

LS RESEARCH, LLC

Wireless Product Development

W66 N220 Commerce Court • Cedarburg, WI 53012 USA • Phone: 262.375.4400 • Fax: 262.375.4248 • www.lsr.com

ENGINEERING TEST REPORT # TR 315103 A LSR Job #: C-2210

Compliance Testing of: OneExpert CATV

Test Date(s): April-June 2015

Prepared For: JDSU 5808 Churchman Bypass Indianapolis, IN 46203

This Test Report is issued under the Authority of: Tom Smith, VP EMC Test Services		
Signature: Date: 9-1-15		
Test Report Reviewed by:	Report by:	
Tom Smith, VP EMC Test Services	Adam Alger, EMC Engineer	
Signature: Date: 8-7-15	Signature: Date: 8-3-15	

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 1 of 51	

Table of Contents

i.	Title Page 1		
ii.	Table of Contents		
iii.	LS Research, LLC in Review		
1.0	Summary of Test Report		
2.0	Test Facilities		
3.0	Client Information		
3.1	Equipment Under Test (EUT) Information		
3.2	Product Description		
3.3	Modifications Incorporated In the EUT for Compliance Purposes		
3.4	Deviations & Exclusions from Test Specifications		
3.5	Additional Information		
4.0	Conditions of Test		
5.0	Test Equipment		
6.0	Conformance Summary		
Appen	ndix A – Test Equipment7		
Appen	Appendix B – Test Data		
B.1	B.1 – RF Conducted Emissions		
B.2 – Transmitter Radiated Emissions in Restricted Bands			
B.3	- AC Mains Conducted Emissions 40		
Appendix C - Uncertainty Summary			
Appendix D - References			
Appen	Appendix E – Duty Cycle Calculation		

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 2 of 51	

LS Research, LLC in Review

As an EMC Testing Laboratory, our Accreditation and Assessments are recognized through the following:

TESTING CERT #1255.01

<u>A2LA – American Association for Laboratory Accreditation</u>

Accreditation based on ISO/IEC 17025: 2005 with Electrical (EMC) Scope of Accreditation A2LA Certificate Number: 1255.01

Federal Communications Commission (FCC) – USA

Listing of 3 Meter Semi-Anechoic Chamber based on Title 47 CFR – Part 2.948 FCC Registration Number: 90756

Industrie Industry Canada Canada

Canada

Industry Canada

On file, 3 Meter Semi-Anechoic Chamber based on RSS-212 – Issue 1 File Number: IC 3088-A On file, 3 and 10 Meter OATS based on RSS-212 – Issue 1 File Number: IC 3088

U. S. Conformity Assessment Body (CAB) Validation

Validated by the European Commission as a U. S. Competent Body operating under the U. S./EU, Mutual Recognition Agreement (MRA) operating under the European Union Electromagnetic Compatibility –Council Directive 2004/108/EC (formerly 89/336/EEC, Article 10.2).

Date of Validation: January 16, 2001

Validated by the European Commission as a U.S. Notified Body operating under the U.S. /EU, Mutual Recognition Agreement (MRA) operating under the European Union Telecommunication Equipment – Council Directive 99/5/EC, Annex V. Date of Validation: November 20, 2002 Notified Body Identification Number: 1243

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 3 of 51	

1.0 Summary of Test Report

In April-June 2015 the EUT, OneExpert CATV, as supplied by JDSU was tested and MEETS the following requirements:

FCC Requirement	IC Requirement	Test Requirements	Measurement Procedure	Compliance (Yes/No)
15.247 (a)(2)	RSS-247	6 dB Bandwidth of a Digital	ANSI C63.10-2013	Yes
10.217 (u)(2)	Section 5.2 (1)	Modulation System	Section 11.8	105
15.247(b) &	RSS-247	Maximum Output Power	ANSI C63.10-2013	Vas
1.1310	Section 5.4 (4)	Maximum Output 10wer	Section 11.9	105
15 247 (a)	RSS-247	Power Spectral Density of a	ANSI C63.10-2013	Vac
13.247 (6)	Section 5.2 (2)	Digital Modulation System	Section 11.10	105
15.247(d)	RSS-247 Section 5.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	ANSI C63.10-2013 Section 11.11	Yes
15.247(c),	RSS-GEN	Transmitter Dadiated Emissions	ANSI C63.10-2013	
15.209 &	Section 8.9,	in Destricted Panda	Section 11.12	Yes
15.205	8.10	III Restricted Ballus	(6.3,6.5,6.6)	
2.1055 (d)	RSS-GEN	Enguanay Stability	ANSI C63.10-2013	Vaa
2.1055 (d)	Section 6.11	Frequency Stability	Section 6.8	res
15 207	RSS-GEN	Power Line Conducted	ANSI C63.10-2013	Vac
13.207	Section 8.8	Emissions Measurements	Section 6.2	res

2.0 Test Facilities

All testing was performed at:

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to the requirements of ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted.

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 4 of 51	

3.0 Client Information

Manufacturer Name:	JDSU
Address:	5808 Churchman Bypass Indianapolis, IN 46203
Contact Person:	Adam Nowotarski

3.1 Equipment Under Test (EUT) Information

The following information has been supplied by the applicant.

