

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

Dates of Tests: June 05 ~ June 30, 2009 Test Report S/N: LR500190907B Test Site : LTA CO., LTD. iahtstar **CERTIFICATION OF COMPLIANCE** FCC ID. **WVB-AV2300 Brightstar Corporation** APPLICANT **PCS Licensed Transmitter Held to Ear (PCE)** Classification : **Manufacturing Description Dual band GSM Phone** : Manufacturer : Jurong Hi-Tech Industries (M) Sdn. Bhd, Model name **AVVIO2300** : **Test Device Serial No.:** Identification : FCC Rule Part(s) §24(E), §22(H), §2 : **TX Frequency Range** 824.2 ~ 848.8 MHz (GSM850) / 1850.2 ~ 1909.8 MHz (PCS1900) : 869.2 ~ 893.8 MHz (GSM850) / 1930.2 ~ 1989.8 MHz (PCS1900) **RX Frequency Range** : Max. RF Output Power 1.002 W ERP GSM850 (30.01dBm) • 0.899 W EIRP PCS1900 (29.54dBm) **Emission Designators:** 245KGXW (GSM850) / 245KGXW (PCS1900) : Data of issue JULY 02, 2009 :

This test report is issued under the authority of:

Dong - Min JUNG, Technical Manager

The test was supervised by:

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	
3.1 SUMMARY OF TESTS	5
3.2 DESCRIPTION OF TESTS	6
3.2.1 EFFECTIVE RADIATED POWER OUTPUT	6
3.2.2 RADIATION SPURIOUS AND HARMONIC EMISSIONS	6
3.2.3 OCCUPIED BANDWIDTH	7
3.2.4 SPURIOUS EMISSION AT ANTENNA TERMINAL	7
3.2.5 OCCUPIED BANDWIDTH EMISSION LIMITS	7
3.2.6 FREQUENCY STABILITY/TEMPERTURE VARIATION	8
3.3 TEST DATA	9
3.3.1 EFFECTIVE RADIATED POWER OUTPUT	9
3.3.2 FIELD STRENGTH OF SPURIOUS RADIATION	13
3.3.3 FREQUENCY STABILITY	19
3.4 CNNCLUSION	21
3.5 TEST PLOTS	22
APPENDIX APPENDIX 1 TEST EQUIPMENT USED FOR TESTS	35

1. General information's

<u>1-1 Test Performed</u>

Company name	: LTA Co., Ltd.
Address	: 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	: <u>http://www.ltalab.com</u>
E-mail	: <u>chahn@ltalab.com</u>
Telephone	: +82-31-323-6008
Facsimile	+82-31-323-6010
~ ~ ~ ~ ~ ~	

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

<u>1-2 Accredited agencies</u>

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2009-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2011-06-20	EMC accredited Lab.
FCC	U.S.A	610755	2011-04-22	FCC filing
VCCI	JAPAN	R2133, C2307	2011-06-21	VCCI registration
IC	CANADA	IC5799	2010-05-03	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name	:	Brightstar Corporation
Address	:	9725 NW 117 th Ave #300
		Miami – FL , USA
Tel / Fax	:	+82 1 305 421-6000/ +82 1 305 421-6000

<u>2-2 Equipment Under Test (EUT)</u>

Classification	:	Dual band GSM Phone
Model name	:	AV2300
Serial number	:	Identification
Date of receipt	:	June 01, 2009
EUT condition	:	Pre-production, not damaged
Antenna type	:	Fixed Internal Antenna
Tx Frequency Range	:	824.2 ~ 848.8 MHz (GSM850) / 1850.2 ~ 1909.8 MHz (PCS1900)
Rx Frequency Range	:	869.2 ~ 893.8 MHz (GSM850) / 1930.2 ~ 1989.8 MHz (PCS1900)
RF output power Range	:	1.002 W ERP GSM850 (30.01dBm)
		0.899 W EIRP PCS1900 (29.54dBm)
Frequency Tolerance	:	±0.00025% (2.5ppm)
Modulation(s)	:	GMSK
Emission Designators	:	245KGXW(GSM850) / 245KGXW(PCS1900)
Power Source	:	Li-ion battery 3.7V

