MET Laboratories, Inc.

914 WEST PATAPSCO AVENUE - BALTIMORE, MARYLAND 21230-3432 - PHONE (410) 354-3300 © FAX (410) 354-3313
33439 WESTERN AVENUE - UNION CITY, CALIFORNIA 94587 - PHONE (510) 489-6300 © FAX (510) 489-6372
3162 BELICK STREET - SANTA CLARA, CALIFORNIA 95054 - PHONE (408) 748-3585 © FAX (510) 489-6372
13301 MCCALLEN PASS - AUSTIN, TEXAS 78753 - PHONE (512) 287-2500 \bullet FAX (512) 287-2513

Dosimetric Assessment Test Report

for the

JDSU

Tested and Evaluated In Accordance With FCC OET 65 Supplement C: 01-01

Prepared for

JDSU Uniphase Corporation
Jaryk Kuzel
1 Milestone Center Court
Germantown, MD 20876

Engineering Statement: The measurements shown in this report were made in accordance with the procedures specified in Supplement C to OET Bulletin 65 of the Federal Communications Commission (FCC) Guidelines [FCC 2001] and Industry Canada RSS-102 for uncontrolled exposure. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment evaluated is capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1999.

JDSU

SAR Evaluation Certificate of Compliance

APPLICANT: JDSU

Applicant Name and Address:	JDSU - Jaryk Kuzel
	1 Milestone Center Court
	Germantown, MD 20876

Test Location:

MET Laboratories, Inc.
3162 Belick Street
Santa Clara, CA 95054
USA

EUT:	Tablet PC
Test Dates:	November 12-13, 2013
RF exposure environment:	Uncontrolled Exposure/General Population
RF exposure category:	Portable
Power supply:	Internal battery
Antenna:	Internal
Production/prototype:	Production
Modulations Tested:	DSSS and OFDM
Duty Cycle:	100%
TX Range:	$2412-2462 \mathrm{MHz} \mathrm{WiFi}$ $2402-2480 \mathrm{MHz} \mathrm{BTLE} \mathrm{(Exempt} \mathrm{from} \mathrm{SAR} \mathrm{Evaluation)}$
Max SAR Measured:	$0.180 \mathrm{~mW} / \mathrm{g}$

Shawn McMillen

JDSU
INTRODUCTION 4
SAR DEFINITION 4
DESCRIPTION OF DEVICE UNDER TEST (EUT) 5
SAR MEASUREMENT SYSTEM 6
MEASUREMENT SUMMARY 7
FLOW CHART OF THE RECOMMENDED PRACTICES AND PROCEDURES 9
DATA EVALUATION PROCEDURES 14
SYSTEM PERFORMANCE CHECK 16
SIMULATED EQUIVALENT TISSUES 17
SAR SAFETY LIMITS 18
ROBOT SYSTEM SPECIFICATIONS 19
1.1. Specifications 19
1.2. Data Acquisition Electronic (DAE) System: 19
1.3. Phantom(s): 19
1.4. RX90BL Robot 20
1.5. Robot Controller 20
1.6. Light Beam Switch 20
1.7. Data Acquisition Electronics 20
1.8. Electo-Optical Converter (EOC). 21
1.9. Measurement Server 21
1.10. Dosimetric Probe 21
1.11. SAM Phantom 21
1.12. Planar Phantom 21
1.13. Validation Planar Phantom 21
1.14. Device Holder 22
1.15. System Validation Kits 22
TEST EQUIPMENT LIST 23
MEASUREMENT UNCERTANTIES 24
REFERENCES 26
EUT TEST SETUP PHOTOS 27
APPENDIX A - SAR MEASUREMENT DATA 30
APPENDIX B - SYSTEM PERFORMANCE CHECK 31
APPENDIX C - PROBE CALIBRATION CERTIFICATE 32
APPENDIX D - DIPOLE CALIBRATION CERTIFICATE 33
APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS 34
APPENDIX F - PHANTOM CERTIFICATE OF CONFORMITY 35
APPENDIX G - DAE CALIBRATION CERTIFICATE 36

JDSU

INTRODUCTION

This measurement report demonstrates that JDSU Uniphase Corporation tablet PC as described within this report complies with the Specific Absorption Rate (SAR) RF exposure requirements specified in ANSI/IEEE Std. C95.11999 and FCC 47 CFR $\S 2.1093$ for the Uncontrolled Exposure/General population environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 and IEEE 1528-2013 were employed.

A description of the device under test, device operating configuration and test conditions, measurement and site description, methodology and procedures used in the evaluation, equipment used, detailed summary of the test results and the various provisions of the rules are included in this dosimetric assessment test report.

