

ACCREDITED Test Lab Cert 2764.01	FCC LISTED, REGISTRATION NUMBER: 2764.01Test report No:ISED LISTED REGISTRATION NUMBER: 23595-12271ERM.005A1
FCC Rules and Regulations CF	St report R 47, Part 15, Subpart B (10-1-17 Edition) & E 6 – Update April (2017)
Identification of item tested	Head unit with radio and Bluetooth
Trademark	Panasonic
Model and /or type reference	MIB3E_MQB_BTWIFI
Other identification of the product	FCC ID: WUQ-MIB3HBTWIFI IC: 216R-MIB3HBTWIFI PN: 654.035.869.A HW Version: X31 SW Version: X450
Features	Bluetooth, WLAN, FM, AM, DAB, USB.
Manufacturer	PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH Robert Bosch Str. 27-29-63225 Langen- Germany
Test method requested, standard	FCC Rules and Regulations CFR 47, Part 15, Subpart B (10-1-17 Edition) ICES-003 ISSUE 6 – Update April (2017)
Summary	IN COMPLIANCE
Approved by (name / position & signature)	Domingo Galvez EMC&RF Lab Manager
Date of issue	01-22-2019
Report template No	FDT08_21

Index

Competences and guarantees	3
General conditions	3
Uncertainty	3
Data provided by the client	4
Usage of samples	4
Test sample description	5
dentification of the client	6
Testing period and place	6
Document history	6
Modifications to the reference test report	7
Environmental conditions	7
Remarks and comments	7
Testing verdicts	8
Summary	8
List of equipment used during the test	8
Appendix A: Test results	9

Competences and guarantees

DEKRA Certification Inc. is a testing laboratory accredited by A2LA (The American Association for Laboratory Accreditation), to perform the tests indicated in the Certificate 2764.01

DEKRA Certification Inc. is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA Certification Inc. has a calibration and maintenance program for its measurement equipment.

DEKRA Certification Inc. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Certification at the time of performance of the test.

DEKRA Certification Inc. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Certification Inc.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Certification Inc.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Certification Inc. and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Certification internal document PODT000.

Frequency (MHz)	U(k=2)	Units
30-180	3.82	dB
180-1000	2.61	dB
1000-18000	2.92	dB
18000-40000	2.15	dB

Data provided by the client

Automotive head unit to be installed in cars with the following features: Bluetooth, WLAN, FM, AM, DAB, USB

DEKRA declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by: The client.

Sample S/01 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
2271.050	Car Radio	MIB3E_MQB_BTWIFI	04S PM6- 00123.08.18413E0193	12/21/2018
2271.019	Antenna	-	380	10/02/2018
2271.038	Power Cable	-	-	12/21/2018
2271.052	BNC to FAKRA RF cable			12/28/2018
2271.053	SMA to FAKRA RF cable			12/28/2018
2271.054	BNC to FAKRA RF cable	-	-	12/28/2018
2271.055	BNC 1 to 2-way splitter			12/28/2018

1. Sample S/01 used for Radiated Emission tests indicated in appendix A.

Test sample description

Ports:			Cable						
	Port name and description		Specified max length [m]	Attached during test		Shielded		Coupled to patient ⁽³⁾	
	No D	ata provided]				
					ו				
Supplementary information to the ports									
Rated power supply	Volta	ge and Frequency	,		Re	ference p	oles		
		3,	-	L1	L2	L3	N	I PE	
		AC:							
		AC:							
		DC:	I	I					
		DC: 12 Vdc							
Rated Power	No D	ata provided							
Clock frequencies	No Data provided								
Other parameters	No Data provided								
Software version:	X450								
Hardware version:	X31								
Dimensions in cm (W x H x D):	Data	not provided							
Mounting position		Table top equipr	nent						
		Wall/Ceiling mou	inted equipm	nent					
		Floor standing e	quipment						
		Hand-held equip	ment						
		Other: Car Equip	oment						
Modules/parts	Modu	Ile/parts of test iter	n		Т	уре	Ма	nufacturer	
	No D	ata provided							

Accessories (not part of the test item)	Description	Туре	Manufacturer
	Not Provided Data		
	Description	File name	Issue date
Documents as provided by the applicant		The name	
	FDT30_14 Data Declaration Equipment		
	Data		
	Copy of marking plate:	-	

Identification of the client

PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH Robert Bosch Str. 27-29-63225 Langen- Germany.