2-3 Tested frequency

	GSM	1 850	PCS	1900
	Channel Frequency (MHz)		Channel	Frequency (MHz)
LOW	128	824.2	512	1850.2
MID	190	836.6	661	1880.0
HIGH	251	848.8	810	1909.8

3. Test Report

3.1 Summary of tests

Parameter	Status
Transmitter Requirements	
Output Power	С
Occupied Bandwidth	С
Field Strength of Spurious Radiation	С
Spurious Radiation at Antenna Terminal	С
Frequency Stability	С

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

A sample calculation:

COR. F (correction factor)= Antenna factor + Cable loss- Amp.gain- Distance correction Emission Level= meter reading + COR.F

Emission Designator: - GSM850

- EMISSION Designator = 245KGXW GSM BW = 245KHz G = Phase Modulation X = Cases not otherwise covered
 - W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

Emission Designator: - PCS1900

EMISSION Designator = 245KGXW

GSM BW = 245KHz

G = Phase Modulation

 $\mathbf{X} = \mathbf{Cases}$ not otherwise covered

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

3.2 DESCRIPTION OF TESTS

3.2.1 Effective Radiated Power Output

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For GSM signals, an average detector is used, with RBW=VBW=3MHz, SPAN=10MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

3.2.2 Radiation Spurious and Harmonic Emissions

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. The Spectrum was investigated from 30MHz to the 10th Harmonic of the fundamental. A peak detector is used. With RBW=VBW=1MHz. The value that we could measure was only reported. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

3.2.3 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

3.2.4 Spurious Emission at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10 GHz.

3.2.5 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$.
- (b) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.2.6 Frequency Stability/Temperature Variation

The frequency stability of the transmitter is measured by:

- a) **Temperature** :The temperature is varied from -30° C to $+60^{\circ}$ C using an environmental chamber.
- b) **Primary Supply Voltage** :The primary supply voltage is varied from 85% to 115% of the voltage Normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification –The minimum frequency stability shall be +/- 0.00025% at any time during normal operation.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C(usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency to the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements is made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency were made at 10 intervals starting at -30° C up to $+60^{\circ}$ C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

3.3 DESCRIPTION OF TESTS

3.3.1 Output Power

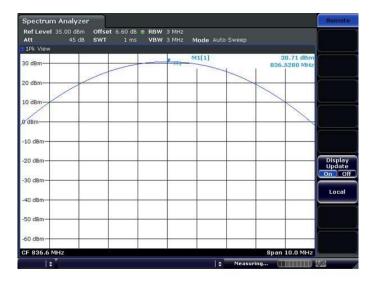
Measurement Procedure:

- During the process of testing, the EUT was controlled via Radio Communication tester to ensure max. Power transmission and proper modulation.
- Power output was measured at the RF output terminals when the transmitter is adjusted in accordance with Communication tester (or the tune-up procedure).

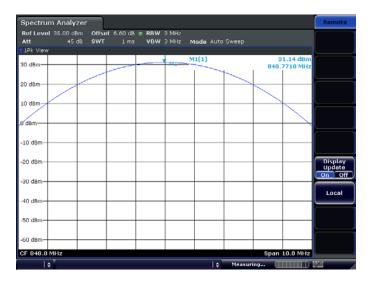
Measurement Data:

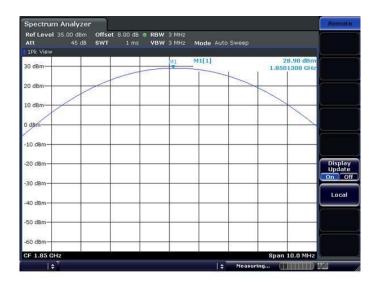
GSM850

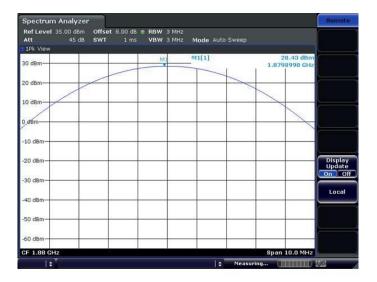
Channel	Frequency	TEST CONDITIONS Power Step: 5
Channel	(MHz)	(dBm)
128	824.2	30.92
190	836.6	30.71
251	848.8	31.14