SAR DEFINITION

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy ($d U$) absorbed by (dissipated in) an incremental mass ($d m$) contained in a volume element ($d V$) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1).

$$
S A R=\frac{d}{d t}\left(\frac{d U}{d m}\right)=\frac{d}{d t}\left(\frac{d U}{\rho d v}\right)
$$

Figure 1.1

SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$
\mathrm{SAR}=\sigma \mathrm{E}^{2} / \rho
$$

where:
σ - conductivity of the tissue - simulant material (S / m)
ρ - mass density of the tissue - simulant material ($\mathrm{kg} / \mathrm{m} 3$)
E - Total RMS electric field strength (V/m)
NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

JDSU

DESCRIPTION OF DEVICE UNDER TEST (EUT)

Applicant:	JDSU Uniphase Corporation
Description of Test Item:	Tablet PC
Supply Voltage:	Internal Battery
Antenna Type(s) Tested:	Integral
Accessories:	none
Modes of Operation:	DSSS and OFDM
Duty Cycle Tested:	100%
Application Type:	Certification
Exposure Category:	Uncontrolled Exposure/General population
FCC and IC Rule Part(s):	FCC 47 CFR §2.1093 RSS-102
Standards:	IEEE Std. 1528-2013, FCC OET Bulletin 65, Supplement C, Edition 01-01

Table 1. Description of EUT

JDSU

SAR MEASUREMENT SYSTEM

MET Laboratories, Inc SAR measurement facility utilizes the DASY4 Professional Dosimetric Assessment System (DASY ${ }^{\text {TM }}$) manufactured by Schmid \& Partner Engineering AG (SPEAG ${ }^{\text {TM }}$) of Zurich, Switzerland for performing SAR compliance tests. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). The Cell controller system contain the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit
 performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with autozeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit.

Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VMEbus computer.

JDSU
SAR Report

MEASUREMENT SUMMARY

BODY SAR MEASUREMENT RESULTS								
$\begin{gathered} \text { Freq } \\ (\mathbf{M H z}) \end{gathered}$	Ch	Test Mode	Cond. Pwr (dBm)	Battery Type	Phantom Section	Accessory	EUT Position and separation distance	Measured SAR 1g (mW/g)
2437	Mid	g-mode	12.87	Li-ion	Planar	none	left Edge (0cm)	0.159
2437	Mid	n-mode	12.66	Li-ion	Planar	none	left Edge (0cm)	0.151
2437	Mid	b-mode	19.67	Li-ion	Planar	none	left Edge (0cm)	0.180
2437	Mid	b-mode	19.67	Li-ion	Planar	none	Back Side (0cm)	0.074
2437	Mid	b-mode	19.67	Li-ion	Planar	none	Front Side (0cm)	0.032
ANSI/IEEE C95.1 1992 - SAFETY LIMIT 1.6 W/kg (averaged over 1 gram) Spatial Peak - General Population/Uncontrolled								
Measured Mixture Type			2450 MHz Body			Test Dates		$\begin{aligned} & \hline 11 / 12 / 2013 \\ & 11 / 13 / 2013 \end{aligned}$
Dielectric Constant عr			IEEE Target		easured		Duty Cycle	100\%
			52.7		51.25	Ambient Temperature (C)		23
Conductivity σ (mho/m)			IEEE Target		easured	Fluid Temperature (C)		22
			1.95		2.009	Fluid Depth		$\geq 15 \mathrm{~cm}$

Table 2. Measurement Summary

Multiple Transmitter Evaluation

Test Distance: 9mm per cad drawing			
Mode	SAR Test Exclusion Threshold(mW) Per KDB 447498 D01v05r01	Highest Power(mW)	
	10	92.7	
BT	10	6.3	

Note: Radio does not support simultaneous transmission.
Per table above the WiFi Stand-alone SAR evaluation is required but the BT is not.

JDSU

DETAILS OF SAR EVALUATION

The JDSU Uniphase Corporation Tablet PC was determined to be compliant for localized Specific Absorption Rate based on the test provisions and conditions described below.

