | 20.96 | | 0 | 3GPP Rel 6 | HSDPA Subtest-2 | 21.50 | 21.47 | 21.51 | 20.71 | 20.72 | 20.95 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-3 | 21.01 | 21.00 | 21.02 | 20.32 | 20.30 | 20.50 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-4 | 21.00 | 20.95 | 21.00 | 20.31 | 20.30 | 20.50 | | 0 | 3GPP Rel 6 | HSUPA Subtest-1 | 19.47 | 19.42 | 19.47 | 18.70 | 18.70 | 18.87 | | 2 | 3GPP Rel 6 | HSUPA Subtest-2 | 19.46 | 19.47 | 19.50 | 18.75 | 18.72 | 18.91 | | 1 | 3GPP Rel 6 | HSUPA Subtest-3 | 20.42 | 20.43 | 20.45 | 19.74 | 19.71 | 19.90 | | 2 | 3GPP Rel 6 | 19.00 | 18.95 | 19.00 | 18.21 | 18.20 | 18.49 | | | 0 | 3GPP Rel 6 | HSUPA Subtest-5 | 20.85 | 20.82 | 20.82 | 20.40 | 20.38 | 20.56 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 FCC ID: WVBA489X Form version.: 150415 Page 25 of 43 #### <WLAN Conducted Power> #### **General Note:** 1. Per KDB 248227 D01v02r01, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. Report No.: FA562501 - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz band, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11g/n mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. #### <2.4GHz WLAN> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | | |--------|--------------|---------|--------------------|-----------|---------------------|------------------|--------------|--| | | | CH 01 | 2412 | | 17.66 | | | | | | 802.11b | CH 06 | 2437 | 1Mbps | 17.86 | 18.50 | 97.66 | | | | | CH 11 | 2462 | | <mark>17.99</mark> | | | | | | | CH 01 | 2412 | | 14.04 | | 88.52 | | | 2.4GHz | 802.11g | CH 06 | 2437 | 6Mbps | 14.09 | 14.50 | | | | WLAN | | CH 11 | 2462 | | <mark>14.25</mark> | | | | | | | CH 01 | 2412 | | 13.81 | | | | | | 802.11n HT20 | CH 06 | 2437 | MCS0 | 14.01 | 14.50 | 88.28 | | | | | CH 11 | 2462 | | <mark>14.18</mark> | | | | | | | CH 3 | 2422 | | 12.90 | | | | | | 802.11n HT40 | CH 6 | 2437 | MCS0 | <mark>13.89</mark> | 14.00 | 79.81 | | | | | CH 9 | 2452 | | 12.95 | | | | SPORTON INTERNATIONAL (XI'AN) INC. FCC ID: WVBA489X Page 26 of 43 Form version.: 150415 ## 13. Bluetooth Exclusions Applied | Mode Band | Average power(dBm) | | | | | | | | | |------------------|--------------------|-------------------|--|--|--|--|--|--|--| | Mode Band | Bluetooth v3.0+EDR | Bluetooth v4.0 LE | | | | | | | | | 2.4GHz Bluetooth | 7.00 | 0 | | | | | | | | **Report No.: FA562501** #### Note: 1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - · Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds | |---------------------------|--------------------------|-----------------|----------------------| | 7.00 | < 5 | 2.48 | 1.6 | #### Note: Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to
determine SAR test exclusion. The test exclusion threshold is 1.6 which is <= 3, SAR testing is not required. SPORTON INTERNATIONAL (XI'AN) INC. ## 14. Antenna Location Report No.: FA562501 | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN Main ≤ 25mm ≤ 25mm ≤ 25mm ≤ 25mm ≤ 25mm | | | | | | | | | | | | | BT&WLAN ≤ 25mm ≤ 25mm 120mm 51mm ≤ 25mm | | | | | | | | | | | | | Positions for SAR tests; Hotspot mode | | | | | | | | | | | | |---|----------------------------------|--|--|--|--|--|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN Main | WWAN Main Yes Yes No Yes Yes Yes | | | | | | | | | | | | BT&WLAN Yes Yes No No Yes | | | | | | | | | | | | #### **General Note:** Referring to KDB 941225 D06 v02, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Jul. 17, 2015 FCC ID: WVBA489X Form version.: 150415 Page 28 of 43 ### 15. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. **Report No.: FA562501** - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - Pre KDB648474 D04v01r02, when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. - 4. Per KDB 941225 D01v03, considering the possibility of e.g. 3rd party VoIP operation for Head and body-worn SAR test reduction for GSM and GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850/GSM1900. - Per KDB 941225 D01v03, for Hotspot SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the EUT was set in GPRS (4Tx slots) for GSM850/GSM1900. - 6. Per KDB 941225 D01v03, SAR for next to the ear head / Hotspot / Body-worn exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". - 7. Per KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA. - 8. Per KDB 248227 D01v02r01, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. - 9. This device 2.4GHz WLAN supports Hotspot operation. - 10. During SAR testing the WLAN transmission was verified using a spectrum analyzer. ## 15.1 Head SAR ## <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | #01 | GSM850 | GPRS (GMSK 4 Tx slot) | Right Cheek | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.08 | 0.627 | <mark>0.684</mark> | | | GSM850 | GPRS (GMSK 4 Tx slot) | Right Tilted | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.09 | 0.422 | 0.461 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Left Cheek | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.04 | 0.546 | 0.596 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Left Tilted | 128 | 824.2 | 29.12 | 29.50 | 1.091 | -0.03 | 0.437 | 0.477 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Right Cheek | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | 0.03 | 0.335 | 0.356 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Right Tilted | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | -0.04 | 0.118 | 0.125 | | #02 | GSM1900 | GPRS (GMSK 4 Tx slot) | Left Cheek | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | 0.08 | 0.486 | <mark>0.516</mark> | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Left Tilted | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | 0.01 | 0.107 | 0.114 | Report No.: FA562501 #### <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|--------------|------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA Band V | RMC 12.2Kbps | Right Cheek | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | 0.08 | 0.340 | 0.384 | | | WCDMA Band V | RMC 12.2Kbps | Right Tilted | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | 0.1 | 0.250 | 0.282 | | #03 | WCDMA Band V | RMC 12.2Kbps | Left Cheek | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | 0.05 | 0.353 | <mark>0.399</mark> | | | WCDMA Band V | RMC 12.2Kbps | Left Tilted | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | -0.08 | 0.267 | 0.302 | | | WCDMA Band II | RMC 12.2Kbps | Right Cheek | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | 0.07 | 0.291 | 0.337 | | | WCDMA Band II | RMC 12.2Kbps | Right Tilted | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | -0.17 | 0.107 | 0.124 | | #04 | WCDMA Band II | RMC 12.2Kbps | Left Cheek | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | 0.08 | 0.457 | <mark>0.530</mark> | | | WCDMA Band II | RMC 12.2Kbps | Left Tilted | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | 0.01 | 0.100 | 0.116 | ## < WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Duty