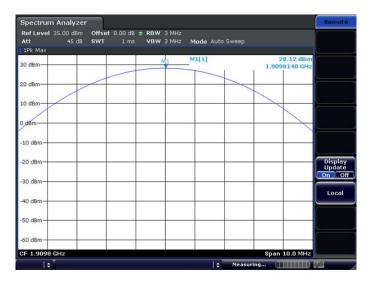

PCS1900

Channel	Frequency	TEST CONDITIONS Power Step: 0
Channer	(MHz)	(dBm)
512	1850.2	28.98
661	1880.0	28.43
810	1909.8	28.12




POWER OUT. GSM850 Ch.128


POWER OUT. GSM850 Ch.251



POWER OUT. PCS1900 Ch.512

POWER OUT. PCS1900 Ch.810

Effective Radiated Power Output (GSM850)

Measurement Data:

GSM850

	Frequency	TEST CONDITIONS Power Step: 5				
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	ERP (dBm)	ERP (W)	Battery
128	824.2	-10.33	V	29.88	0.972	Li-ion 3.7V
190	836.6	-10.15	V	29.76	0.946	Li-ion 3.7V
251	848.8	-9.94	V	30.01	1.002	Li-ion 3.7V

Note 1: Radiated measurements at 3 meters by Substitution Method.

Equivalent Isotropic Radiated Power (PCS1900)

Measurement Data:

PCS1900

	Frequency	TEST CONDITIONS Power Step: 0				
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	EIRP (dBm)	EIRP (W)	Battery
512	1850.2	-11.92	V	29.54	0.899	Li-ion 3.7V
661	1880.0	-11.53	V	29.12	0.817	Li-ion 3.7V
810	1909.8	-11.25	V	28.87	0.771	Li-ion 3.7V

Note 2: Radiated measurements at 3 meters by Substitution Method.

OPERATING FREQUENCY	:	824.2	MHz
CHANNEL	:	128(Low)	-
MEASURED OUTPUT POWER	:	<u> </u>	<u> 1.002 </u> W
MODULATION	:	GSM(Internal)	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	43.01 dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL					
	ANTENNA	ANTENNA	GENERATOR						
	TERMINALS	GAIN	LEVEL						
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)				
-	-	-	-	-	-				
No	No emissions were detected are a level greater than 20dB below limit.								
-	-	-	-	-	-				

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY	:	836.6	MHz
CHANNEL	:	190(Mid)	
MEASURED OUTPUT POWER	:	<u> </u>	<u> 1.002 </u> W
MODULATION	:	GSM(Internal)	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>43.01</u> dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	-				
	ANTENNA	ANTENNA	GENERATOR						
	TERMINALS	GAIN	LEVEL						
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)				
-	-	-	-	-	-				
No	No emissions were detected are a level greater than 20dB below limit.								
-	-	-	-	-	-				

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY	:	848.8	MHz
CHANNEL	:	251(High)	_
MEASURED OUTPUT POWER	:	<u> </u>	<u> 1.002 </u> W
MODULATION	:	GSM(Internal)	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>43.01</u> dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL					
	ANTENNA	ANTENNA	GENERATOR						
	TERMINALS	GAIN	LEVEL						
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)				
-	-	-	-	-	-				
No	No emissions were detected are a level greater than 20dB below limit.								
-	-	-	-	-	-				

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY	:	1850.2	MHz
CHANNEL	:	512(Low)	
MEASURED OUTPUT POWER	:	dBm =	<u> 0.899 </u> W
MODULATION	:	GSM(Internal)	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>42.54</u> dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL					
	ANTENNA	ANTENNA	GENERATOR						
	TERMINALS	GAIN	LEVEL						
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)				
-	-	-	-	-	-				
No	No emissions were detected are a level greater than 20dB below limit.								
-	-	-	-	-	-				