1. Due to the curved edge of the tablet a PBA was generated for any additional testing requirements. Please see attached PBA exhibit for FCC's response.
2. The JDSU Uniphase Corporation Tablet PC contains a pre-approved module FCC ID: TFB-TiWi1-01.
3. The EUT was tested for SAR against the planar section of the phantom in three different orientations. The front and back sides as well as the lower bottom edge were placed at 0.0 cm separation from the phantom surface.
4. The EUT was placed into Test Mode at maximum duty cycle transmissions using software commands provided by JDSU. Mid channel was tested in b / g and n modes.
5. All SAR evaluations were performed with a fully charged battery.
6. There was no external method of measuring the RF output power before and after the SAR tests. The power drift measurement routine of the SAR system was used to determine if the power of the EUT stayed within the allowable limits.
7. The dielectric parameters of the simulated head and body fluid were measured prior to the evaluation using an 85070D Dielectric Probe Kit and an 8722D Network Analyzer.
8. The fluid and air temperature was measured prior to and after each SAR evaluation to ensure the temperature remained within $\pm 2 \mathrm{deg} \mathrm{C}$ of the temperature of the fluid when the dielectric properties were measured.
9. During the SAR evaluations if a distribution produced several hotspots over the course of the area scan, each hotspot was evaluated separately.

FLOW CHART OF THE RECOMMENDED PRACTICES AND PROCEDURES

EAR Reference Point

Figure 12.1 shows the front, back and side views of the SAM Twin Phantom. The point M is the reference point for the center of the mouth, LE is the left ear reference point (ERP), and RE is the right ERP. The ERPs are 15 mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 12.2. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting. Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

Figure 12.1
Front, back and side view of SAM Twin Phantom

Figure 12.2
Side view of ERPs

HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the test device reference point located along the vertical centerline on the front of the device aligned to the ear reference point (See Fig. 12.3). The test device reference point was than located at the same level as the center of the ear reference point. The test device was positioned so that the vertical centerline was bisecting the front surface of the handset at it s top and bottom edges, positioning the ear reference point on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 12.3
Handset Vertical Center \& Horizontal Line Reference Points

POSITIONING FOR CHEEK/TOUCH

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom, such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.
2. The handset was translated towards the phantom along the line passing through RE \& LE until the handset touches the ear.
3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). See Figure 12.5)

Front, Side and Top View of Cheek/Touch Position

Side view with relevant markings

POSITIONING FOR EAR/15 DEGREE TILE

With the test device aligned in the Cheek/Touch Position:

1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.
2. The phone was then rotated around the horizontal line by 15 degree.
3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head.

Front, Side and Top View of Ear/15 Tilt Position

Body Worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Positions

EVALUATION PROCEDURES

The evaluation was performed in the applicable area of the phantom depending on the type of device being tested.
(i) For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
(ii) For body-worn and face-held devices a planar phantom was used.

The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of $15 \mathrm{~mm} \times 15 \mathrm{~mm}$.

An area scan was determined as follows:
Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10 . The interpolation function then evaluates all field values between corresponding measurement points.

A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are $>2 \mathrm{~dB}$ from the global maximum. The remaining maxima are then used to position the cube scans.

JDSU

A 1 g and 10 g spatial peak SAR was determined as follows:
For frequencies $\leq 4.5 \mathrm{GHz}$ a $32 \mathrm{~mm} \times 32 \mathrm{~mm} \times 34 \mathrm{~mm}$ (7 x 7 x 7 data points) zoom scan was assessed at the position where the greatest V / m was detected. For frequencies $\geq 4.5 \mathrm{GHz}$ a $28 \mathrm{~mm} \times 28 \mathrm{~mm} \times 24 \mathrm{~mm}$ (7 x 7 x 9 data points) zoom scan was assessed at the position where the greatest V / m was detected. The data at the surface was extrapolated since the distance from the probes sensors to the surface is 3.9 cm . A least squares fourth-order polynomial was used to generate points between the probe detector and the inner surface of the phantom.

Interpolated data is used to calculate the average SAR over 1 g and 10 g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1 mm grid (42875 interpolated points).

Z-Scan was determined as follows:
The Z-scan measures points along a vertical straight line. The line runs along a line normal to the inner surface of the phantom surface.

JDSU

DATA EVALUATION PROCEDURES

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe Parameters:	- Sensitivity	$\operatorname{Norm}_{i}, a_{i 0}, a_{i 1}, a_{i 2}$
	- Conversion Factor	ConvF_{i}
	- Dipole Compression Point	$d c p_{i}$
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	
	- Density	σ
		ρ

These parameters must be set correctly in the software. They can be found in the component documents or can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC - transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$
V_{i}=U_{i}+U_{i}^{2} \cdot \frac{c f}{d c p_{i}}
$$