· · · ·	
Product Name:	OneExpert CATV
Model Number:	OneExpert CATV
Serial Number:	Eng. Sample
FCC ID:	WUW-22100382
IC:	9613A-22100382

3.2 Product Description

Bluetooth device using Bluetooth Low Energy 802.11 b/g/n device using HT20 channels 1-11 Device does not transmit BT and WLAN simultaneously

3.3 Modifications Incorporated In the EUT for Compliance Purposes

None noted at time of test

3.4 Deviations & Exclusions from Test Specifications

None noted at time of test

3.5 Additional Information

Low Channel 0 (2402MHz), Middle Channel 39 (2441 MHz), High Channel 78 (2480 MHz). EUT programmed for continuous transmit or receive on selectable channel and data rate (modulation) using hyper terminal program connection via Ethernet port on EUT for BLE.

Low Channel 1(2412 MHz), Middle Channel 6 (2437 MHz), High Channel 11 (2462 MHz). EUT programmed for continuous transmit or receive on selectable channel and data rate (modulation) using hyper terminal program connection via Ethernet port on EUT for WLAN.

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 5 of 51	

4.0 Conditions of Test

Environmental: Temperature: 20-25° C Relative Humidity: 30-60% Atmospheric Pressure: 86-106 kPa

Mains Voltage: 120 VAC 60 Hz

5.0 Test Equipment

All test equipment is calibrated by a calibration laboratory accredited by A2LA to the requirements of ISO 17025. For a complete list of test equipment and calibration dates, see Appendix A. Unless otherwise noted, resolution bandwidth of measuring instrument used during testing for given frequency range, see below.

Frequency Range	Resolution Bandwidth
9 kHz – 150 kHz	200 Hz
150 kHz – 30 MHz	9 kHz
30 MHz – 1000 MHz	120 kHz
Above 1000 MHz	1 MHz

6.0 Conformance Summary

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, 15.207 as well as Industry Canada RSS-247 Issue 1, RSS-GEN Issue 4.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 6 of 51	

Appendix A – Test Equipment

US RESEARCH LLC Wireless Product Development Equipment Calibration								
	Dates	_22-Apr-2015	Type Test	Emissions			Job#	
	Prepared By:	Shane Rismeyer	Customer :	JDSU			Quote #	315103
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	10/19/2014	10/19/2015	Active Calibration
2	EE 960088	8GHz MXE Spectrum Analyzer	Agilent	N9038A	MY51210138	1/9/2015	1/9/2016	Active Calibration
3	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	1/19/2015	1/19/2016	Active Calibration
4	AA 960150	Biconical Antenna	ETS	3110B	0003-3346	1/22/2015	1/22/2016	Active Calibration
5	EE 960146	Std. Gain Horn Ant. w/preamp	Adv. Micro / EMI	VLA622-473160-09	123001	8/20/2014	8/20/2015	Active Calibration
6	AA 960137	Standard Gain Horn Ant.	EMCO	3160-10	69259	8/20/2014	8/20/2015	Active Calibration
7	AA 960158	Double Ridge Horn Antenna	ETS Lindgren	3117	109300	6/20/2014	6/20/2015	Active Calibration
8	EE 960159	0.8 - 21GHz LNA	Mini-Circuits	ZVA-213X-S+	740411007	6/20/2014	6/20/2015	Active Calibration
9	AA 960161	Highpass Filter	K&L Microwave	11SH10-8000	2	2/6/2015	2/6/2016	Active Calibration
10	EE 960089	LISN - 15A	COM-POWER	LI-215A	191943	3/2/2015	3/2/2016	Active Calibration

Project Engineer: Con Harry Quality Assurance: leter Fichen

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 7 of 51			

Appendix B – Test Data B.1 – RF Conducted Emissions

Manufacturer	JDSU
Test Location	LS Research, LLC
Rule Part	FCC 15.247 IC RSS-247
General Measurement Procedure	ANSI C63.10 Section 6.7
General Description of Measurement	A direct measurement of the transmitted signal was performed at the antenna port of the EUT via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings there by allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source.

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 8 of 51		

B.1.1 – RF Conducted – Fundamental Bandwidth

Manufacturer	JDSU
Date	4-22, 5-12 2015
Operator	Shane R.
Temp. / R.H.	20 - 25° C / 30-60% R.H.
Rule Part	FCC 15.247 (a)(2) IC RSS-247 Section 5.2(1)
Specific Measurement Procedure	ANSI C63.10-2013 Section 11.8
Additional Description of Measurement	Peak detector used
Additional Notes	Continuous transmit modulated used for this test.

Table

Mode	Frequency (MHz)	99 % BW (MHz)	6 dB DTS BW (MHz)	20 dB OBW (MHz)
	2402	1.039	0.709	1.183
BLE	2441	1.035	0.706	1.179
	2480	1.035	0.711	1.180

WLAN

Mode (802.11)	Mode (Mbps)	Frequency (MHz)	99 % BW (MHz)	6 dB DTS BW (MHz)	20 dB OBW (MHz)
	1	2412	13.90	9.10	16.15
b		2437	13.98	9.10	16.17
		2462	13.99	9.10	16.18
		2412	16.58	16.35	19.83
g	6	2437	16.61	16.32	20.00
		2462	16.65	16.29	19.99
	2412 6.5 2437 2462	2412	17.74	15.15	20.00
n		2437	17.77	15.15	20.00
		17.82	15.44	20.00	