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

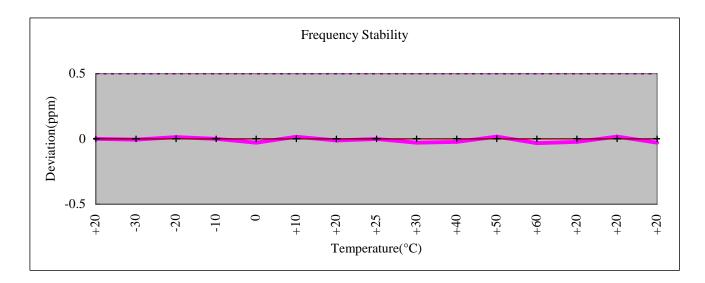
OPERATING FREQUENCY	:	1880.0	MHz
CHANNEL	:	661(Mid)	
MEASURED OUTPUT POWER	:	dBm =	<u> 0.899 </u> W
MODULATION	:	GSM(Internal)	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>42.54</u> dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL					
	ANTENNA	ANTENNA	GENERATOR						
	TERMINALS	GAIN	LEVEL						
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)				
-	-	-	-	-	-				
No	No emissions were detected are a level greater than 20dB below limit.								
-	-	-	-	-	-				

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Continue

OPERATING FREQUENCY	:	1909.8	MHz
CHANNEL	:	810(High)	
MEASURED OUTPUT POWER	:	dBm =	<u> 0.899 </u> W
MODULATION	:	GSM(Internal)	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>42.54</u> dBc

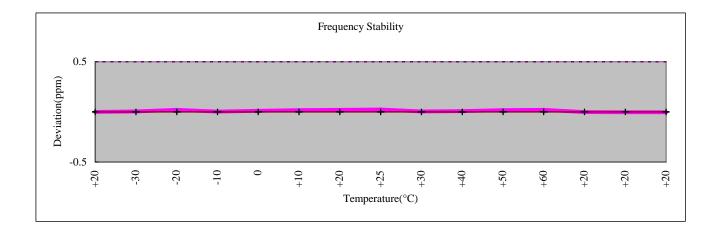

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	-				
	ANTENNA	ANTENNA	GENERATOR						
	TERMINALS	GAIN	LEVEL						
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)				
-	-	-	-	-	-				
No	No emissions were detected are a level greater than 20dB below limit.								
-	-	-	_	-	-				

Note1: Radiated measurements at 3 meters by Substitution Method.

3.3.3 Frequency Stability

OPERATING FREQUENCY :	836,599	,953		Hz
CHANNEL :		190(Mid)		_
REFERENCE VOLTAGE :		3.7		VDC
DEVIATION LIMIT :	± 0.00025	_ % or	2.5	ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	3.7	+20(Ref)	836,599,953	0.000000
100%		-30	836,599,948	0.000001
100%		-20	836,599,964	-0.000001
100%		-10	836,599,953	0.000000
100%		0	836,599,928	0.000003
100%		+10	836,599,966	-0.000002
100%		+20	836,599,943	0.000001
100%		+25	836,599,952	0.000000
100%		+30	836,599,928	0.000003
100%		+40	836,599,934	0.000002
100%		+50	836,599,967	-0.000002
100%		+60	836,599,925	0.000003
85%	3.2	+20	836,599,934	0.000002
115%	4.3	+20	836,599,967	-0.000002
BATT.ENDPOINT	3.1	+20	836,599,928	0.000003