With $\quad V_{i}=$ Compensated signal of channel $\mathrm{i}(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$
$U_{i}=$ Input signal of channel $\mathrm{i}(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$
$c f=$ Crest factor of exciting field (DASY parameter)
$d c p_{i}=$ Diode compression point (DASY parameter)
From the compensated input signals the primary field data for each channel can be evaluated:

$$
\begin{array}{rr}
\mathrm{E}-\text { fieldprobes : } & E_{i}=\sqrt{\frac{V_{1}}{\operatorname{Norm}_{i} \cdot \operatorname{ConvF}}} \\
\mathrm{H}-\text { fieldprobes : } & H_{i}=\sqrt{V_{i}} \cdot \frac{a_{i 0}+a_{i 1} f+a_{i 2} f^{2}}{f}
\end{array}
$$

with $\quad V_{i}=$ Compensated signal of channel $\mathrm{i} \quad(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$
Norm $_{i}=$ Sensor sensitivity of channel i $\quad(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}$ for E-field probes
$\operatorname{ConvF}=$ Sensitivity enhancement in solution
$\mathrm{a}_{i j}=$ Sensor sensitivity factors for H -field probes
$f=$ Carrier frequency (GHz)
$E_{i}=$ Electric field strength of channel i in V / m
$H_{i}=$ Magnetic field strength of channel i in A / m

JDSU

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$
E_{t o t}=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{s}^{2}}
$$

The primary field data are used to calculate the derived field units.

$$
S A R=E_{\text {tot }}^{2} \cdot \frac{\sigma}{\rho \cdot 1^{\prime} 000}
$$

with $S A R=$ local specific absorption rate in mW / g
$E_{\text {tot }}=$ total field strength in V / m
$\sigma=$ conductivity in [mho/m] or [Siemens $/ \mathrm{m}$]
$\rho=$ equivalent tissue density in $\mathrm{g} / \mathrm{cm} 3$
Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$
P_{p w e}=\frac{E_{\text {tot }}^{2}}{3770} \quad \text { or } \quad P_{p w e}=H_{\text {tot }}^{2} \cdot 37.7
$$

with $\quad P_{p w e}=$ Equivalent power density of a plane wave in $\mathrm{mW} / \mathrm{cm} 2$
$E_{\text {tot }}=$ total electric field strength in V / m
$H_{\text {tot }}=$ total magnetic field strength in A / m

JDSU

SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed in the planar section of the SAM phantom with an 2450 MHz dipole. The dielectric parameters of the simulated brain fluid were measured prior to the system performance check using an 85070D Dielectric Probe Kit and an 8722D Network Analyzer. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $+10 \%$. All results were normalized to 1 W .

Test Date	Fluid Type (MHz)	SAR 1g (W/kg)		Permittivity Constant ε er		Conductivity σ ($\mathbf{m h o} / \mathrm{m}$)		Ambient Temp. (C)	Fluid Temp. (C)	Fluid Depth (cm)
		$\begin{gathered} \hline \text { Calibrated } \\ \text { Target } \\ \hline \end{gathered}$	$\begin{gathered} \text { Measure } \\ \mathbf{d} \end{gathered}$	$\begin{gathered} \hline \text { IEEE } \\ \text { Target } \\ \hline \end{gathered}$	$\begin{gathered} \text { Measure } \\ \mathbf{d} \end{gathered}$	$\begin{aligned} & \hline \text { IEEE } \\ & \text { Target } \\ & \hline \end{aligned}$	Measured			
11/12/2013	2450 body	$13.0 \pm 5 \%$	13.1	$52.7 \pm 5 \%$	51.25	$1.95 \pm 10 \%$	2.009	23.0	22.0	≥ 15

Note: The ambient and fluid temperatures were measured prior to the fluid parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

SIMULATED EQUIVALENT TISSUES

Simulated Tissue Mixture	
Ingredient	2450MHz Body (EUT testing \& system validation)
Water	68.64%
DGBE	31.37%
Salt	0.00%

JDSU

SAR SAFETY LIMITS

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	4.0	20.0

Notes:

1. Uncontrolled exposure environments are locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled exposure environments are locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

JDSU

ROBOT SYSTEM SPECIFICATIONS

1.1. SPECIFICATIONS

Positioner:

Robot:	Staubli Unimation Corp. Robot Model: RX90
Repeatability:	0.02 mm
No. of axis:	6

1.2. DATA ACQUISITION ELECTRONIC (DAE) SYSTEM:

Cell Controller

Processor:	Compaq Evo
	Clock Speed: 2.4 GHz
	Operating System: Windows XP Professional

Data Converter

Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
Software:	DASY4 software
Connecting Lines:	Optical downlink for data and status info.
	Optical uplink for commands and clock

Dasy4 Measurement Server

Function:	Real-time data evaluation for field measurements and surface detection
Hardware:	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model:	ET3DV6
Serial No.:	1793
Construction:	Triangular core fiber optic detection system
Frequency:	10 MHz to 6 GHz
Linearity:	$\pm 0.2 \mathrm{~dB}(30 \mathrm{MHz}$ to 3 GHz$)$