Cycle
Scaling
Factor | Area
Scan
Max | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|------------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|---------------------|------------------------|------------------------------|------------------------------| | #05 | WLAN2.4GHz | 802.11b
1Mbps | Right Cheek | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 1.42 | -0.01 | 0.936 | 1.078 | | | WLAN2.4GHz | 802.11b
1Mbps | Right Tilted | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 1.24 | -0.04 | 0.769 | 0.886 | | | WLAN2.4GHz | 802.11b
1Mbps | Left Cheek | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.775 | -0.12 | 0.506 | 0.583 | | | WLAN2.4GHz | 802.11b
1Mbps | Left Tilted | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.722 | | | 0.000 | | | WLAN2.4GHz | 802.11b
1Mbps | Right Cheek | 6 | 2437 | 17.86 | 18.50 | 1.159 | 97.66 | 1.024 | | -0.11 | 0.676 | 0.802 | | | WLAN2.4GHz | 802.11b
1Mbps | Right Tilted | 6 | 2437 | 17.86 | 18.50 | 1.159 | 97.66 | 1.024 | | 0.03 | 0.614 | 0.729 | FCC ID: WVBA489X Page 30 of 43 Form version.: 150415 ## 15.2 Hotspot SAR | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN Main | WWAN Main ≤ 25mm ≤ 25mm 112mm ≤ 25mm ≤ 25mm ≤ 25mm | | | | | | | | | | | | BT&WLAN ≤ 25mm ≤ 25mm 120mm 51mm ≤ 25mm | | | | | | | | | | | | **Report No. : FA562501** | Positions for SAR tests; Hotspot mode | | | | | | | | | | | | | |---
-------------------------------|--|--|--|--|--|--|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | | WWAN Main | WWAN Main Yes Yes Yes Yes Yes | | | | | | | | | | | | | BT&WLAN Yes Yes No No Yes | | | | | | | | | | | | | #### **General Note:** Referring to KDB 941225 D06 v02, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or #### <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-----------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS (GMSK 4 Tx slot) | Front | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.03 | 0.808 | 0.882 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.03 | 1.040 | 1.135 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Left side | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | -0.04 | 0.744 | 0.812 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Right side | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.01 | 0.629 | 0.687 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Bottom side | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | -0.04 | 0.173 | 0.189 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Front | 1 | 189 | 836.4 | 29.03 | 29.50 | 1.114 | 0.02 | 0.815 | 0.908 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Front | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | -0.01 | 0.871 | 0.966 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 189 | 836.4 | 29.03 | 29.50 | 1.114 | 0.01 | 1.030 | 1.148 | | #06 | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | -0.02 | 1.090 | 1.209 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Left side | 1 | 189 | 836.4 | 29.03 | 29.50 | 1.114 | -0.02 | 0.741 | 0.826 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Left side | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | 0.01 | 0.722 | 0.801 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Front | 1 | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | 0.19 | 0.797 | 0.846 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Back | 1 | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | 0.13 | 0.733 | 0.778 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Left side | 1 | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | -0.02 | 0.283 | 0.300 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Right side | 1 | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | -0.1 | 0.107 | 0.114 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Bottom side | 1 | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | -0.12 | 1.000 | 1.062 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Front | 1 | 512 | 1850.2 | 25.39 | 26.00 | 1.151 | 0.08 | 0.816 | 0.939 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Front | 1 | 661 | 1880 | 24.97 | 26.00 | 1.268 | 0.09 | 0.723 | 0.917 | | #07 | GSM1900 | GPRS (GMSK 4 Tx slot) | Bottom side | 1 | 512 | 1850.2 | 25.39 | 26.00 | 1.151 | -0.07 | 1.010 | <mark>1.162</mark> | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Bottom side | 1 | 661 | 1880 | 24.97 | 26.00 | 1.268 | -0.08 | 0.898 | 1.138 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 FCC ID: WVBA489X Page 31 of 43 Form version. : 150415 ## SPORTON LAB. FCC SAR Test Report ## <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|--------------|--------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA Band V | RMC 12.2Kbps | Front | 1 | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | -0.04 | 0.495 | 0.559 | | #08 | WCDMA Band V | RMC 12.2Kbps | Back | 1 | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | -0.02 | 0.658 | <mark>0.743</mark> | | | WCDMA Band V | RMC 12.2Kbps | Left side | 1 | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | -0.01 | 0.527 | 0.595 | | | WCDMA Band V | RMC 12.2Kbps | Right side | 1 | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | 0.01 | 0.503 | 0.568 | | | WCDMA Band V | RMC 12.2Kbps | Bottom side | 1 | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | -0.04 | 0.113 | 0.128 | | | WCDMA Band II | RMC 12.2Kbps | Front | 1 | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | 0.05 | 0.756 | 0.876 | | | WCDMA Band II | RMC 12.2Kbps | Back | 1 | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | 0.14 | 0.671 | 0.778 | | | WCDMA Band II | RMC 12.2Kbps | Left side | 1 | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | -0.04 | 0.259 | 0.300 | | | WCDMA Band II | RMC 12.2Kbps | Right side | 1 | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | -0.14 | 0.097 | 0.112 | | #09 | WCDMA Band II | RMC 12.2Kbps | Bottom side | 1 | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | -0.14 | 0.962 | 1.115 | | | WCDMA Band II | RMC 12.2Kbps | Front | 1 | 9262 | 1852.4 | 21.62 | 22.50 | 1.225 | 0.06 | 0.743 | 0.910 | | | WCDMA Band II | RMC 12.2Kbps | Front | 1 | 9400 | 1880 | 21.59 | 22.50 | 1.233 | 0.07 | 0.733 | 0.904 | | | WCDMA Band II | RMC 12.2Kbps | Bottom side | 1 | 9262 | 1852.4 | 21.62 | 22.50 | 1.225 | -0.05 | 0.863 | 1.057 | | | WCDMA Band II | RMC 12.2Kbps | Bottom side | 1 | 9400 | 1880 | 21.59 | 22.50 | 1.233 | -0.15 | 0.880 | 1.085 | **Report No. : FA562501** ## < WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | | | Duty
Cycle
Scalin
g
Factor | Area
Scan
Max | Power
Drift
(dB) | Measure
d
1g SAR
(W/kg) | Report
ed
1g
SAR
(W/kg) | |-------------|------------|------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|-------|-------|--|---------------------|------------------------|----------------------------------|-------------------------------------| | | WLAN2.4GHz | 802.11b
1Mbps | Front | 1 | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.188 | | | | | #10 | WLAN2.4GHz | 802.11b