3.3.3 Frequency Stability

- Continues

OPERATING FREQUENCY :	<u>1,879,999,728</u> Hz
CHANNEL :	0661(Mid)
REFERENCE VOLTAGE :	VDC
DEVIATION LIMIT :	<u>±0.00025</u> % or <u>2.5</u> ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	3.7	+20(Ref)	1,879,999,728	0.000000
100%		-30	1,879,999,734	0.000000
100%		-20	1,879,999,766	0.000002
100%		-10	1,879,999,732	0.000000
100%		0	1,879,999,748	0.000001
100%		+10	1,879,999,759	0.000002
100%		+20	1,879,999,764	0.000002
100%		+25	1,879,999,772	0.000002
100%		+30	1,879,999,735	0.000000
100%		+40	1,879,999,742	0.000001
100%		+50	1,879,999,758	0.000002
100%		+60	1,879,999,764	0.000002
85%	3.2	+20	1,879,999,725	0.000000
115%	4.3	+20	1,879,999,721	0.000000
BATT.ENDPOINT	3.1	+20	1,879,999,720	0.000000

3.4 CONCLUSION

The data collected shows that the **Brightstar Corporation / Dual band GSM Phone / FCC ID: WVB-AV2300** complies with all the requirements of Parts 2, 22, 24 of the FCC Rules.

3.5 TEST PLOTS

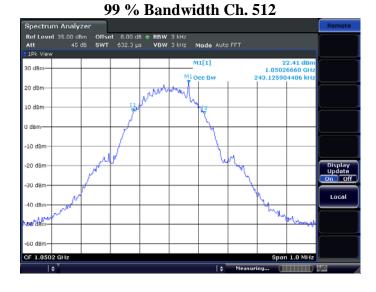
GSM850

Spectrum Analyzer Offset 6.60 dB = RBW 3 kHz SWT 632.3 µs VBW 3 kHz Mode Auto FFT 1Pk Vi M1[1] 26.86 dBm 824.18260 MHz 244.573082489 kHz 30 dBm J. Well Occ BW 20 dBm ų 10 dBm ı de -10 dBm પા -20 dBm Display Update On Of -30 dBm Local -40 dBr ah de -60 dBn CF 824.2 MHz Span 1.0 MHz T ≜

99 % Bandwidth Ch. 128

GSM850

99 % Bandwidth Ch. 190



GSM850

99 % Bandwidth Ch. 251

PCS1900

PCS1900

99 % Bandwidth Ch. 661

PCS1900

99 % Bandwidth Ch. 810

GSM850

-26dBc Bandwidth Ch. 128

GSM850

-26dBc Bandwidth Ch. 190

GSM850

-26dBc Bandwidth Ch. 251

PCS1900

-26dBc Bandwidth Ch. 512


PCS1900

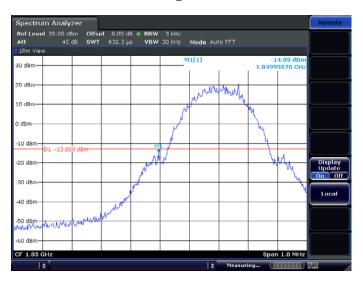
-26dBc Bandwidth Ch. 661

PCS1900

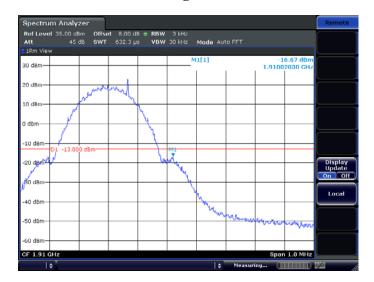
-26dBc Bandwidth Ch. 810

GSM850

Band Edge Ch. 128


GSM850

Band Edge Ch. 251


PCS1900

Band Edge Ch. 512

PCS1900

Band Edge Ch. 810

GSM850

Spurious Emissions at Antenna Terminal / Ch.128-1

GSM850

Spurious Emissions at Antenna Terminal / Ch.128-2

Spectrum Analyzer							Remote
Ref Level 35.00 dBm	Offset 6.60 dB	RBW 1	LOO kHz				
Att 45 dB	SWT 150 ms	VBW 1	LOO kHz M	ode Auto Si	veep		
1Pk View							
30 dBm			M1[1]		5.55 dBm 0640 GHz	
20 dBm							
10 dBm							
0 dBm							
-10 dBm							
-20 dBm							Display Update
-30 dBm			M1				On Off
worden which the	Merlen Morry	MAN	where	when you	and the second second	warya	Local
-50 dBm							
-60 dBm-							
Start 10.0 GHz					Stop	25.0 GHz	
l ÷ T				t N			<u> </u>