EX-Probe

Model:	EX3DV4
Serial No.	3511
Construction:	Triangular core
Frequency:	10 MHz to $>6 \mathrm{GHz}$
Linearity:	$\pm 0.2 \mathrm{~dB}(30 \mathrm{MHz}$ to 3 GHz$)$

1.3. $\operatorname{PHANTOM}(S):$

Validation \& Evaluation Phantom
Type: SAM V4.0C

Shell Material: Fiberglass
Thickness:
$2.0 \pm 0.1 \mathrm{~mm}$
Volume:
Approx. 20 liters

SAR Measurement System

Measurement System Diagram

1.4. RX90BL ROBOT

The Stäubli RX90BL Robot is a standard high precision 6-axis robot with an arm extension for accommodating the data acquisition electronics (DAE).

1.5. ROBOT CONTROLLER

The CS7MB Robot Controller system drives the robot motors. The system consists of a power supply, robot controller, and remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.

1.6. LIGHT BEAM SWITCH

The Light Beam Switch (Probe alignment tool) allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm . If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm , even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

1.7. DATA ACQUISITION ELECTRONICS

The Data Acquisition Electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16-bit A/D converter and a command decoder and control logic unit. Some of the task the DAE performs is signal amplification, signal multiplexing, A/D conversion, and offset measurements. The DAE also contains the mechanical probe-mounting device, which contains two different sensor systems for frontal and sideways probe contacts used for probe collision detection and mechanical surface detection for controlling the distance between the probe and the inner surface of the phantom shell. Transmission from the DAE to the measurement server, via the EOC, is through
 an optical downlink for data and status information as well as an optical uplink for commands and the clock.

1.8. ELECTO-OPTICAL CONVERTER (EOC)

The Electro-Optical Converter performs the conversion between the optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC connects to, and transfers data to, the DASY4 measurement server. The EOC also contains the fiber optical surface detection system for controlling the distance between the probe and the inner surface of the phantom shell.

1.9. MEASUREMENT SERVER

The Measurement Server performs time critical tasks such as signal filtering, all real-time data evaluation for field measurements and surface detection, controls robot movements, and handles safety operation. The PC-operating system cannot interfere with these time critical processes. A watchdog supervises all connections, and disconnection of any of the cables to the measurement server will automatically
 disarm the robot and disable all program-controlled robot movements.

1.10. DOSIMETRIC PROBE

Dosimetric Probe is a symmetrical design with triangular core that incorporates three 3 mm long dipoles arranged so that the overall response is close to isotropic. The probe sensors are covered by an outer protective shell, which is resistant to organic solvents i.e. glycol. The probe is equipped with an optical multi-fiber line, ending at the front of the probe tip, for optical surface detection. This line connects to the EOC box on the robot arm and provides automatic detection of the phantom surface. The optical surface detection works in transparent liquids and on diffuse reflecting surfaces with a repeatability of better than $\pm 0.1 \mathrm{~mm}$.

1.11. SAM PHANTOM

The SAM (Specific Anthropomorphic Mannequin) twin phantom is a fiberglass shell phantom with 2 mm shell thickness (except the ear region where shell thickness increases to 6 mm) integrated into a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left hand, right hand phone usage as well as body mounted usage at the flat phantom region. The flat section is also used for system validation and the length and width of the flat section are at least $0.75 \lambda \mathrm{O}$ and $0.6 \lambda \mathrm{O}$ respectively at frequencies of 824 MHz and above ($\lambda \mathrm{O}=$ wavelength in air).

Reference markings on the phantom top allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. A white cover is provided to cover the phantom during off-periods preventing water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. The phantom is filled with a tissue simulating liquid to a depth of at least 15 cm at each ear reference point. The bottom plate of the wooden table contains three pair of bolts for locking the device holder.

1.12. PLANAR PHANTOM

The planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of handheld radio transceivers. The planar phantom is mounted on the wooden table of the DASY4 system.

1.13. VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450 MHz and below. The validation planar phantom is mounted on the wooden table of the DASY4 system.

JDSU

1.14. DEVICE HOLDER

The device holder is designed to cope with the different measurement positions in the three sections of the SAM phantom given in the standard. It has two scales, one for device rotation (with respect to the body axis) and one for device inclination (with respect to the line between the ear openings). The rotation center for both scales is the ear opening, thus the device needs no repositioning when changing the angles. The plane between the ear openings and the mouth tip has a rotation angle of 65°.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon=3$ and loss tangent $\delta=0.02$. The amount of
 dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The dielectric properties of the liquid conform to all the tabulated values [2-5]. Liquids are prepared according to Annex A and dielectric properties are measured according to Annex B.