1Mbps | Back | 1 | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.253 | 0.06 | 0.14 | 0.161 | | | WLAN2.4GHz | 802.11b
1Mbps | Left side | 1 | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.0899 | | | | | | WLAN2.4GHz | 802.11b
1Mbps | Top side | 1 | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.175 | | | | ## 15.3 Body Worn Accessory SAR #### <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|------------------------------|-------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS (GMSK 4 Tx slot) | Front | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.03 | 0.808 | 0.882 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.03 | 1.040 | 1.135 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Front | 1 | 189 | 836.4 | 29.03 | 29.50 | 1.114 | 0.02 | 0.815 | 0.908 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Front | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | -0.01 | 0.871 | 0.966 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 189 | 836.4 | 29.03 | 29.50 | 1.114 | 0.01 | 1.030 | 1.148 | | #06 | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | -0.02 | 1.090 | <mark>1.209</mark> | | | GSM850 | GPRS (GMSK 4 Tx slot) | Back with headset | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | 0.04 | 0.860 | 0.954 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Back with headset | 1 | 128 | 824.2 | 29.12 | 29.50 | 1.091 | 0.04 | 0.795 | 0.868 | | | GSM850 | GPRS (GMSK 4 Tx slot) | Back with headset | 1 | 189 | 836.4 | 29.03 | 29.50 | 1.114 | -0.07 | 0.812 | 0.905 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Front | 1 | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | 0.19 | 0.797 | 0.846 | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Back | 1 | 810 | 1909.8 | 25.74 | 26.00 | 1.062 | 0.13 | 0.733 | 0.778 | | #11 | GSM1900 | GPRS (GMSK 4 Tx slot) | Front | 1 | 512 | 1850.2 | 25.39 | 26.00 | 1.151 | 0.08 | 0.816 | <mark>0.939</mark> | | | GSM1900 | GPRS (GMSK 4 Tx slot) | Front | 1 | 661 | 1880 | 24.97 | 26.00 | 1.268 | 0.09 | 0.723 | 0.917 | Report No. : FA562501 #### <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|--------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA Band V | RMC 12.2Kbps | Front | 1 | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | -0.04 | 0.495 | 0.559 | | #08 | WCDMA Band V | RMC 12.2Kbps | Back | 1 | 4233 | 846.6 | 22.47 | 23.00 | 1.130 | -0.02 | 0.658 | <mark>0.743</mark> | | | WCDMA Band II | RMC 12.2Kbps | Front | 1 | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | 0.05 | 0.756 | 0.876 | | | WCDMA Band II | RMC 12.2Kbps | Back | 1 | 9538 | 1907.6 | 21.86 | 22.50 | 1.159 | 0.14 |
0.671 | 0.778 | | #12 | WCDMA Band II | RMC 12.2Kbps | Front | 1 | 9262 | 1852.4 | 21.62 | 22.50 | 1.225 | 0.06 | 0.743 | <mark>0.910</mark> | | | WCDMA Band II | RMC 12.2Kbps | Front | 1 | 9400 | 1880 | 21.59 | 22.50 | 1.233 | 0.07 | 0.733 | 0.904 | #### < WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | | Area
Scan
Max | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|-------|---------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b
1Mbps | Front | 1 | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.188 | | | | | #10 | WLAN2.4GHz | 802.11b
1Mbps | Back | 1 | 11 | 2462 | 17.99 | 18.50 | 1.125 | 97.66 | 1.024 | 0.253 | 0.06 | 0.14 | <mark>0.161</mark> | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 Form version. : 150415 FCC ID: WVBA489X Page 33 of 43 # 15.4 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|------------|-----------------------|------------------|-------------|-----|----------------|-------|---------------------------|------------------------------|------------------------|------------------------------|-------|------------------------------| | 1st | WLAN2.4GHz | 802.11b 1Mbps | Right Cheek | • | 11 | 2462 | 17.99 | 18.50 | 1.125 | -0.01 | 0.936 | 1 | 1.078 | | 2nd | WLAN2.4GHz | 802.11b 1Mbps | Right Cheek | - | 11 | 2462 | 17.99 | 18.50 | 1.125 | -0.01 | 0.928 | 1.008 | 1.069 | | 1st | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | -0.02 | 1.090 | 1 | 1.209 | | 2nd | GSM850 | GPRS (GMSK 4 Tx slot) | Back | 1 | 251 | 848.8 | 29.05 | 29.50 | 1.109 | 0.1 | 1.060 | 1.028 | 1.176 | | 1st | GSM1900 | GPRS (GMSK 4 Tx slot) | Bottom side | 1 | 512 | 1850.2 | 25.39 | 26.00 | 1.151 | -0.07 | 1.010 | 1 | 1.162 | | 2nd | GSM1900 | GPRS (GMSK 4 Tx slot) | Bottom side | 1 | 512 | 1850.2 | 25.39 | 26.00 | 1.151 | -0.06 | 0.982 | 1.028 | 1.130 | **Report No. : FA562501** #### **General Note:** - 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. ### 16. Simultaneous Transmission Analysis | No. | Simultaneous Transmission Configurations | Po | ortable Hands | Note | | |-----|--|------|---------------|---------|---------------------| | NO. | Simultaneous Transmission Comigurations | Head | Body-worn | Hotspot | Note | | 1. | GSM(Voice) + WLAN2.4GHz(data) | Yes | Yes | | | | 2. | WCDMA(Voice) + WLAN2.4GHz(data) | Yes | Yes | | | | 3. | GSM(Voice) + Bluetooth(data) | Yes | Yes | | | | 4. | WCDMA((Voice) + Bluetooth(data) | Yes | Yes | | | | 5. | GPRS/EDGE(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 6. | WCDMA(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 7. | GPRS/EDGE(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | | 8. | WCDMA(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | **Report No.: FA562501** #### **General Note:** - 1. This device supported VoIP in GPRS, EGPRS, WCDMA (e.g. 3rd party VoIP). - 2. This device 2.4GHz WLAN supports Hotspot operation. - 3. WLAN 2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously. - 4. The Scaled SAR summation is calculated based on the same configuration and test position. - 5. Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. SPORTON INTERNATIONAL (XI'AN) INC. - ii) SPLSR = $(SAR_1 + SAR_2)^{1.5} / (min. separation distance, mm)$, and the peak separation distance is determined from the square root of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]: $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. | Bluetooth | Exposure Position | Head | Hotspot | Body worn | |-----------|-------------------------|------------|------------|------------| | Max Power | Test separation | 0 mm | 10 mm | 10 mm | | 7.00dBm | Estimated SAR
(W/kg) | 0.210 W/kg | 0.105 W/kg | 0.105 W/kg | ## 16.1 Head Exposure Conditions #### <WWAN PCE + WLAN DTS> | WWAN | N Band | Exposure Position | WWAN PCE
WWAN SAR
(W/kg) | WLAN DTS
WLAN SAR
(W/kg) | Summed
SAR