GSM850

Spurious Emissions at Antenna Terminal / Ch.190-1

GSM850

Spurious Emissions at Antenna Terminal / Ch.190-2

Spectrun	n Analy	zer								Remote
Ref Level			t 6.60 dB		100 kHz					
Att		dB SWT	150 ms	VBW	100 kHz	Mode Au	to Sweep			
1Pk View									5.18 dBm	
30 dBm-					"	11[1]			5880 GHz	
20 dBm										
10 dBm										
0 dBm										
o dom										
-10 dBm										
-20 dBm										Display Update
										On Off
-30 dBm				M1						
MONISHING.	and all a	Kent Re	- demost	ay A way	who Markey	Hunselly,	Har Mark	بالعليميا	monthlet	Local
-50 dBm-										
-60 dBm-										
Start 10.0	GHz							Stop	25.0 GHz	
÷						‡	Measuri	ing 🔳		

Display Update

Local

Stop 10.0 GHz

Functio

n Result

GSM850

Spurious Emissions at Antenna Terminal / Ch.251-1

Spectrum Analyzer
Remote

Ref Lovid 35.00 dBr, Offset 6.60 dB © RBW 100 kHz
Made Auto Sweep

30 dBm
99.7 ms
VBW 100 kHz
Mode Auto Sweep
64.93 dD

30 dBm
0
0.011
0.039.00 MHz
0.039.00 MHz
0.039.00 MHz

30 dBm
0
0.011
0.039.00 MHz
0.64.93 dD
0.64.93 dD
0.64.93 dD
0.65.00 MHz
0.64.93 dD
0.64.93 dD
0.65.00 MHz
0.65.00 MHz</td

D2

Dgr Trc

2D 1 1 3D 1 1 mulus

839.0 MHz 858.0 MHz 35.0 MHz

40.dBa

-60 dBm Start 30.0 MHz

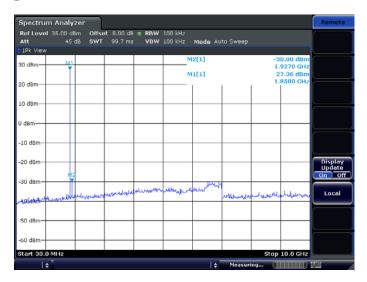
Туре

Spurious Emissions at Antenna Terminal / Ch.251-2

Respo

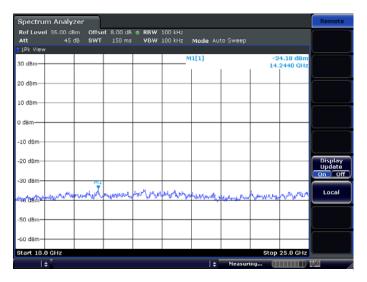
28.22 di

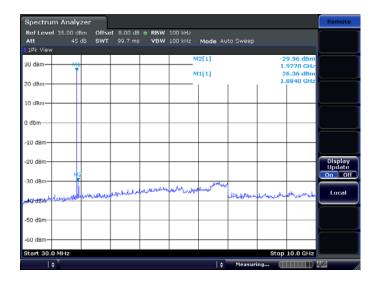
-64.34 dB -58.97 dB


nse Function

Mea

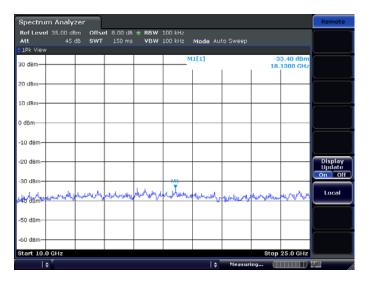
Spectrun	n Analy:	zer								Remote
Ref Level				● RBW						
Att	45 (IB SWT	150 ms	VBW	100 kHz	Mode Au	to Sweep			
1Pk View										
30 dBm					×	1[1]			5.66 dBm 5450 GHz	
20 dBm										
LO dBm										
) dBm										
10 dBm										
20 dBm-										Display Update
30 dBm-				M1						On Off
autivelarity.	-un	بالأويطلوب	Myraum,	rðsa	whene	ميددمعكي		an a	un Masthath	Local
50 dBm-										
60 dBm										
start 10.0	GHz							Ston	25.0 GHz	
¢						t (Measur		20.0 GH2	