1.15. SYSTEM VALIDATION KITS

Power Capability: > $100 \mathrm{~W}(\mathrm{f}<1 \mathrm{GHz})$; > $40 \mathrm{~W}(\mathrm{f}>1 \mathrm{GHz})$
Construction: Symmetrical dipole with $1 / 4$ balun Enables measurement of feed point impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.

Frequency: $300,450,835,1900,2450 \mathrm{MHz}, 5-6 \mathrm{GHz}$
Return loss: >20 dB at specified validation position

Dimensions: $\quad 300 \mathrm{MHz}$ Dipole: Length: 396mm; Overall Height: 430 mm ; Diameter: 6 mm 450 MHz Dipole: Length: 270 mm ; Overall Height: 347 mm ; Diameter: 6 mm 835 MHz Dipole: Length: 161 mm ; Overall Height: 270 mm ; Diameter: 3.6 mm 1900 MHz Dipole: Length: 68 mm ; Overall Height: 219 mm ; Diameter: 3.6 mm 2450 MHz Dipole: Length: 51.5 mm ; Overall Height: 300 mm ; Diameter: 3.6 mm 5-6GHz Dipole: Length: 26.0 mm ; Overall Height: 170 mm ; Diameter: 3.6 mm

JDSU

TEST EQUIPMENT LIST

Test Equipment	Serial Number	Calibration Date
DASY4 System Robot RX90	FO3/SX19A1/A/01	N/A
EX3DV4	3722	July 29. 2013
DAE	584	July 18, 2013
2450MHz Dipole	857	July 22, 2013
SAM Phantom V4.0C	N/A	N/A
SMB100A Signal Generator	RENTAL	$12 / 4 / 13$
EMCO Horn Antenna	1S2198	$10 / 18 / 2012$
Agilent E4407B Spectrum Analyzer	1S2607	$8 / 29 / 2013$
Agilent 8722D Network Analyzer	1S2272	$7 / 12 / 2012$
Extech Power Supply (30 VDC)	4S3771	N/A
Mini-Circuits power amplifier	1S2447	N/A

JDSU
SAR Report

MEASUREMENT UNCERTANTIES

UNCERTAINTY ASSESSMENT 300MHz-3GHz

Error Description	Tol. $\pm \%$	Prob. Dist.	Div.	$\begin{gathered} c_{i} \\ 1 \mathrm{~g} \end{gathered}$	$\begin{gathered} c_{i} \\ 10 \mathrm{~g} \end{gathered}$	Std Unc $\pm \%$ (1 g)	Std Unc $\pm \%$ (10g)	$\begin{gathered} v_{i} \\ \text { or } \\ v_{e f f} \end{gathered}$
Measurement System								
Probe calibration	4.8	N	1	1	1	4.8	4.8	N/A
Axial isotropy of the probe	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	N/A
Spherical isotropy of the probe	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	N/A
Boundary effects	1.0	R	$\sqrt{3}$	1	1	4.8	4.8	N/A
Probe linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	N/A
Detection limit	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	N/A
Readout electronics	1.0	N	1	1	1	1.0	1.0	N/A
Response time	0.8	R	$\sqrt{ } 3$	1	1	0.5	0.5	N/A
Integration time	2.6	R	$\sqrt{3}$	1	1	0.8	0.8	N/A
RF ambient conditions	3.0	R	$\sqrt{3}$	1	1	0.43	0.43	N/A
Mech. constraints of robot	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	N/A
Probe positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	N/A
Extrapolation \& integration	1.0	R	$\sqrt{3}$	1	1	2.3	2.3	N/A
Test Sample Related								
Device positioning	2.9	N	1	1	1	2.23	2.23	145
Device holder uncertainty	3.6	N	1	1	1	5.0	5.0	5
Power drift	5.0	R	$\sqrt{3}$			2.9	2.9	N/A
Phantom and Setup								
Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	N/A
Liquid conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	N/A
Liquid conductivity (measured)	2.5	N	1	0.64	0.43	1.6	1.1	N/A
Liquid permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	N/A
Liquid permittivity (measured)	2.5	N	1	0.6	0.5	1.5	1.2	N/A
Combined Standard Uncertai	k=1)	RSS				10.3	10.0	
Expanded Uncertainty (k=2)95% Confidence Level						20.6	20.1	

Table 3. Worst-case uncertainty for DASY4 assessed according to IEEE P1528.
The budget is valid for the frequency range 300 MHz to 3 GHz and represents a worst-case analysis.