(W/kg) | SPLSR | Case No | |---------|----------|-------------------|--------------------------------|--------------------------------|-------------------------|-------|---------| | | | Right Cheek | 0.684 | 1.078 | 1.76 | 0.03 | #01 | | | GSM850 | Right Tilted | 0.461 | 0.886 | 1.35 | | | | | GSIVIOSO | Left Cheek | 0.596 | 0.583 | 1.18 | | | | GSM | | Left Tilted | 0.477 | 1.078 | <mark>1.56</mark> | | | | GSIVI | | Right Cheek | 0.356 | 1.078 | 1.43 | | | | | GSM1900 | Right Tilted | 0.125 | 0.886 | 1.01 | | | | | GSW1900 | Left Cheek | 0.516 | 0.583 | 1.10 | | | | | | Left Tilted | 0.114 | 1.078 | 1.19 | | | | | | Right Cheek | 0.384 | 1.078 | 1.46 | | | | | Band V | Right Tilted | 0.282 | 0.886 | 1.17 | | | | | Danu v | Left Cheek | 0.399 | 0.583 | 0.98 | | | | WCDMA | | Left Tilted | 0.302 | 1.078 | 1.38 | | | | WCDIVIA | | Right Cheek | 0.337 | 1.078 | 1.42 | | | | | Band II | Right Tilted | 0.124 | 0.886 | 1.01 | | | | | Dailu II | Left Cheek | 0.530 | 0.583 | 1.11 | | | | | | Left Tilted | 0.116 | 1.078 | 1.19 | | | Report No.: FA562501 #### <WWAN PCE + Bluetooth DSS> | WWAN | Band | Exposure Position | WWAN PCE
WWAN SAR
(W/kg) | Bluetooth DSS
Estimated SAR
(W/kg) | Summed
SAR (W/kg) | SPLSR | Case No | |-------|----------|-------------------|--------------------------------|--|----------------------|-------|---------| | | | Right Cheek | 0.684 | 0.210 | 0.89 | | | | | GSM850 | Right Tilted | 0.461 | 0.210 | 0.67 | | | | | GSIVIOSU | Left Cheek | 0.596 | 0.210 | 0.81 | | | | GSM | | Left Tilted | 0.477 | 0.210 | 0.69 | | | | GSIVI | | Right Cheek | 0.356 | 0.210 | 0.57 | | | | | CCM4000 | Right Tilted | 0.125 | 0.210 | 0.34 | | | | | GSM1900 | Left Cheek | 0.516 | 0.210 | 0.73 | | | | | | Left Tilted | 0.114 | 0.210 | 0.32 | | | | | | Right Cheek | 0.384 | 0.210 | 0.59 | | | | | Dond V | Right Tilted | 0.282 | 0.210 | 0.49 | | | | | Band V | Left Cheek | 0.399 | 0.210 | 0.61 | | | | MCDMA | | Left Tilted | 0.302 | 0.210 | 0.51 | | | | WCDMA | | Right Cheek | 0.337 | 0.210 | 0.55 | | | | | Band II | Right Tilted | 0.124 | 0.210 | 0.33 | | | | | Danu II | Left Cheek | 0.530 | 0.210 | 0.74 | | | | | | Left Tilted | 0.116 | 0.210 | 0.33 | | | ### 16.2 Hotspot Exposure Conditions ### <WWAN PCE+ WLAN DTS> | 1AWW | N Band | Exposure
Position | WWAN PCE
WWAN SAR
(W/kg) | WLAN DTS
WLAN SAR
(W/kg) | Summed
SAR (W/kg) | SPLSR | Case No | |----------|----------|----------------------|--------------------------------|--------------------------------|----------------------|-------|---------| | | | Front | 0.966 | 0.161 | 1.13 | | | | | | Back | 1.209 | 0.161 | 1.37 | | | | | GSM850 | Left side | 0.826 | 0.161 | 0.99 | | | | | GSIVI650 | Right side | 0.687 | | 0.69 | | | | | | Top side | | 0.161 | 0.16 | | | | GSM | | Bottom side | 0.189 | | 0.19 | | | | GSIVI | | Front | 0.939 | 0.161 | 1.10 | | | | | | Back | 0.778 | 0.161 | 0.94 | | | | | GSM1900 | Left side | 0.300 | 0.161 | 0.46 | | | | | G3W1900 | Right side | 0.114 | | 0.11 | | | | | | Top side | | 0.161 | 0.16 | | | | | | Bottom side | 1.162 | | 1.16 | | | | | | Front | 0.559 | 0.161 | 0.72 | | | | | | Back | 0.743 | 0.161 | 0.90 | | | | | Band V | Left side | 0.595 | 0.161 | 0.76 | | | | | Danu v | Right side | 0.568 | | 0.57 | | | | | | Top side | | 0.161 | 0.16 | | | | WCDMA | | Bottom side | 0.128 | | 0.13 | | | | VVCDIVIA | | Front | 0.910 | 0.161 | 1.07 | | | | | | Back | 0.778 | 0.161 | 0.94 | | | | | Band II | Left side | 0.300 | 0.161 | 0.46 | | | | | Danu II | Right side | 0.112 | | 0.11 | | | | | | Top side | | 0.161 | 0.16 | | | | | | Bottom side | 1.115 | | 1.12 | | | Report No.: FA562501 FCC ID: WVBA489X Page 37 of 43 Form version. : 150415 <WWAN PCE+ Bluetooth DSS> | | | Exposure | WWAN PCE | Bluetooth DSS | Summed | | | |-------|----------|-------------|--------------------|----------------------|------------|-------|---------| | WWA | N Band | Position | WWAN SAR
(W/kg) | Estimated SAR (W/kg) | SAR (W/kg) | SPLSR | Case No | | | | Front |
0.966 | 0.105 | 1.07 | | | | | | Back | 1.209 | 0.105 | 1.31 | | | | | GSM850 | Left side | 0.826 | 0.105 | 0.93 | | | | | GSIVIOSO | Right side | 0.687 | | 0.69 | | | | | | Top side | | 0.105 | 0.11 | | | | GSM | | Bottom side | 0.189 | | 0.19 | | | | GSIVI | | Front | 0.939 | 0.105 | 1.04 | | | | | | Back | 0.778 | 0.105 | 0.88 | | | | | GSM1900 | Left side | 0.300 | 0.105 | 0.41 | | | | | GSW1900 | Right side | 0.114 | | 0.11 | | | | | | Top side | | 0.105 | 0.11 | | | | | | Bottom side | 1.162 | | 1.16 | | | | | | Front | 0.559 | 0.105 | 0.66 | | | | | | Back | 0.743 | 0.105 | 0.85 | | | | | Band V | Left side | 0.595 | 0.105 | 0.70 | | | | | Band v | Right side | 0.568 | | 0.57 | | | | | | Top side | | 0.105 | 0.11 | | | | MODMA | | Bottom side | 0.128 | | 0.13 | | | | WCDMA | | Front | 0.910 | 0.105 | 1.02 | | | | | | Back | 0.778 | 0.105 | 0.88 | | | | | Dond II | Left side | 0.300 | 0.105 | 0.41 | | | | | Band II | Right side | 0.112 | | 0.11 | | | | | | Top side | | 0.105 | 0.11 | | | | | | Bottom side | 1.115 | | 1.12 | | | Report No.: FA562501 TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 Form version. : 150415 FCC ID: WVBA489X Page 38 of 43 ### 16.3 Body-Worn Accessory Exposure Conditions ### < WWAN PCE+ WLAN DTS> | WW. | AN Band | Exposure Position | WWAN PCE
WWAN SAR
(W/kg) | WLAN DTS
WLAN SAR
(W/kg) | Summed
SAR (W/kg) | SPLSR | Case No | |---------|---------|-------------------|--------------------------------|--------------------------------|----------------------|-------|---------| | | | Front | 0.966 | 0.161 | 1.13 | | | | | GSM850 | Back | 1.209 | 0.161 | 1.37 | | | | GSM | | Back with headset | 0.954 | 0.161 | 1.12 | | | | | GSM1900 | Front | 0.939 | 0.161 | 1.10 | | | | | G3W1900 | Back | 0.778 | 0.161 | 0.94 | | | | | Band V | Front | 0.559 | 0.161 | 0.72 | | | | MCDMA | Danu v | Back | 0.743 | 0.161 | 0.90 | | | | WCDIVIA | WCDMA | Front | 0.910 | 0.161 | 1.07 | | | | | Band II | Back | 0.778 | 0.161 | 0.94 | | | Report No. : FA562501 ### <WWAN PCE+ Bluetooth DSS> | WW | AN Band | Exposure Position | WWAN PCE
WWAN SAR
(W/kg) | Bluetooth DSS
Estimated SAR
(W/kg) | Summed | SPLSR | Case No | |---------|----------|-------------------|--------------------------------|--|--------|-------|---------| | | | Front | 0.966 | 0.105 | 1.07 | | | | | GSM850 | Back | 1.209 | 0.105 | 1.31 | | | | GSM | | Back with headset | 0.954 | 0.105 | 1.06 | | | | | GSM1900 | Front | 0.939 | 0.105 | 1.04 | | | | | G3W1900 | Back | 0.778 | 0.105 | 0.88 | | | | | Band V | Front | 0.559 | 0.105 | 0.66 | | | | WCDMA | Danu v | Back | 0.743 | 0.105 | 0.85 | | | | WCDIVIA | Band II | Front | 0.910 | 0.105 | 1.02 | | | | | Dailu II | Back | 0.778 | 0.105 | 0.88 | | | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 Form version. : 150415 FCC ID: WVBA489X Page 39 of 43 ### 16.4 SPLSR Evaluation and Analysis #### **General Note:** SPLSR = $(SAR_1 + SAR_2)^{1.5} / (min. separation distance, mm)$. If SPLSR ≤ 0.04 , simultaneously transmission SAR measurement is not necessary | | Donal | Desition | SAR | Gap | SAR pea | ak locati | on (m) | 3D | Summed | SPLSR | Simultaneous | |------|------------|-------------|--------|-------|---------|-----------|--------|---------------|---------------|---------|--------------| | Case | Band | Position | (W/kg) | (cm) | Х | Υ | Z | distance (mm) | SAR