Testing period and place

Test Location	DEKRA Certification Inc.
Date (start)	01-15-2019
Date (finish)	01-17-2019

Document history

Report number	Date	Description
2271ERM.005	01-24-2019	First release
2271ERM.005A1	02-22-2019	Revision 1

Modifications to the reference test report

It was introduced the following modifications in respect to the test report number 2271ERM.005 related with the same samples, in the next clauses and sub-clauses:			
Clauses/ Sub-Clauses	Modification	Justification	
Page 11/ Description Of The Operation Modes	Operation mode Elaborated with details	Requested by the reviewer	

This modification in test report cancels and replaces the test report 2271ERM.005.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the semianechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the chamber for conducted measurements, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 60 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

Remarks and comments

The tests have been performed by the technical personnel: Koji Nishimoto & Poojita Bhattu

Testing verdicts

Not applicable :	N/A
Pass :	Ρ
Fail :	F
Not measured :	N/M

Summary

Emission Test							
Report Section	Requirement – Test case	Verdict Remark					
A.1	Radiated emission test (30 MHz – 1000 MHz)	Р	N/A				
A.1	Radiated emission test (1 GHz – 18 GHz)	Р	Refer 1				
A.1	Radiated emission test (18 GHz – 40 GHz)	Р	Refer 1				
-	Conducted emission test (150 KHz to 30 MHz)	N/A	Refer 2				
Supplementary information and remarks:							
uppe							

2) The test is not applicable, not required by the standard.

List of equipment used during the test

CONTROL NUMBER	DESCRIPTION	MANUFACTURER	MODEL	LAST CALIBRATION	NEXT CALIBRATION
1014	Signal Analyzer	ROHDE & SCHWARZ	FSV40	2017/03	2019/03
1012	EMI Test Receiver	ROHDE & SCHWARZ	ESR26	2018/09	2020/09
1058	Double Ridged Waveguide Horn Antenna	ETS LINDGREN	3115	2017/03	2020/03
1055	Double Ridged Waveguide Horn Antenna	ETS LINDGREN	3116C	2016/12	2019/12
1065	Biconilog Antenna	ETS LINDGREN	3142E	2017/03	2020/03
0981	Preamplifier	BONN ELEKTRONIK	BLMA 0118- 2A	2017/05	2019/05
0980	Preamplifier	BONN ELEKTRONIK	BLNA 0360- 01N	2017/05	2019/05
0982	Preamplifier	BONN ELEKTRONIK	BLMA1840- 1M	2017/05	2019/05
1017	EMC measurement software	ROHDE & SCHWARZ	EMC32 V9.01		

Appendix A: Test results

Appendix A Content

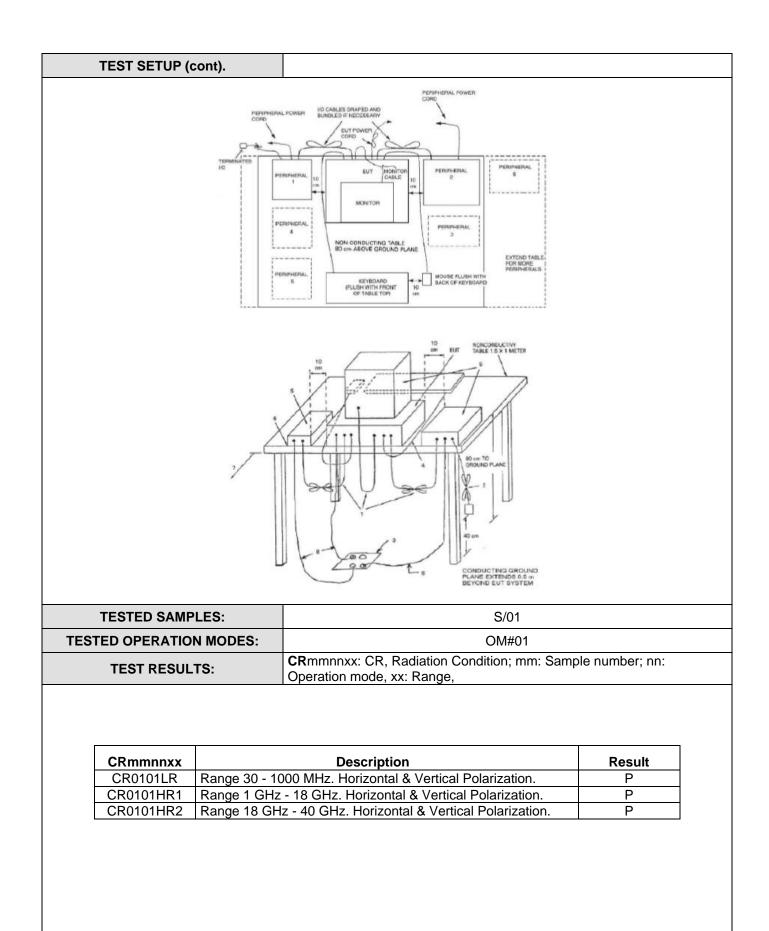
DESCRIPTION OF THE OPERATION MODES	.11
A.1 RADIATED EMISSION. ELECTROMAGNETIC FIELD MEASURE	.12