JDSU
SAR Report

UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

Error Description	$\begin{aligned} & \text { Tol. } \\ & \pm \% \end{aligned}$	Prob. Dist.	Div.	$\begin{gathered} c_{i} \\ 1 \mathrm{~g} \end{gathered}$	$\begin{gathered} c_{i} \\ \mathbf{1 0 g} \end{gathered}$	$\begin{gathered} \text { Std } \\ \text { Unc } \\ \pm \%(1 g) \end{gathered}$	$\begin{gathered} \text { Std } \\ \text { Unc } \\ \pm \% \\ (10 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \boldsymbol{v}_{i} \\ \text { or } \\ \boldsymbol{v}_{e f f} \end{gathered}$
Measurement System								
Probe calibration	5.9	N	1	1	1	5.9	5.9	∞
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0	0	∞
Boundary effects	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
System Detection limit	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout electronics	0.3	N	1	1	1	0.3	0.3	∞
Response time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration time	0	R	$\sqrt{3}$	1	1	0	0	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Algorithms for Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Dipole								
Dipole Axis to Liquid Distance	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
Input power and SAR drift meas.	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Phantom and Tissue Parameters								
Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid conductivity (measured)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	∞
Liquid permittivity (measured)	2.5	N	1	0.6	0.5	1.5	1.2	∞
Combined Standard Uncertainty						9.2	8.9	
Coverage Factor for 95\%		$\mathrm{kp}=2$						
Expanded Uncertainty						18.4	17.8	

Table 4. Uncertainty of a System Performance Check with DASY4 System
The budget is valid for the frequency range 300 MHz to 3 GHz and represents a worst-case analysis.

REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
[2] ANSI/IEEE C95.1-1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz , New York: IEEE, Aug. 1992.
[3] ANSI/IEEE C95.3-1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.
[4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
[5] IEEE Standards Coordinating Committee 34, IEEE 1528 (August 2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
[10] Schmid \& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz , IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 18651873.
[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz , IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
[15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric Evaluation Of Mobile Communications Equipment With Known Precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: $10 \mathrm{kHz}-300 \mathrm{GHz}$, Jan. 1995.
[19] Prof. Dr. Niels Kuster, ETH, Eidgen ssische Technische Hoschschule Z rich, Dosimetric Evaluation of the Cellular Phone.
[20] Federal Communications Commission, Radiofrequency radiation exposure evaluation: portable devices, Rule Part 47 CFR 2.1093: 1999.
[21] Health Canada, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz , Safety Code 6 .
[22] Industry Canada, Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields, Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.

EUT TEST SETUP PHOTOS

Photograph 1. EUT Left Edge/Antenna, Side against Phantom

Photograph 2. EUT with Face of EUT against Phantom

Photograph 3. EUT with Face of EUT against Phantom

Photograph 4. Back side of the EUT against Phantom

Photograph 5. Fluid Depth

APPENDIX A - SAR MEASUREMENT DATA

g-mode left edge/antenna side against phantom

Date/Time: 11/13/2013 9:44:19 AM

DUT: JDSU; Type: Tablet
Communication System: DTS ; ; Frequency: 2437 MHz;Duty Cycle: 1:1
Medium: M2450 Medium parameters used (interpolated): $\mathrm{f}=2437 \mathrm{MHz} ; \sigma=2.009 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

- Probe: EX3DV4 - SN3722; ConvF(6.68, 6.68, 6.68); Calibrated: 7/29/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 7/18/2013
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (81x161x1): Measurement grid: $\mathrm{dx}=10 \mathrm{~mm}, \mathrm{dy}=10 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.178 \mathrm{~mW} / \mathrm{g}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}$, $d y=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=3.01 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.950 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.298 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.159 \mathrm{~mW} / \mathrm{g} ; \operatorname{SAR}(10 \mathrm{~g})=0.081 \mathrm{~mW} / \mathrm{g}$
Maximum value of SAR (measured) $=0.178 \mathrm{~mW} / \mathrm{g}$

n-mode left edge/antenna side against phantom

Date/Time: 11/13/2013 1:15:54 PM

DUT: JDSU; Type: Tablet
Communication System: DTS ; ; Frequency: 2437 MHz;Duty Cycle: 1:1
Medium: M2450 Medium parameters used (interpolated): $\mathrm{f}=2437 \mathrm{MHz} ; \sigma=2.009 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

- Probe: EX3DV4 - SN3722; ConvF(6.68, 6.68, 6.68); Calibrated: 7/29/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 7/18/2013
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (81x161x1): Measurement grid: $\mathrm{dx}=10 \mathrm{~mm}, \mathrm{dy}=10 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.169 \mathrm{~mW} / \mathrm{g}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=2.94 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.435 \mathrm{~dB}$
Peak SAR (extrapolated) $=0.278 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.151 \mathrm{~mW} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=0.076 \mathrm{~mW} / \mathrm{g}$
Maximum value of SAR (measured) $=0.169 \mathrm{~mW} / \mathrm{g}$

b-mode left edge/antenna side against phantom

Date/Time: 11/13/2013 8:56:50 AM

DUT: JDSU; Type: Tablet
Communication System: DTS ; ; Frequency: 2437 MHz;Duty Cycle: 1:1
Medium: M2450 Medium parameters used (interpolated): $\mathrm{f}=2437 \mathrm{MHz} ; \sigma=2.009 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