(W/kg) | Results | SAR | | 1 | GSM850 | Dight Chook | 0.684 | 0 | 0.0674 | -0.265 | -0.173 | | 1.76 | 0.03 | Not required | | | WLAN2.4GHz | Right Cheek | 1.078 | 0 | 0.0168 | -0.319 | -0.172 | 74.0 | 1.70 | 0.03 | Not required | | | | | | - All | - | | | | | | | Report No.: FA562501 Test Engineer: Kat Yin TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 FCC ID: WVBA489X Page 40 of 43 Form version.: 150415 ### 17. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. **Report No.: FA562501** A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### **Table 17.1. Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |--------------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | | | | | | ± 11.0 % | ± 10.8 % | | Coverage Factor for 95 % | | | | | | K: | =2 | | Expanded Uncertainty | | | | | | ± 22.0 % | ± 21.5 % | Report No. : FA562501 Table 17.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date : Jul. 17, 2015 Form version. : 150415 FCC ID: WVBA489X Page 42 of 43 ### 18. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" **Report No. : FA562501** - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency
Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r01, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Jun 2015. - [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014 - [7] FCC KDB 648474 D04 v01r02, "SAR Evaluation Considerations for Wireless Handsets", Dec 2013. - [8] FCC KDB 941225 D01 v03, "3G SAR MEAUREMENT PROCEDURES", Oct 2014 - [9] FCC KDB 941225 D06 v02, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2014. - [10] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014. - [11] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013. ### Appendix A. Plots of System Performance Check **Report No. : FA562501** The plots are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2015/7/2 ### System Check Head 835MHz 150702 ### DUT: D835V2-SN:4d091 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL_835_150702 Medium parameters used: f = 835 MHz; $\sigma = 0.913$ S/m; $\epsilon_r = 40.859$; $\rho = 0.913$ S/m; $\epsilon_r = 40.859$; 1000 kg/m^3 Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.98 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.66 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 3.00 W/kg 0 dB = 3.00 W/kg ### System Check Head 1900MHz 150702 ### DUT: D1900V2-SN:5d118 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900_150702 Medium parameters used: f = 1900 MHz; $\sigma = 1.455$ S/m; $\epsilon_r = 40.844$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.6 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 96.98 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kgMaximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2015/7/2 ### System Check Head 2450MHz 150702 ### **DUT: D2450V2-SN:840** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450_150702 Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 37.626$; $\rho = 1.81$ S/m; $\epsilon_r = 37.626$; 1000 kg/m^3 Ambient Temperature: 23.4°C; Liquid Temperature: 22.5°C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.05, 7.05, 7.05); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 19.1 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.62 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.61 W/kgMaximum value of SAR (measured) = 19.1 W/kg 0 dB = 19.1 W/kg Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2015/7/2 ### System Check Body 835MHz 150702 ### DUT: D835V2-SN:4d091 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL_835_150702 Medium parameters used: f = 835 MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 53.68$; $\rho = 0.97$ Medium: $\epsilon_r = 53.68$ 1000 kg/m^3 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.66, 9.66, 9.66); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.07 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.99 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 3.06 W/kg 0 dB = 3.06 W/kg ### System Check Body 1900MHz 150701 ### DUT: D1900V2-SN:5d118 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL_1900_150701 Medium parameters used: f = 1900 MHz; σ = 1.534 S/m; ϵ_r = 55.327; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.57, 7.57, 7.57); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.9 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.41 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.81 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 13.8 W/kg 0 dB = 13.8 W/kg Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2015/7/3 ### System Check Body 2450MHz 150703 ### **DUT: D2450V2-SN:840** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL_2450_150703 Medium parameters used: f = 2450 MHz; $\sigma = 1.949$ S/m; $\epsilon_r = 53.894$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4°C; Liquid Temperature: 22.3°C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.18, 7.18, 7.18); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 19.5 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.32 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 26.3 W/kg **SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.89 W/kg** Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg ### Appendix B. Plots of High SAR Measurement **Report No. : FA562501** The plots are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. ### #01 GSM850_GPRS (GMSK 4 Tx slot)_Right Cheek_Ch128 Communication System: UID 0, GPRS (GMSK 4 Tx slot) (0); Frequency: 824.2 MHz; Duty Cycle: 1:2.08 Date: 2015/7/2 Medium: HSL_835_150702 Medium parameters used: f = 824.2 MHz; $\sigma = 0.903$ S/m; $\epsilon_r = 40.977$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) # **Ch128/Area Scan (61x111x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.716 W/kg Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.991 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.777 W/kg SAR(1 g) = 0.627 W/kg; SAR(10 g) = 0.482 W/kg Maximum value of SAR (measured) = 0.710 W/kg 0 dB = 0.710 W/kg ### #02 GSM1900_GPRS (GMSK 4 Tx slot)_Left Cheek_Ch810 Communication System: UID 0, GPRS (GMSK 4 Tx slot) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900_150702 Medium parameters used: f = 1909.8 MHz; σ = 1.466 S/m; $ε_r = 40.796$; ρ = 1000 kg/m³ Date: 2015/7/2 Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Ch810/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.657 W/kg Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.247 V/m; Power Drift = 0.08