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 9 of 51			

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 10 of 51		

Plots 802.11b – 1 Mbps Low Channel – 2412 MHz

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 11 of 51		

802.11b – 6 Mbps Low Channel – 2412 MHz

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 12 of 51		

802.11n – 6.5 Mbps Low Channel – 2412 MHz

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 13 of 51		

B.1.2 – RF	Conducted -	- Fundamental	Power and S	pectral Density
-------------------	-------------	---------------	-------------	-----------------

Manufacturer	JDSU
Date	5-7, 12, 28 2015
Operator	Shane R.
Temp. / R.H.	20 - 25° C / 30-60% R.H.
Rule Part	FCC 15.247 (b) & (e)
Rule I alt	IC RSS-247 Section 5.4 (4) & 5.2 (2)
Specific	ANSI C63.10-2013
Measurement	Power - Section 11.9.1.1 (BLE) and 11.9.2.2.4 (WLAN)
Procedure	PSD – Section 11.10.2 (BLE) and 11.10.5
Additional	30 kHz resolution bandwidth used for Power Spectral Density measurement
Description of	Peak methods for BLE
Measurement	Average methods for WLAN
Additional	Continuous transmit modulated used for this test.
Notes	Sample Calculation:
10005	Margin (dB) = Limit – Measured level

Table

BLE

Frequency (MHz)	99 % BW (MHz)	6 dB DTS BW (MHz)	20 dB OBW (MHz)	Meas Power (dBm)	Power Limit (dBm)	Power Margin (dB)	Meas PSD 30 kHz (dBm)	PSD Limit (dBm / 3 kHz)	PSD Margin (dB)
2402	1.039	0.709	1.183	8.23		21.77	3.29		4.71
2441	1.035	0.706	1.179	8.58	30	21.42	3.49	8	4.51
2480	1.035	0.711	1.180	8.66		21.34	3.74		4.26

WLAN

Mode (802.11)	Mode (Mbps)	Frequency (MHz)	99 % BW (MHz)	6 dB DTS BW (MHz)	20 dB OBW (MHz)	Meas Power (dBm)	Duty (dB)	Max Avg. Power (dBm)	Max Avg. Power Limit (dBm)	Max Avg. Power Margin (dB)	Meas PSD 30 kHz (dBm)	Duty (dB)	Max Avg. PSD 30 kHz (dBm)	Max Avg. PSD Limit (dBm / 3 kHz)	Max Avg. PSD Margin (dB)
		2412	13.90	9.10	16.15	18.46	0.0	18.46		11.54	2.76	0.0	2.76		5.24
b	1	2437	13.98	9.10	16.17	18.96	0.0	18.96		11.04	4.67	0.0	4.67		3.33
		2462	13.99	9.10	16.18	19.10	0.0	19.10		10.90	4.81	0.0	4.81		3.19
		2412	16.58	16.35	19.83	17.30	0.0	17.30		12.70	1.81	0.0	1.81		6.19
g	6	2437	16.61	16.32	20.00	17.60	0.0	17.60	30	12.40	0.92	0.0	0.92	8	7.08
		2462	16.65	16.29	19.99	17.74	0.0	17.74		12.26	2.29	0.0	2.29		5.71
		2412	17.74	15.15	20.00	17.10	0.2	17.30		12.70	0.57	0.2	0.77		7.23
n	6.5	2437	17.77	15.15	20.00	17.50	0.2	17.70		12.30	0.91	0.2	1.11		6.89
		2462	17.82	15.44	20.00	17.64	0.2	17.84		12.16	1.34	0.2	1.54		6.46

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 14 of 51			

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 15 of 51			

Plots - 802.11b – 1 Mbps Low Channel – 2412 MHz

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 16 of 51			

802.11g – 6 Mbps Low Channel – 2412 MHz

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 17 of 51			

802.11n – 6.5 Mbps Low Channel – 2412 MHz

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 18 of 51			

Diffe Iti Con	
Manufacturer	JDSU
Date	5-7, 12 2015
Operator	Shane R.
Temp. / R.H.	20 - 25° C / 30-60% R.H.
Rule Part	FCC 15.247 (d)
	IC RSS-247 Section 5.5
Specific Measurement Procedure	ANSI C63.10-2013 Section 11.11
Additional Description of Measurement	RF Conducted Measurement
Additional Notes	 Mid channel worst case data shown Power measurements made with average method therefore emissions attenuated 30 dB relative in band PSD level. For reference level measurement see DTS BW plots.

B.1.3 – RF Conducted – Transmitter Spurious Emissions

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 19 of 51			

Prepared For: JDSU	Name: OneExpert CATV			
Report: TR 315103 A	Model: OneExpert CATV			
LSR: C-2210	Serial: Eng. Sample			
Page 20 of 51				

802.11b - 1 Mbps - Mid Channel - 2437 MHz

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 21 of 51		

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210 Serial: Eng. Sample			
Page 22 of 51			

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210 Serial: Eng. Sample		
Page 23 of 51		

2010 10 000	
Manufacturer	JDSU
Date	5-15-15
Operator	Shane R.
Temp. / R.H.	20 - 25° C / 30-60% R.H.
Rule Part	FCC 2.1055 RSS-GEN Section 6.11
Specific Measurement Procedure	ANSI C63.10-2013 Section 6.8
Additional Description of Measurement	RF Conducted Measurement
Additional Notes	The power and frequency stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the RF output power and frequency at the appropriate frequency markers. Power was supplied by an external bench-type DC power supply and was varied from the nominal. The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle. Below is data showing stability of the fundamental frequency.

B.1.4 – RF Conducted – Frequency Stability

BLE

Channel	Supply voltage (DC)		Doviation (Hz)
Channel	Nominal (7.4 VDC)	-15% (6.3 VDC)	
Low (Hz)	2401996039	2401996052	13
Middle (Hz)	2440995977	2440995978	1
High (Hz)	2479995921	2479995905	16

WLAN

Channel	Supply voltage (DC)		Doviation (Hz)
Nominal (7.4 VDC)		-15% (6.3 VDC)	
Low (Hz)	2411996205	2411996182	23
Middle (Hz)	2436996084	2436996071	13
High (Hz)	2461996028	2461996048	20

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 24 of 51		

B.1.5 – RF Conducted – Duty Cycle

Manufacturer	JDSU
Date	4-22-15
Operator	Shane R.
Temp. / R.H.	20 - 25° C / 30-60% R.H.
Rule Part	N/A
Specific Measurement Procedure	ANSI C63.10-2013 Section 11.6
Additional Description of Measurement	RF Conducted Measurement
Additional Notes	Duty cycle used for average power and average PSD procedures

Table

Modulation	802.11 Standard	Data Rate (MBPS)	TX on time (ms)	TX off time (ms)	Duty Cycle	Duty cycle correction factor (dB)
DBPSK	b	1.0	8.607	0.047	0.99	0.0
BPSK	g	6.0	8.597	0.049	0.99	0.0
BPSK	n	MCS0	1.320	0.053	0.96	0.2

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210 Serial: Eng. Sample		
Page 25 of 51		

Serial: Eng. Sample
Page 26 of 51

Rule Part(s)	FCC: 15.247 / 15.205 / 15.209 IC: RSS-GEN Section 8.9,8.10			
Measurement Procedure	ANSI C63.10 – 2013 Section 11.12 (6.3,6.5,6.6)			
Test Location	LS Research, LLC – FCC/IC Listed 3 meter Chamber			
Test Distance	See data section			
EUT Placement	Above 1 GHz: 150 cm height non-conductive table above reference ground plane covered with absorbers Below 1 GHz: 80 cm height non-conductive table above reference ground plane			
Frequency Range of Measurement	Biconical: 30-300 MHz	Log Periodic Dipole Array: 300-1000 MHz	Double-Ridged Waveguide Horn: 1-18 GHz	Standard Gain Horn: 18-26GHz
Measurement Detectors	30-1000MHz1 - 40 GHz:RBW: 120 kHzRBW : 1MHzVBW: At least 300 kHzVBW: At least 3 MHz PeakVBW: < 30 Hz Average			
 1) The antenna, cable, pre-amp, and other necessary measurement system correction factors are loaded onto the EMI receiver / spectrum analyzer when the measurements are preformed. The data is gathered and reported as the corrected values. 2) The EUT is placed on a non-conductive pedestal centered on a turn-table in the test location with the antenna at the test distance from the EUT 3) Maximum radiated RF emissions are determined by rotation of azimuth and scanning the sense antenna between 1 and 4 meters in height using both horizontal and vertical antenna polarities. Maximized levels are manually noted at degree values of azimuth and at corrected between the sense of the sense of the sense height. 				
Example Calculations	Reported Measuremen Cable factor (dB) - a applicable)	nt data = Raw receiver amplification factor (v	measurement + Antenn vhen applicable) + Ad	a Correction Factor + ditional factor (when

B.2 – Transmitter Radiated Emissions in Restricted Bands

Limits:

Frequency (MHz)	3 m Limit (µV/m)	3 m Limit (dBµV/m)	Туре
30-88	100	40.0	Quasi-Peak
88-216	150	43.5	Quasi-Peak
216-960	200	46.0	Quasi-Peak
Above 960	500	54.0	Average (>1 GHz)

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 27 of 51			

B.2.1 – Radiated Band-Edge Restricted Bands

Manufacturer	JDSU
Date	4-24, 4-27, 4-28 2015
Operator	Shane R.
Temp. / R.H.	20 - 25° C / 30-60% R.H.
Rule Part	FCC 15.247/ 15.205 / 15.209 IC RSS-247 / RSS-GEN
Measurement Procedure	ANSI C63.10-2013 Section 11.12
Test Distance	3 meter
EUT Placement	150 cm height non-conductive table centered on turn-table , absorbers covering ground plane
Detectors	Final Measurements: Peak / Max Hold, RBW 1 MHz, Average VBW 10Hz, Peak VBW 3 MHz
Additional Notes	 EUT maximized in orientation, azimuth, and antenna height with maximum results reported.

Example Calculation: Limit ($dB\mu V/m$) – Reading ($dB\mu V/m$) = Margin (dB)

Table

Mode	Channel	Frequency (GHz)	Meas (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas Type	Limit Type
סור	0	2.38680	47.36	54	6.6	Peak	Average
BLE	BLE 78 2.48435		48.07	54	5.9	Peak	Average

Average

Mode (802.11)	Mode (Mbps)	Channel	Frequency (GHz)	Avg Meas (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)
þ	1	1	2.38373	37.61		16.4
U	Ŧ	11	2.48350	45.29		8.7
a	G	1	2.39000	42.99	E A	11.0
g	0	11	2.48350	50.97	54	3.0
2	6 F	1	2.39000	44.18		9.8
11	0.5	11	2.48350	51.91		2.1

Peak

Mode (802.11)	Mode (Mbps)	Channel	Frequency (GHz)	Avg Meas (dBµV/m)	Avg Limit (dBμV/m)	Margin (dB)
h	1	1	2.34400	61.33		12.7
U	T	11	2.48378	59.13		14.9
a	C	1	2.38973	63.31	74	10.7
g	0	11	2.48386	68.87	74	5.1
n	p 65		2.39000	70.85		3.2
n 6.5	11	2.48375	73.11		0.9	

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 28 of 51			

Agilent 13:54:35 Apr 28, 2015	L	🔆 Agilent 11:52:09 Apr 28	, 2015	L
66.99 dB µ V∕m #Atten 0 dB	Mkr1 2.356 80 GHz 47.36 dBµV/m	Ref 66.99 dB µ V∕m	#Atten 0 dB	Mkr1 2.484 352 5 GHz 48.07 dBµV/m
pak		*Peak Log		
/		10 dB/ 1		
and the second	- Martin and the second s	and a second	and the second state of th	ter y stal get bester en se
		DI		
μ0/n		54.0 dBµV∕n		
Av		LgAv		
\$2 FC		M1 S2		
AA		A AA		
יי Marker 2356800000 האדיר איז		FTun		
47.36 dBμV/m		PA		
art 2.310 00 GHz	Stop 2.390 00 GHz	Start 2.483 500 0 GHz #Res BW 1 MHz	#UBW 3 MH >	Stop 2.500 000 0 GHz Sween 1 ms (601 nts)

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 29 of 51			

Prepared For: JDSUName: OneExpert CATVReport: TR 315103 AModel: OneExpert CATVLSR: C-2210Serial: Eng. Sample

B.2.2 – Radiated Harmonics in Restricted Bands

Manufacturer	JDSU				
Date	5-6-15				
Operator	Shane R.				
Temp. / R.H.	20 - 25° C / 30-60% R.H.				
Rule Part	FCC 15.247/ 15.205 / 15.209 IC RSS-247 / RSS-GEN				
Measurement Procedure	ANSI C63.10-2013 Section 11.12				
Test Distance	3 meter				
EUT Placement	150 cm height non-conductive table centered on turn-table, absorbers covering ground plane				
Detectors	Final Measurements: Peak / Max Hold, RBW 1 MHz, Peak VBW 3 MHz				
Additional Notes	 EUT maximized in orientation, azimuth, and antenna height with maximum results reported. Worst case mode (1 Mbps) measured. *Refer to Appendix E for duty cycle correction. (14.9 dB) 				

Example Calculation:

Peak Limit (74 dB μ V/m @ 3m) – Peak Reading (dB μ V/m) = Peak Margin (dB) Peak Reading (dB μ V/m) – Duty Cycle* (dB) = Calculated Average (dB μ V/m) Average Limit (54 dB μ V/m @ 3m) – Calculated Average (dB μ V/m) = Average Margin (dB) or

Average Limit (54 dB μ V/m @ 3m) – Average Reading (dB μ V/m) = Average Margin (dB)

Table (BLE)

EUT Channel	Frequency (MHz)	EUT orientation	Antenna Polarity	Height (cm)	Azimuth (degree)	Peak Reading (dBµV/m)	Calculated Average (dBµV/m)	Peak Margin (dB)	Average Margin (dB)
		Vortical	Horizontal	140	195	47.4	32.5	26.6	21.5
		vertical	Vertical	105	158	50.6	35.7	23.4	18.3
Low	4904	Cida	Horizontal	125	121	48.1	33.2	25.9	20.8
LOW	4804	Side	Vertical	100	151	48.1	33.2	25.9	20.8
		Flat	Horizontal	160	90	47.6	32.7	26.4	21.3
		Flat	Vertical	132	166	49.3	34.4	24.7	19.6
		Vortical	Horizontal	100	157	57.4	42.5	16.6	11.5
		vertical	Vertical	128	212	51.0	36.1	23.0	17.9
Mid	4000	Side	Horizontal	108	150	52.8	37.9	21.2	16.1
iviid	4882		Vertical	100	140	55.5	40.6	18.5	13.4
		Flat	Horizontal	144	100	52.1	37.2	21.9	16.8
		Fidt	Vertical	118	128	54.5	39.6	19.5	14.4
		Vertical	Horizontal	163	150	58.8	43.9	15.2	10.1
		Vertical	Vertical	100	204	52.5	37.6	21.5	16.4
Lliab	4060	Side	Horizontal	135	151	54.5	39.6	19.5	14.4
nigii	4960		Vertical	118	154	57.1	42.2	16.9	11.8
		Flat	Horizontal	146	95	55.2	40.3	18.8	13.7
		Flat	Vertical	164	187	55.4	40.5	18.6	13.5
ed For: JDSU					Name: OneF	Expert CATV			
: TR 315103 A					Model: OneE	Expert CATV			
2-2210					Serial: Eng.	Sample			

EUT Channel	Frequency (MHz)	EUT orientation	Antenna Polarity	Height (cm)	Azimuth (degree)	Peak Reading (dBµV/m)	Average Reading (dBμV/m)	Peak Margin (dB)	Average Margin (dB)													
		Vortical	Horizontal	160	153	46.2	40.7	27.8	13.3													
		vertical	Vertical	100	207	45.7	35.9	28.3	18.1													
Low		Cida	Horizontal	216	0	43.4	35.0	30.6	19.0													
LOW	4824	Side	Vertical	114	347	44.7	37.6	29.3	16.4													
		Flat	Horizontal	150	262	44.4	35.3	29.6	18.7													
		Flat	Vertical	200	220	44.1	36.8	29.9	17.2													
	Mid 4874	Vertical	Horizontal	100	145	44.7	37.4	29.3	16.6													
			Vertical	100	187	42.9	33.5	31.1	20.5													
N 41-1		Side	Horizontal	100	154	43.6	33.0	30.4	21.0													
IVIId			Vertical	100	132	44.5	37.1	29.5	16.9													
		Flat	Horizontal	120	95	44.4	33.9	29.6	20.1													
															Flat	Vertical	100	188	44.2	34.5	29.8	19.5
		Vartical	Horizontal	100	160	46.2	40.7	27.8	13.3													
High 4924	Vertical	Vertical	100	202	42.2	34.1	31.8	19.9														
	1024	C'-l-	Horizontal	100	151	44.0	35.2	30.0	18.8													
	4924	Side	Vertical	100	160	45.9	39.9	28.1	14.1													
		Flat	Horizontal	100	90	44.8	35.7	29.2	18.3													
		Flat	Vertical	108	186	43.9	35.5	30.1	18.5													

Table (WLAN)

Prepared For: JDSU	Name: OneExpert CATV		
Report: TR 315103 A	Model: OneExpert CATV		
LSR: C-2210	Serial: Eng. Sample		
Page 33 of 51			

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210 Serial: Eng. Sample		
Page 34 of 51		

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210 Serial: Eng. Sample		
Page 35 of 51		

Manufacturer	JDSU		
Date	4-28, 5-6 2015		
Operator	Shane R.		
Temp. / R.H.	20 - 25° C / 30-60% R.H.		
Rule Part	FCC 15.247/ 15.205 / 15.209 IC RSS-247 / RSS-GEN		
Measurement Procedure	ANSI C63.10-2013 Section 6.3, 6.6		
Test Distance	3 meter 1-18 GHz		
EUT Placement	150 cm height non-conductive table centered on turn-table , absorbers covering ground plane		
Detectors	Peak; RBW 1 MHz		
Additional Notes	 EUT maximized in orientation, azimuth, and antenna height with maximum results reported. No Emissions found above system noise floor for BLE or WLAN. Frequency ranges 2310-2390 MHz, 2483.5-2500 MHz, and 4-25 GHz seen in previous sections. 		

B.2.3 – Radiated Spurious Emissions Transmit Mode (1-26 GHz)

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 36 of 51	

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210 Serial: Eng. Sample		
Page 37 of 51		

D.2.4 – Radiated Spurious Emissions Transmit Wode (30-1000 Willz)		
Manufacturer	JDSU	
Date	6-19-15	
Operator	Adam A	
Temp. / R.H.	20 - 25° C / 30-60% R.H.	
Rule Part	FCC 15.247/ 15.205 / 15.209 IC RSS-247 / RSS-GEN	
Measurement Procedure	ANSI C63.10-2013 Section 6.3, 6.5	
Test Distance	3 meter 30-1000 MHz	
EUT Placement	80 cm height non-conductive table centered on turn-table (no absorbers on ground plane)	
Detectors	Peak; RBW 120 kHz	
Additional Notes	 Tested in continuous transmit modulated mode with EUT in three orientations at maximum power. Emissions not effected by channel or modulation for BLE or WLAN 	

B.2.4 – Radiated Spurious Emissions Transmit Mode (30-1000 MHz)

Example Calculation: Limit $(dB\mu V/m) - Reading (dB\mu V/m) = Margin$

Table

Frequency (MHz)	Antenna Polarity	Height (cm)	Azimuth (degree)	Quasi- Peak Reading (dBµV/m)	Quasi- Peak Limit (dBµV/m)	Margin (dB)
97.0	Vertical	100	0	40.7	43.5	2.8
73.9	Vertical	100	257	38.4	40.0	1.6
31.4	Vertical	100	187	33.5	40.0	6.5
135.8	Horizontal	314	252	39.2	43.5	4.3
97.0	Horizontal	218	90	38.5	43.5	5.0
174.5	Horizontal	179	126	38.1	43.5	5.4
875.0	Vertical	126	16	44.4	46.0	1.6
213.4	Vertical	100	159	34.5	43.5	9.0
625.0	Vertical	100	0	39.0	46.0	7.0
698.2	Horizontal	121	0	39.9	46.0	6.1
504.2	Horizontal	201	300	40.9	46.0	5.1
426.6	Horizontal	195	0	39.3	46.0	6.7

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 38 of 51	

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 39 of 51	

B.3 – AC Mains Conducted Emissions

Rule Part(s)	FCC: 15.207 / 15.107 IC: RSS-247 / RSS-GEN
Measurement Procedure	ANSI C63.4 - 2014 ANSI C63.10 - 2013
Test Location	LS Research, LLC – Conducted Emissions Area
Test Voltage	120 VAC 60 Hz
EUT Placement	80 cm height non-conductive table above reference ground plane
Frequency Range of Measurement	150 kHz – 30 MHz
Measurement Detectors	Peak, Quasi-Peak, Average RBW: 9 kHz VBW: At least 27 kHz
Description of Measurement	 The LISN, cable, limiter, and other necessary measurement system correction factors are loaded onto the EMI receiver / spectrum analyzer when the measurements are preformed. The data is gathered and reported as the corrected values. The EUT is placed on a non-conductive pedestal at appropriate distance from ground planes and plugged into LISN. The LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral). Maximum emissions are determined with peak detector and measurements at select points are made with quasi-peak and average detectors. Results are recorded and compared to limit.
Example Calculations	Reported Measurement data = Raw receiver measurement + LISN Factor + Cable factor (dB) + Additional factor (when applicable)

Limits of Conducted Emissions at the AC Mains Ports:

Frequency Range	Class B Limits (dBµV)		
(MHz)	Quasi-Peak	Average	
0.150 -0.50 *	66-56	56-46	
0.5 - 5.0	46		
5.0 - 30 60 50			
* The limit decreases linearly with the logarithm of the frequency in this range.			

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 40 of 51		

B.4.1 – AC Mains Conducted Emissions

Manufacturer	JDSU
Date	6-22-15
Operator	Adam A
Temp. / R.H.	20 - 25° C / 30-60% R.H.
Rule Part	15.207 / 15.107 / RSS-GEN
Measurement Procedure	ANSI C63.4 - 2014 ANSI C63.10 - 2013 Section 6.2
Test Voltage	120 VAC 60 Hz supplied to AC adapter supplied by applicant for use with EUT
EUT Placement	80 cm height non-conductive table, 40 cm from vertical ground plane
Detectors	Peak; RBW 9 kHz Quasi-Peak and Average
Additional Notes	 Tested in continuous transmit and receive with no significant difference between operating channels BLE or WLAN. WLAN Channel 6, 1 MBPS for final data.

Example Calculation: Margin (dB) = Limit (dB μ V) – Reading (dB μ V)

Table

Frequency (MHz)	Line	Peak Reading (dBµV)	Quasi- Peak Reading (dBµV)	Average Reading (dBµV)	Q-Peak Limit (dBµV)	Quasi- Peak Margin (dB)	Average Limit (dBµV)	Average Margin (dB)
0.150	1	52.6	47.4	34.7	66.00	18.6	56.00	21.3
0.222	1	47.7	41.0	30.6	62.74	21.7	52.74	22.1
0.469	1	43.3	39.3	30.0	56.53	17.2	46.53	16.5
6.193	1	38.4	34.9	28.6	60.00	25.1	50.00	21.4
6.445	1	38.1	34.4	27.9	60.00	25.6	50.00	22.1
0.177	1	49.3	43.0	32.7	64.63	21.6	54.63	21.9
0.163	2	50.0	45.8	32.2	65.31	19.5	55.31	23.1
0.190	2	46.2	42.4	29.0	64.04	21.6	54.04	25.0
0.469	2	43.2	40.0	29.9	56.53	16.5	46.53	16.6
0.437	2	41.5	37.9	29.2	57.12	19.2	47.12	17.9
6.179	2	38.6	35.9	29.7	60.00	24.1	50.00	20.3
6.449	2	38.5	35.8	29.5	60.00	24.2	50.00	20.5

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 41 of 51		

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 42 of 51		

Appendix C - Uncertainty Summary

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64°/2.88 %RH

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 43 of 51		

Appendix D - References

Publication	Year	Title
FCC CFR Parts 0-15	2015	Code of Federal Regulations – Telecommunications
RSS-247 Issue 1	2015	Digital Transmissions Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-GEN Issue 4	2014	General Requirements and Information for the Certification of Radio Apparatus
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing Unlicensed Wireless Devices

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 44 of 51		

Appendix E – Duty Cycle Calculation

1.0 Summary

There are directed and undirected advertising events.

The worst case relaxation factor for a directed advertising event is 14.9 dB. The worst case relaxation factor for an undirected advertising event is 20 dB.

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 45 of 51		

1.1 Defining Packet Length

2.1 PACKET FORMAT

The Link Layer has only one packet format used for both advertising channel packets and data channel packets.

The packet format is shown in Figure 2.1. Each packet consists of four fields: the preamble, the Access Address, the PDU, and the CRC.

LSB			MSB
Preamble	Access Address	PDU	CRC
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)

Figure 2.1: Link Layer packet format

The preamble is 1 octet and the Access Address is 4 octets. The PDU range is from 2 to a maximum of 39 octets. The CRC is 3 octets.

The Preamble is transmitted first, followed by the Access Address, followed by the PDU followed by the CRC.

The shortest packet is 80 bits in length. The longest packet is 376 bits in length.

PDU Type b ₃ b ₂ b ₁ b ₀	Packet Name
0000	ADV_IND
0001	ADV_DIRECT_IND
0010	ADV_NONCONN_IND
0011	SCAN_REQ
0100	SCAN_RSP
0101	CONNECT_REQ
0110	ADV_SCAN_IND
0111-1111	Reserved

Table 2.1: Advertising channel PDU Header's PDU Type field encoding

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 46 of 51		

Octets per Packet

 $ADV_IND = 37$ octets ADV_DIRECT_IND = 12 octets ADV_NONCONN_IND =37 octets $SCAN_REQ = 12$ octets SCAN RSP = 37 octets $CONNECT_REQ = 34$ octets ADV SCAN IND = 37 octets

Preamble (1)	Access Address (4)	PDU Header (2)	Worst Case PDU Type (37)	CRC (3)
--------------	--------------------------	----------------------	--------------------------------	------------

Stated worst case length packet: 47 octets = 376 bits Worst Case Packet Duration: 376 bits * $1 \mu S / bit = 376 \mu S$

Defining Inter Frame Space 1.2

4.1 INTER FRAME SPACE

The time interval between two consecutive packets on the same channel index is called the Inter Frame Space. It is defined as the time from the end of the last bit of the previous packet to the start of the first bit of the subsequent packet. The Inter Frame Space is designated "T_IFS" and shall be 150 µs.

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 47 of 51		

1.3 Defining Undirected Advertising Event

For all undirected advertising events, the time between the start of two consecutive advertising events (*T_advEvent*) is computed as follows for each advertising event:

T_advEvent = advInterval + advDelay

The *advInterval* shall be an integer multiple of 0.625 ms in the range of 20 ms to 10.24 s. If the advertising event type is either a scannable undirected event type or a non-connectable undirected event type, the *advInterval* shall not be less than 100 ms. If the advertising event type is a connectable undirected event type, the *advInterval* can be 20 ms or greater.

The *advDelay* is a pseudo-random value with a range of 0 ms to 10 ms generated by the Link Layer for each advertising event.

As illustrated in Figure 4.1, the advertising events are perturbed in time using the advDelay.

Figure 4.1: Advertising events perturbed in time using advDelay

Figure D2: Connectable undirected advertising event with only advertising PDUs

<u>1.3.1</u> Duty Factor for Connectable Undirected Advertising Event, per advertising channel:

ADV_IND = 376 μ S duration (ON channel 37) IFS = 150 μ S (OFF) ADV_IND = 376 μ S duration (OFF channel 38) IFS =150 μ S (OFF) ADV_IND = 376 μ S duration (OFF Channel 39). advInterval (min) = 20 mS

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 48 of 51		

<u>1.3.1.1 Straight Duty Factor</u>

 $\overline{\text{DF}} = 376 / (376*3+150*2+20000) = 0.0175$ Relaxation factor =-min (20*log10 (DF),-20 dB) =-min (-35.119,-20) = 20 dB

<u>1.3.1.2 Duty Factor in 100mS window:</u>

Packet Repetition Interval is (376*3) + (2*150) + 20000 microseconds =21428 microseconds Number of Packet Repetitions per 100 mS window = 21428/100000 = 4.667 Packet Intervals This will result in 5 packets being transmitted in a 100 mS window.

DF (rel 100 mS) = (5*376) / (100000) = 0.0188Relaxation Factor Relative to 100 mS = - Max (20*log10 (DF (rel 100mS)),-20 dB) = -Max (-34.51 dB, -20) = 20 dB

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 49 of 51		

1.4 Defining Directed Advertising Event

Duty Factor for Connectable Directed Advertising Event, per advertising channel

Figure D3: Connectable directed advertising event type with only advertising PDUs

<u>1.4.1</u> Duty Factor for Connectable Directed Advertising Event, per advertising channel:

ADV_DIRECT_IND = 176 μ S duration. (22 octets) (ON channel 37) IFS = 150 μ S (OFF) ADV_IND = 176 μ S duration (OFF channel 38) IFS =150 μ S (OFF) ADV_IND = 176 μ S duration (OFF Channel 39). IFS=150 μ S (OFF)

Time from open to close of advertising event = $3*176 + 3*150 = 978 \mu S$

<u>1.4.1.1 Straight Duty Factor</u>

DF = 176 / (978) = 0.179Relaxation factor =-min (20*log10 (DF),-20 dB) =-min (-14.9,-20) = 14.9 dB

1.4.1.2 Duty Factor in 100mS window:

Number of Connectable Directed Advertising Packets, per advertising channel, per 100 mS window: 100000/978 = 102.78 packets.

Therefore, there can be 103 transmissions of packets 176 microseconds in length on one channel within a 100 mS window.

Duty Factor relative to 100 mS window: DF (rel 100 mS) = (176*103) / (100000) = 0.18128Relaxation Factor Relative to 100 mS = - Max (20*log10 (DF (rel 100mS)),-20 dB) = -Max (-14.83 dB, -20) = 14.83 dB

Prepared For: JDSU	Name: OneExpert CATV	
Report: TR 315103 A	Model: OneExpert CATV	
LSR: C-2210	Serial: Eng. Sample	
Page 50 of 51		

END OF REPORT

Date	Version	Comments	Person
8-03-15	V0	Initial Draft Release	Adam Alger
8-11-15	V1	Final Release	Tom Smith
9-1-15	V1a	TCB Comments Addressed	Adam Alger

Prepared For: JDSU	Name: OneExpert CATV
Report: TR 315103 A	Model: OneExpert CATV
LSR: C-2210	Serial: Eng. Sample
Page 51 of 51	