- Probe: EX3DV4 - SN3722; ConvF(6.68, 6.68, 6.68); Calibrated: 7/29/2013
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 7/18/2013
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (interpolated) $=0.206 \mathrm{~mW} / \mathrm{g}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=3.94 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.391 \mathrm{~dB}$
Peak SAR (extrapolated) $=0.339 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(\mathbf{1 g})=\mathbf{0 . 1 8 0} \mathrm{mW} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0 g})=0.090 \mathrm{~mW} / \mathrm{g}$
Maximum value of SAR (measured) $=0.203 \mathrm{~mW} / \mathrm{g}$

b-mode with back of EUT against phantom

Date/Time: 11/12/2013 4:24:10 PM

DUT: JDSU; Type: Tablet

Communication System: DTS ; ; Frequency: 2437 MHz;Duty Cycle: 1:1
Medium: M2450 Medium parameters used (interpolated): $\mathrm{f}=2437 \mathrm{MHz} ; \sigma=2.009 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

- Probe: EX3DV4 - SN3722; ConvF(6.68, 6.68, 6.68); Calibrated: 7/29/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 7/18/2013
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (71x101x1): Measurement grid: $d x=10 \mathrm{~mm}, \mathrm{dy}=10 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.079 \mathrm{~mW} / \mathrm{g}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}$, $d y=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=1.90 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.214 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.130 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.074 \mathrm{~mW} / \mathrm{g} ; \operatorname{SAR}(10 \mathrm{~g})=0.041 \mathbf{m W} / \mathrm{g}$
Maximum value of SAR (measured) $=0.080 \mathrm{~mW} / \mathrm{g}$

b-mode with face of tablet against phantom

Date/Time: 11/12/2013 3:50:01 PM

DUT: JDSU; Type: Tablet

Communication System: DTS ; ; Frequency: 2437 MHz;Duty Cycle: 1:1
Medium: M2450 Medium parameters used (interpolated): $\mathrm{f}=2437 \mathrm{MHz} ; \sigma=2.009 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

- Probe: EX3DV4 - SN3722; ConvF(6.68, 6.68, 6.68); Calibrated: 7/29/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 7/18/2013
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (71x101x1): Measurement grid: $d x=10 \mathrm{~mm}, \mathrm{dy}=10 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.024 \mathrm{~mW} / \mathrm{g}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}$, $d y=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=3.17 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.362 \mathrm{~dB}$
Peak SAR (extrapolated) $=0.036 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 0 3 2} \mathbf{m W} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{0 . 0 2 9} \mathbf{~ m W} / \mathrm{g}$
Maximum value of SAR (measured) $=0.036 \mathrm{~mW} / \mathrm{g}$

JDSU

APPENDIX B - SYSTEM PERFORMANCE CHECK

2450MHz validation

Date/Time: 11/12/2013 10:56:46 AM

DUT: Dipole 2450 MHz

Communication System: CW; ; Frequency: 2450 MHz ;Duty Cycle: 1:1
Medium: M2450 Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=2.009 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

- Probe: EX3DV4 - SN3722; ConvF(6.68, 6.68, 6.68); Calibrated: 7/29/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 7/18/2013
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (51x81x1): Measurement grid: $d x=10 \mathrm{~mm}, d y=10 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=15.9 \mathrm{~mW} / \mathrm{g}$
Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=86.1 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.001 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.1 \mathrm{~mW} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=5.98 \mathbf{m W} / \mathrm{g}$
Maximum value of SAR (measured) $=15.0 \mathrm{~mW} / \mathrm{g}$

APPENDIX C - PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of

 Schmid \& Partner Engineering AGZeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
MET Laboratories

CALIBRATION CERTIFICATE

Object

Calibration procedure(s)

EX3DV4-SN:3722

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

July 29, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function
Approved by:	Lime lliev	Laboratory Technician
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.	Issued: July 29, 2013	

Calibration Laboratory of Schmid \& Partner
Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
NORMx,y,z
ConvF
DCP
CF
A, B, C, D
Polarization φ
Polarization ϑ

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORM x, y, z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $\operatorname{NORM}(f) x, y, z=\operatorname{NORMx}, y, z$ * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; $B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