dB Peak SAR (extrapolated) = 0.747 W/kg SAR(1 g) = 0.486 W/kg; SAR(10 g) = 0.299 W/kg Maximum value of SAR (measured) = 0.629 W/kg 0 dB = 0.629 W/kg ### #03 WCDMA Band V RMC 12.2Kbps Left Cheek Ch4233 Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium: HSL_835_150702 Medium parameters used: f = 846.6 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 40.736$; $\rho = 1000 \text{ kg/m}^3$ Date: 2015/7/2 Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.62, 9.62, 9.62); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch4233/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.396 W/kg Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.498 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.430 W/kg SAR(1 g) = 0.353 W/kg; SAR(10 g) = 0.273 W/kgMaximum value of SAR (measured) = 0.397 W/kg 0 dB = 0.397 W/kg ### #04 WCDMA Band II RMC 12.2Kbps Left Cheek Ch9538 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900_150702 Medium parameters used: f = 1907.6 MHz; σ = 1.464 S/m; ϵ_r = 40.806; ρ Date: 2015/7/2 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch9538/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.620 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.061 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.699 W/kg SAR(1 g) = 0.457 W/kg; SAR(10 g) = 0.281 W/kg Maximum value of SAR (measured) = 0.588 W/kg 0 dB = 0.588 W/kg ### #05 WLAN2.4GHz_802.11b 1Mbps_Right Cheek_Ch11 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1.024 Medium: HSL_2450_150702 Medium parameters used: f = 2462 MHz; $\sigma = 1.824$ S/m; $\epsilon_r = 37.585$; $\rho = 1000$ kg/m³ Date: 2015/7/2 Ambient Temperature: 23.4°C; Liquid Temperature: 22.5°C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.05, 7.05, 7.05); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch11/Area Scan (71x131x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.42 W/kg Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.01 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.48 W/kg SAR(1 g) = 0.936 W/kg; SAR(10 g) = 0.406 W/kg Maximum value of SAR (measured) = 1.63 W/kg ### #06 GSM850_GPRS (GMSK 4 Tx slot)_Back_1.0cm_Ch251 Communication System: UID 0, GPRS (GMSK 4 Tx slot) (0); Frequency: 848.8 MHz; Duty Cycle: 1:2.08 Medium: MSL_835_150702 Medium parameters used: f = 848.8 MHz; $\sigma = 0.984$ S/m; $\epsilon_r = 53.54$; $\rho = 1000 \text{ kg/m}^3$ Date: 2015/7/2 Ambient Temperature : 23.5 °C; Liquid Temperature : 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.66, 9.66, 9.66); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Ch251/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.25 W/kg Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.839 W/kg Maximum value of SAR (measured) = 1.25 W/kg 0 dB = 1.25 W/kg ### #07 GSM1900_GPRS (GMSK 4 Tx slot)_Bottom side_1.0cm_Ch512 Communication System: UID 0, GPRS (GMSK 4 Tx slot) (0); Frequency: 1850.2 MHz; Duty Cycle: 1:2.08 Date: 2015/7/1 Medium: MSL_1900_150701 Medium parameters used: f = 1850.2 MHz; σ = 1.487 S/m; $ε_r = 55.469$; ο = 1000 kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.57, 7.57, 7.57); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Ch512/Area Scan (31x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.23 W/kg ### Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.28 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.555 W/kg Maximum value of SAR (measured) = 1.37 W/kg 0 dB = 1.37 W/kg ### #08 WCDMA Band V_RMC 12.2Kbps_Back_1.0cm_Ch4233 Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: MSL_835_150702 Medium parameters used: f = 846.6 MHz; $\sigma = 0.982$ S/m; $\epsilon_r = 53.561$; $\rho = 1000$ kg/m³ Date: 2015/7/2 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.66, 9.66, 9.66); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch4233/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.755 W/kg **Ch4233/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.03 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.834 W/kg SAR(1 g) = 0.658 W/kg; SAR(10 g) = 0.500 W/kg Maximum value of SAR (measured) = 0.757 W/kg 0 dB = 0.757 W/kg ### #09 WCDMA Band II_RMC 12.2Kbps_Bottom side_1.0cm_Ch9538 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900_150701 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.544$ S/m; $\epsilon_r = 55.266$; $\rho = 1000$ kg/m³ Date: 2015/7/1 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.57, 7.57, 7.57); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch9538/Area Scan (31x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.20 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.94 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 1.58 W/kg SAR(1 g) = 0.962 W/kg; SAR(10 g) = 0.521 W/kg Maximum value of SAR (measured) = 1.29 W/kg 0 dB = 1.29 W/kg ### #10 WLAN2.4GHz 802.11b 1Mbps Back 1.0cm Ch11 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1.024 Medium: MSL_2450_150703 Medium parameters used: f = 2462 MHz; $\sigma = 2$ S/m; $\epsilon_r = 51.115$; $\rho = 1000$ kg/m³ Date: 2015/7/3 Ambient Temperature: 23.4°C; Liquid Temperature: 22.3°C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.18, 7.18, 7.18); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch11/Area Scan (71x131x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.253 W/kg Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.580 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.271 W/kg SAR(1 g) = 0.140 W/kg; SAR(10 g) = 0.074 W/kg Maximum value of SAR (measured) = 0.197 W/kg ### #11 GSM1900_GPRS (GMSK 4 Tx slot)_Front_1.0cm_Ch512 Communication System: UID 0, GPRS (GMSK 4 Tx slot) (0); Frequency: 1850.2 MHz; Duty Cycle: 1:2.08 Date: 2015/7/1 Medium: MSL_1900_150701 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.487$ S/m; $\varepsilon_r = 55.469$; $\sigma = 1000$ kg/m³ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.57, 7.57, 7.57); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### Ch512/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.07 W/kg ### Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.149 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.816 W/kg; SAR(10 g) = 0.490 W/kg Maximum value of SAR (measured) = 1.04 W/kg 0 dB = 1.04 W/kg ### #12 WCDMA Band II RMC 12.2Kbps Front 1.0cm Ch9262 Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL 1900 150701 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.489$ S/m; $\varepsilon_r = 55.469$; Date: 2015/7/1 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C ### DASY5 Configuration: - Probe: EX3DV4
SN3911; ConvF(7.57, 7.57, 7.57); Calibrated: 2014/10/2; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2015/4/28 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch9262/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.923 W/kg Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.942 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.743 W/kg; SAR(10 g) = 0.448 W/kg Maximum value of SAR (measured) = 0.980 W/kg 0 dB = 0.980 W/kg ### Appendix C. DASY Calibration Certificate **Report No. : FA562501** The DASY calibration certificates are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) Certificate No: D835V2-4d091_Nov14 ### CALIBRATION CERTIFICATE Object D835V2 - SN: 4d091 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 21, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205
SN: 601 | 07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02021)
03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921)