DESCRIPTION OF THE OPERATION MODES

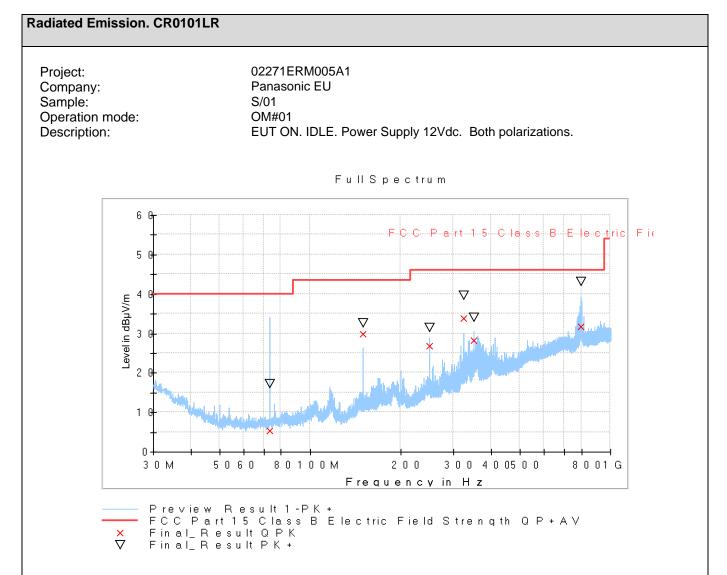
The operation modes described in this paragraph constitute a functionality of the sample under test for itself. Every operation mode takes a failure criterion for the immunity test that they were applying to it and a monitoring to guarantee performance of the same ones.

The operation modes used by the samples to which the present report refers, are shown in the following table:

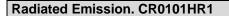
OPERATION MODE	DESCRIPTION
OM#01*	EUT ON. Power Supply 12Vdc. - AM Radio Receiver mode - FM Radio in Receiver mode - DAB in Receiver mode - Blue tooth in Idle mode

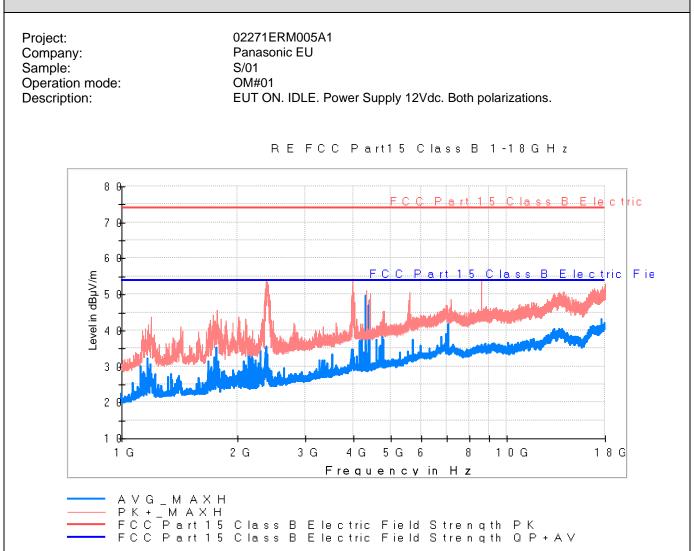

* Worst case detected

Г



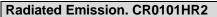
LIMITS:	Product st	andard:	FCC CFR 47, & ICES-003 Is				Edition), S	Secs. 15.109
	Test standard:FCC CFR 47, Part 15, Subpart B (10-1-17 Edition), Secs. & ICES-003 Issue 6 – Update April (2017); ANSI C63.4 (2017)							
Limits of interfe The applied limit Regulations 47 ((2017) in the free	t for radiated CFR Part 15,	emissions Subpart B	(10-01-17 Editi	on), Secs. 15.	109			
		Froqu	ency range	QP Limi	it for	3 m	1	
			(MHz)	(μV/m)	1	<u>3 m</u> dBμV/m)		
			0 to 88	100		40	-	
			3 to 216	150		43.5]	
			6 to 960	200		46		
		Ab	ove 960	500		54		
	Freque	ncy range	AVG Li	mit for 3 m		PK Limit f	for 3 m ⁽¹⁾]
		1Hz)	(μV/m)	(dBμV/m	ı)	(dBµ'		
	Abov	e 1000	500	54	,	74		
			the limit on peak radio nit applicable to the equ				maximum	
TES							maximum	
All radiated tes	T SETUP: ts were perfo	ge emission lir prmed in a ency range	nit applicable to the equation of the equation	uipment under test, a	ne n	§15.35(b) neasureme d at a dist	ent antenr	na is situated at a n for the frequenc
All radiated tes distance of 3 m range 1-40 GHz For radiated em	T SETUP: ts were perfe for the freque (1 GHz-18 G issions in the	prmed in a prmed in a ency range Hz and 18 range 1-4	nit applicable to the equation of the equation	uipment under test, a c chamber. Th (Bilog antenna ouble ridge ho erformed at a	he n i) an orn a dista	neasureme d at a dist antennas).	ent antenr ance of 1r r than the	
All radiated tes distance of 3 m range 1-40 GHz For radiated em an inverse prop compliance. The equipment	T SETUP: ts were perfor for the freque (1 GHz-18 G issions in the portionality fac under test w was varied to	prmed in a ency range Hz and 18 range 1-4 ctor of 20 as set up o find the	nit applicable to the equation of the equation	c chamber. Th Bilog antenna ouble ridge ho erformed at a is used to non uctive platform ted emission.	he n he n b) an brn a dista rmali labo	neasureme d at a dist antennas). ance close ize the me ove the gro	ent antenr ance of 1r r than the easured da	n for the frequency specified distance
All radiated tes distance of 3 m range 1-40 GHz For radiated em an inverse prop compliance. The equipment and orientation	T SETUP: ts were perfo for the freque (1 GHz-18 G issions in the portionality fac under test w was varied to ed from 1 to 4	prmed in a ency range Hz and 18 range 1-4 ctor of 20 as set up o find the meters to	nit applicable to the equal a semi-anechoid 30-1000 MHz (3 GHz-40 GHz D 40 GHz that is per dB per decade on a non-condu maximum radia find the maximu	c chamber. Th (Bilog antenna ouble ridge ho erformed at a is used to non uctive platform ted emission. Im radiated em	ne n ne n n) an orn a dista rmali	neasureme d at a dist antennas). ance close ize the me ove the gro vas also ro on.	ent antenr ance of 1r r than the easured da	n for the frequency specified distance ata for determining e and the situation
All radiated tes distance of 3 m range 1-40 GHz For radiated em an inverse prop compliance. The equipment and orientation height was varies	T SETUP: ts were perfore for the freque (1 GHz-18 G bissions in the portionality fact under test w was varied the was varied the ed from 1 to 4 were made in th is calculate	prmed in a ency range Hz and 18 range 1-4 ctor of 20 as set up o find the meters to both horiz	a semi-anechoid a 30-1000 MHz (3 GHz-40 GHz D 0 GHz that is po dB per decade on a non-condu maximum radia find the maximu contal and vertica ng correction fac	c chamber. The Bilog antenna ouble ridge ho erformed at a is used to nor ictive platform ted emission. Im radiated em al planes of po tor to the mea	ne n ne n n) an orn a dista rmali lt w nissio lariz sure	neasureme d at a dist antennas). ance close ize the me ove the gro vas also ro on. cation. ed level fro	ent antenr ance of 1r r than the easured da ound pland otated 360	n for the frequency specified distance ata for determining e and the situation
All radiated tes distance of 3 m range 1-40 GHz For radiated em an inverse prop compliance. The equipment and orientation height was varies Measurements The field streng	T SETUP: ts were perfore for the freque (1 GHz-18 G bissions in the portionality fact under test w was varied the was varied the ed from 1 to 4 were made in th is calculate	prmed in a ency range Hz and 18 range 1-4 ctor of 20 as set up o find the meters to both horiz	a semi-anechoid a 30-1000 MHz (3 GHz-40 GHz D 0 GHz that is po dB per decade on a non-condu maximum radia find the maximu contal and vertica ng correction fac	c chamber. The Bilog antenna ouble ridge ho erformed at a is used to nor ictive platform ted emission. Im radiated em al planes of po tor to the mea	ne n ne n n) an orn a dista rmali lt w nissio lariz sure	neasureme d at a dist antennas). ance close ize the me ove the gro vas also ro on. cation. ed level fro	ent antenr ance of 1r r than the easured da ound pland otated 360	n for the frequence specified distance ata for determining e and the situation ⁹ and the antenna
All radiated tes distance of 3 m range 1-40 GHz For radiated em an inverse prop compliance. The equipment and orientation height was varies Measurements The field streng	T SETUP: ts were perfore for the freque (1 GHz-18 G bissions in the portionality fact under test w was varied the was varied the ed from 1 to 4 were made in th is calculate	prmed in a ency range Hz and 18 range 1-4 ctor of 20 as set up o find the meters to both horiz	a semi-anechoid a 30-1000 MHz (3 GHz-40 GHz D 0 GHz that is po dB per decade on a non-condu maximum radia find the maximu contal and vertica ng correction fac	c chamber. The Bilog antenna ouble ridge ho erformed at a is used to nor ictive platform ted emission. Im radiated em al planes of po tor to the mea	ne n ne n n) an orn a dista rmali lt w nissio lariz sure	neasureme d at a dist antennas). ance close ize the me ove the gro vas also ro on. cation. ed level fro	ent antenr ance of 1r r than the easured da ound pland otated 360	n for the frequence specified distance ata for determining e and the situation ⁹ and the antenna

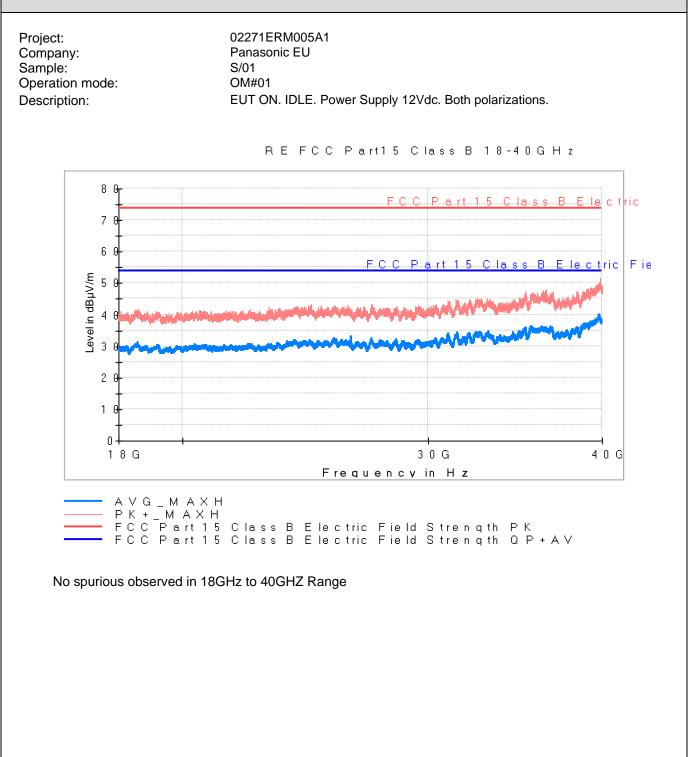




Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Height (cm)	Pol	Azimuth (deg)
73.210000	5.40	17.27	264.0	v	137.0
150.010000	29.87	32.79	100.0	v	-150.0
250.000000	26.96	31.61	124.0	Н	-77.0
324.990000	33.75	39.77	125.0	н	58.0
349.990000	28.15	34.15	229.0	Н	30.0
798.430000	31.68	43.13	156.0	v	0.0





Maximizations

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBµV/m)	Pol	Azimuth (deg)
2388.156250	53.38	35.45	v	-154.0
3971.281250	54.25	33.28	v	23.0
4326.156250	51.15	49.38	v	4.0
4409.562500	50.27	48.14	v	4.0
7105.656250	42.03	33.31	v	-32.0
17638.750000	49.22	42.87	۷	-14.0