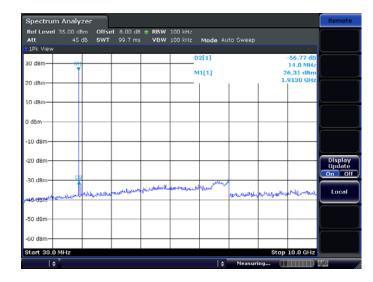

PCS1900


Spurious Emissions at Antenna Terminal / Ch.512 -1

PCS1900

Spurious Emissions at Antenna Terminal / Ch.512 -2

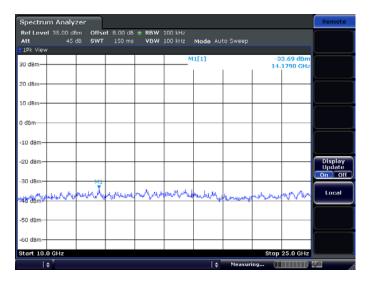




PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -1

PCS1900

Spurious Emissions at Antenna Terminal / Ch.661 -2



PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -1

PCS1900

Spurious Emissions at Antenna Terminal / Ch.810 -2

APPENDIX 1

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	FSV-30	100757	R&S	Feb-10
2	Spectrum Analyzer	8563E	3425A02505	HP	Apr-10
3	Spectrum Analyzer	8594E	3710A04074	HP	Oct-09
4	Signal Generator	8648C	3623A02597	HP	Apr-10
5	Signal Generator	83711B	US34490456	HP	Apr-10
6	Attenuator (3dB)	8491A	37822	HP	Oct-09
7	Attenuator (10dB)	8491A	63196	HP	Oct-09
8	Attenuator (30dB)	8498A	1801A06689	HP	Oct-09
9	EMI Test Receiver	ESVD	843748/001	R&S	Apr-10
10	Horn Antenna(18 ~ 40GHz)	SAS-574	154	Schwarzbeck	Nov-10
11	Horn Antenna(18 ~ 40GHz)	SAS-574	155	Schwarzbeck	Nov-10
12	RF Amplifier	8447D	2949A02670	HP	Oct-10
13	RF Amplifier	8449B	3008A02126	HP	Apr-10
14	Test Receiver	ESHS10	828404/009	R&S	Apr-10
15	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Apr-11
16	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-11
17	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-11
18	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-11
19	Horn Antenna	BBHA 9120D	9120D122	SCHWARZBECK	Dec-11
20	Dipole Antenna	VHA9103	2116	SCHWARZBECK	Nov-09
21	Dipole Antenna	VHA9103	2117	SCHWARZBECK	Nov-09
22	Dipole Antenna	VHA9105	2261	SCHWARZBECK	Nov-09
23	Dipole Antenna	VHA9105	2262	SCHWARZBECK	Nov-09
24	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Apr-10
25	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
26	RF Switch	MP59B	6200414971	ANRITSU	-
27	Power Divider	11636A	6243	HP	Oct-09
28	DC Power Supply	6622A	3448A03079	HP	Oct-09
29	Frequency Counter	5342A	2826A12411	HP	Apr-10
30	Power Meter	EPM-441A	GB32481702	HP	Apr-10
31	Power Sensor	8481A	2702A64048	HP	Apr-10
32	Audio Analyzer	8903B	3729A18901	HP	Oct-09
33	Modulation Analyzer	8901B	3749A05878	HP	Oct-09
34	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	Oct-09
35	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-11
36	Stop Watch	HS-3	601Q09R	CASIO	Apr-10
37	LISN	ENV216	100408	R&S	Oct-09