30-Dec-13 (No. ES3-3205_Dec13)
18-Aug-14 (No. DAE4-601_Aug14) | Oct-15
Oct-15
Oct-15
Apr-15
Apr-15
Dec-14
Aug-15 | |---|---|--| | MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205 | 07-Oct-14 (No. 217-02021)
03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921)
30-Dec-13 (No. ES3-3205_Dec13) | Oct-15
Apr-15
Apr-15
Dec-14 | | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205 | 03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921)
30-Dec-13 (No. ES3-3205_Dec13) | Apr-15
Apr-15
Dec-14 | | SN: 5047.2 / 06327
SN: 3205 | 03-Apr-14 (No. 217-01921)
30-Dec-13 (No. ES3-3205_Dec13) | Apr-15
Dec-14 | | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | | | | | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | | | 3 | | ID# | Check Date (in house) | Scheduled Check | | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | Name | Function | Signature | | Michael Weber | Laboratory Technician | M. Webset | | | 100005
US37390585 S4206
Name | 100005 | Issued: November 21, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Katja Pokovic Approved by: Technical Manager ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d091_Nov14 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition * | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.11 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.95 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|-------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6, % | | Body TSL temperature change during test | < 0.5 °C | | - | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.60 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.31 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d091_Nov14 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω - 1.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 32.2 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.7 Ω - 4.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.2 dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1,394 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for
DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 15, 2009 | Certificate No: D835V2-4d091_Nov14 ### **DASY5 Validation Report for Head TSL** Date: 19.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.46 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.5 W/kg Maximum value of SAR (measured) = 2.69 W/kg 0 dB = 2.69 W/kg = 4.30 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 21.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.36 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 2.89 W/kg 0 dB = 2.89 W/kg = 4.61 dBW/kg ### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) Certificate No: D1900V2-5d118_Nov14 ## CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d118 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 21, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | |-----------------------------|--------------------|-----------------------------------|------------------------|--| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | | Name | Function | Signature | | | Calibrated by: | Michael Weber | Laboratory Technician | 1/11/1 | | Approved by: Katja Pokovic Technical Manager Issued: November 21, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d118_Nov14 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.3 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------
--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.34 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.4 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.3 \Omega + 6.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 23.1 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $47.5 \Omega + 7.1 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 22.3 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| | Electrical Delay (one direction) | 1.201113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-----------------|--| | Manufactured on | August 21, 2009 | | Certificate No: D1900V2-5d118 Nov14 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 21.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.04 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.24 W/kg Maximum value of SAR (measured) = 12.6 W/kg 0 dB = 12.6 W/kg = 11.00 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 21.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ S/m}$; $\varepsilon_r = 53.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.09 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.34 W/kg Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.04 dBW/kg # Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) Certificate No: D2450V2-840_Nov14 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 840 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 19, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 1-12 | | | (Z. P. B. L. T. | | | | Approved by: | Katja Pokovic | Technical Manager | sel de | Issued: November 20, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-840_Nov14 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---
-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition * | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.21 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.9 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.00 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.7 Ω + 2.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.6 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $50.9 \Omega + 4.4 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 27.0 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.162 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 20, 2009 | Certificate No: D2450V2-840_Nov14 #### **DASY5 Validation Report for Head TSL** Date: 19.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.9 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.21 W/kg Maximum value of SAR (measured) = 17.5 W/kg 0 dB = 17.5 W/kg = 12.43 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 19.11.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.80 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 17.3 W/kg 0 dB = 17.3 W/kg = 12.38 dBW/kg # Impedance Measurement Plot for Body TSL Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ## IMPORTANT NOTICE ## **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering TN_BR040315AD DAE4.doc 11.12.2009 ## **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 ### Client Sporton CN (Auden) Certificate No: DAE4-1358_Apr15 **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 1358 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: April 28, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) **Scheduled Calibration** Keithley Multimeter Type 2001 SN: 0810278 03-Oct-14 (No:15573) Oct-15 Secondary Standards Check Date (in house) Scheduled Check **Auto DAE Calibration Unit** SE UWS 053 AA 1001 06-Jan-15 (in house check) In house check: Jan-16 Calibrator Box V2.1 SE UMS 006 AA 1002 06-Jan-15 (in house check) in house check: Jan-16 **Function** Calibrated by: R.Mayoraz Approved by: Fin Bomholt **Deputy Technical Manager** Issued:
April 28, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1358_Apr15 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during-measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1358_Apr15 Page 2 of 5 The state of the second st # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.483 ± 0.02% (k=2) | 403.518 ± 0.02% (k=2) | 403.518 ± 0.02% (k=2) | | Low Range | 3.96161 ± 1.50% (k=2) | | <u>``_</u> | ### **Connector Angle** | Connector Angle to be used in DASY system | 136.0 ° ± 1 ° | |---|---------------| | | 130.0 I | # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |------------------|----------------------|-----------------|-----------| | Channel X + Inp | ı t 199994.26 | 0.19 | 0.00 | | Channel X + Inpu | t 20001.61 | 1.85 | 0.01 | | Channel X - Inpu | -19999.78 | 2.01 | -0.01 | | Channel Y + Inpu | t 199995.03 | 0.73 | 0.00 | | Channel Y + Inpu | t 19996.49 | -3.43 | -0.02 | | Channel Y - Inpu | -20003.21 | -1.32 | 0.01 | | Channel Z + Inpu | t 199996.71 | 2.48 | 0.00 | | Channel Z + Inpu | t 20001.26 | 1.31 | 0.01 | | Channel Z - Inpu | -20002.05 | -0.22 | 0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 1999.91 | 0.13 | 0.01 | | Channel X + Input | 201.31 | 1.19 | 0.59 | | Channel X - Input | -199.69 | 0.03 | -0.02 | | Channel Y + Input | 1999.53 | -0.30 | -0.01 | | Channel Y + Input | 199.29 | -0.81 | -0.40 | | Channel Y - input | -200.90 | -1.13 | 0.57 | | Channel Z + Input | 1999.62 | -0.16 | -0.01 | | Channel Z + Input | 199.39 | 40.68 | -0.34 | | Channel Z - Input | -200,48 | -0.73 | 0.37 | #### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | · · · · · · · · · · · · · · · · · · · | Common mode Input Voltage (mV) | | - 41
 | High Range
Average Reading (μV) | | | Low Range
Average Reading (μV)
21.59 | |---------------------------------------|--------------------------------|-------|----------|------------------------------------|--------|------|--| | Channel X | | 200 | | 23.04 | | e es | | | · | - ;:. | - 200 | | : / : | -20.28 | 7.21 | -21.73 | | Channel Y | | 200 | 3 | | -27.94 | • • | -27.90 | | | | - 200 | | | 26.04 | | 25.76 | | Channel Z | | 200 | | | -11.37 | | -11.39 | | | | - 200 | | | 10.05 | | 10.04 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | 2.06 | -3.29 | | Channel Y | 200 | 9.41 | • | 3.82 | | Channel Z | 200 | 10.45 | 5.44 | | Certificate No: DAE4-1358_Apr15 Page 4 of 5 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | | |-----------|------------------|-----------------|--| | Channel X | 15573 | 16145 | | | Channel Y | 16047 | 15196 | | | Channel Z | 16064 | 15449 | | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.95 | 0.01 | 1.94 | 0.34 | | Channel Y | 0.52 | -0.73 | 2.21 | 0.53 | | Channel Z | 0.85 | -0.34 | 2.15 | 0.50 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | • | Alarm Level (VDC) | | |----------------|---|-------------------|--| | Supply (+ Vcc) | | +7.9 | | | Supply (- Vcc) | | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0:01 | +6 | +14 | | Supply (-Vcc) | -0:01 | -8 | -9 | # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) | Certificate No: | EX3-3911 | _Oct14 | |-----------------|----------|--------| Accreditation No.: SCS 108 | | RA | | | | | | |--|----|--|--|--|--|--| Object EX3DV4 - SN:3911 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: October 2, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B GB41293874 | | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | In | | | | | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | |----------------|--|-----------------------|-----------| | Calibrated by: | Jeton Kastrati | Laboratory Technician | 1-12- | | Approved by: | Katja Pokovic | Technical Manager | Ally- | | | American management of the second | | | Issued: October 2, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of**
Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 # **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3911_Oct14 Page 2 of 11 # Probe EX3DV4 SN:3911 Manufactured: September 4, 2012 Repaired: September 26, 2014 Calibrated: October 2, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ### **Basic Calibration Parameters** | 2.4 | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--------------------------|----------|----------|----------|-----------|--| | Norm $(\mu V/(V/m)^2)^A$ | 0.32 | 0.42 | 0.49 | ± 10.1 % | | | DCP (mV) ^B | 102.9 | 96.3 | 97.7 | = 1011 70 | | **Modulation Calibration Parameters** | UID | Communication System Name | | A | В | С | D | VR | Unc | |-----|---------------------------|--------------------|-----|-------|-----|------|-------|--------| | 0 | CW | - , | dB | dB√μV | | dB | mV | (k=2) | | | | - ^ | 0.0 | 0.0 | 1.0 | 0.00 | 145.4 | ±2.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 141.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 136.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.89 | 9.89 | 9.89 | 0.48 | 0.76 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.62 | 9.62 | 9.62 | 0.55 | 0.70 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.38 | 9.38 | 9.38 | 0.23 | 1.18 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.18 | 8.18 | 8.18 | 0.26 | 1.01 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.95 | 7.95 | 7.95 | 0.27 | 1.01 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.92 | 7.92 | 7.92 | 0.34 | 0.88 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.53 | 7.53 | 7.53 | 0.44 | 0.73 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.05 | 7.05 | 7.05 | 0.31 | 0.92 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.92 | 6.92 | 6.92 | 0.36 | 0.92 | ± 12.0 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. validity can be extended to ± 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.61 | 9.61 | 9.61 | 0.20 | 1.44 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.66 | 9.66 | 9.66 | 0.61 | 0.65 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.36 | 9.36 | 9.36 | 0.32 | 1.07 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.93 | 7.93 | 7.93 | 0.70 | 0.66 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.57 | 7.57 | 7.57 | 0.31 | 0.98 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.76 | 7.76 | 7.76 | 0.35 | 0.92 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.39 | 7.39 | 7.39 | 0.41 | 0.88 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.18 | 7.18 | 7.18 | 0.72 | 0.61 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.03 | 7.03 | 7.03 | 0.80 | 0.50 | ± 12.0 % | $^{^{\}rm c}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) #
Conversion Factor Assessment Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz # **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------------| | Connector Angle (°) | | | Mechanical Surface Detection Mode | -76.3
enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm |