

Report No.: E01A22030657F00701 1 of 62

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

CAMWIFI

Model No.: BT532767

FCC ID: WUI-BT532767

Trademark: N/A

Report No.: E01A22030657F00701

Issue Date: June 07, 2022

Prepared for

Winplus Co., Ltd.

Suites 6-11, 7th Floor, Corporation Park, 11 On La, Shatin, Hong Kong

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Eleaactronic Technology Co., Ltd.

Report No.: E01A22030657F00701 2 of 62

VERIFICATION OF COMPLIANCE

Applicant:	Winplus Co., Ltd. Suites 6-11, 7th Floor, Corporation Park, 11 On La, Shatin, Hong Kong
Manufacturer:	Winplus Co., Ltd. Suites 6-11, 7th Floor, Corporation Park, 11 On La, Shatin, Hong Kong
Product Description:	CAMWIFI
Model Number:	BT532767

We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2020).

Date of Test :	Apr. 01, 2022 to May 10, 2022
Prepared by :	Jenie Pacia
Reviewer & Authorized Signer :	ANCI ANCI ANCI ANCI ANCI ANCI ANCI ANCI
	Tomas Yang /Manager

Report No.: E01A22030657F00701 3 of 62

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	/	E01A22030657F00701

Report No.: E01A22030657F00701 4 of 62

Table of Contents

1.	GE	ENERAL INFORMATION	6
	1.1 1.2	PRODUCT DESCRIPTION	
2.	SY	STEM TEST CONFIGURATION	. 7
	2.1 2.2 2.3 2.4	EUT CONFIGURATION EUT EXERCISE TEST PROCEDURE CONFIGURATION OF TESTED SYSTEM	. 7
3.	DE	ESCRIPTION OF TEST MODES	. 9
4.	SU	JMMARY OF TEST RESULTS	12
5.	TE	EST FACILITY	13
6.	CC	ONDUCTED EMISSIONS TEST	14
	6.1 6.2 6.3 6.4 C 6.5	MEASUREMENT PROCEDURE: TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) MEASUREMENT EQUIPMENT USED: CONDUCTED EMISSION LIMIT EASUREMENT RESULT:	14 14
7.	R/	ADIATED EMISSION TEST	16
	7.1 7.2 7.3 7.4 7.5 7.6 R	MEASUREMENT PROCEDURE TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) MEASUREMENT EQUIPMENT USED RADIATED EMISSION LIMIT MEASUREMENT RESULT RADIATED MEASUREMENT PHOTOS:	17 18 19 20
8.	6D	DB BANDWIDTH TEST	27
	8.1 8.2 8.3 8.4	MEASUREMENT PROCEDURE TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) MEASUREMENT EQUIPMENT USED MEASUREMENT RESULTS	27 27
9.	M	AXIMUM PEAK OUTPUT POWER TEST	36
	9.1 9.2 9.3 9.4 9.5	MEASUREMENT PROCEDURE TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) MEASUREMENT EQUIPMENT USED PEAK POWER OUTPUT LIMIT MEASUREMENT RESULTS	36 36
1().	BAND EDGE TEST	37
	10.1 10.2 10.3 10.4		38 38
11	1.	POWER DENSITY	44
	11.1 11.2	TEST EQUIPMENT	

Report	: No.: E01A22030657F00701 Test Procedures	5 of 62	
11.3	TEST PROCEDURES		4
11.4	BLOCK DIAGRAM OF TEST SETUP		4
11.5	LIMIT	4	5
11.6	TEST RESULT	4	5
12. A	NTENNA PORT EMISSION	5	3
12.1	TEST EQUIPMENT		3
12.2	MEASURING INSTRUMENTS AND SETTING		3
12.3	TEST PROCEDURES		
12.4	BLOCK DIAGRAM OF TEST SETUP		
12.5	TEST RESULT		3
13. A	NTENNA APPLICATION	60	0
13.1	ANTENNA REQUIREMENT		С
13.2	RESULT	6	C

APPENDIX (PHOTOS OF EUT) (3 PAGES)

Report No.: E01A22030657F00701 6 of 62

1. General Information

1.1 Product Description

Characteristics	Description	
Product Name	CAMWIFI	
Model number	BT532767	
Power Supply	DC 3.3V	
Test Power Supply	DC 12V, DC 24V for host	
Modulation	802.11b: DSSS(DBPSK/DQPSK/CCK) 802.11g/n: OFDM(BPSK/QPSK/16QAM/64QAM)	
Operating Frequency Range	2412-2462MHz for 802.11b/g; 2412-2462MHz for 802.11n(HT20); 2422-2452MHz for 802.11n(HT40);	
Number of Channels	11 channels for 802.11b/g; 11 channels for 802.11n(HT20); 7 channels for 802.11n(HT40);	
Transmit Power Max	802.11b: 10.46dBm 802.11g: 10.27dBm 802.11n(HT20): 9.71dBm 802.11n(HT40): 12.83dBm	
Antenna Type	Internal antenna	
Antenna Gain	0dBi	

Note: This module is sold without an antenna. The manufacturer prepared the antenna for the test. for more details, please refer to the User's manual of the EUT.

1.2 Test Methodology

All the test program has follow FCC new test procedure KDB 558074 D01 15.247 Meas Guidance v05r02 and in accordance with the procedures given in ANSI C63.10-2013.

Report No.: E01A22030657F00701 7 of 62

2. System Test Configuration

2.1 EUT Configuration

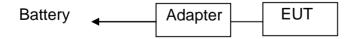
The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions


The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. Emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Report No.: E01A22030657F00701 8 of 62

Table 2-1 Equipment Used in Tested System

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	CAMWIFI	N/A	BT532767	WUI-BT532767	EUT

Note:

(1) Unless otherwise denoted as EUT in <code>[Remark]</code> column, device(s) used in tested system is a support equipment.

Report No.: E01A22030657F00701 9 of 62

3. Description of Test Modes

The EUT has been tested under its typical operating condition and Only the worst case data were reported. The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting mode is programmed. EUT is connected by com port, and transimit the control instruction via test software(Wifi Test Tool v1.6.0 release).

Frequency and Channel list for 802.11 b/g/n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Frequency and Channel list for 802.11 n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	8	2447
4	2427	6	2437	9	2452
		7	2442		

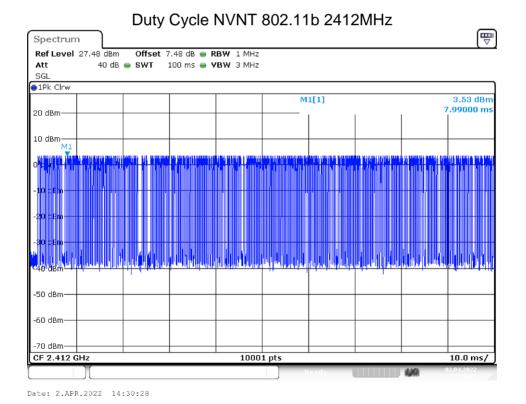
Test Frequency and Channel for 802.11 b/g/n (HT20):

Lowest F	Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	6	2437	11	2462	

Test Frequency and channel for 802.11 n (HT40):

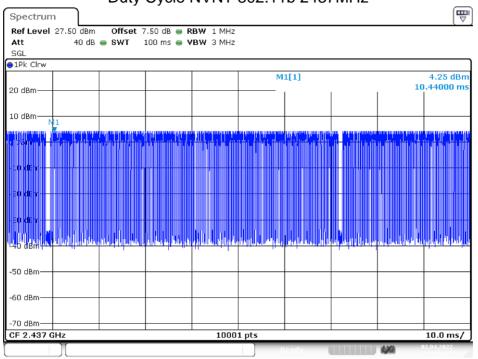
Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452

Report No.: E01A22030657F00701

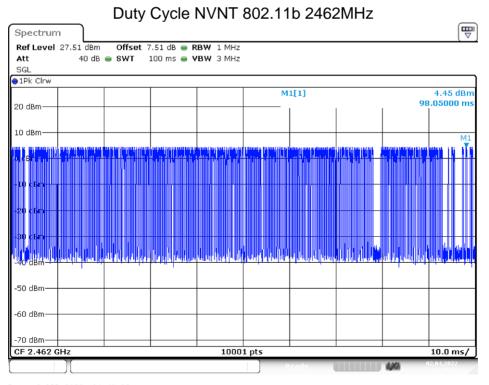

Operated Mode for Worst Duty cycle:

Duty Cycle:

Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
802.11b	2412	99.3	0.03
802.11b	2437	99.34	0.03
802.11b	2462	99.42	0.03
802.11g	2412	99.12	0.04
802.11g	2437	99.28	0.03
802.11g	2462	99.45	0.02
802.11n(HT20)	2412	99.27	0.03
802.11n(HT20)	2437	99.27	0.03
802.11n(HT20)	2462	99.22	0.03
802.11n(HT40)	2422	100	0
802.11n(HT40)	2437	100	0
802.11n(HT40)	2452	100	0


10 of 62

All the modulation modes were tested the data of the worst mode (TX 802.11b) are recorded in the following pages:



Report No.: E01A22030657F00701 11 of 62 Duty Cycle NVNT 802.11b 2437MHz

Date: 2.APR.2022 14:41:23

Date: 2.APR.2022 14:45:33

12 of 62

Report No.: E01A22030657F00701 4. Summary of Test Results

FCC Rules	Description Of Test	Result
§15.247(a)(2)	6dB bandwidth	Pass
§15.247(b)(3)	Max Peak output Power test	Pass
§15.247(e)	Power density	Pass
§15.247(d)	Band edge test	Pass
§15.207	AC Power Conducted Emission	N/A
§15.247(d), §15.209	Radiated Emission	Pass
§15.247(d)	Antenna Port Emission	Pass
§15.247(b)&§15.203	Antenna Application	Pass
N/A (Not Applicable).		

Report No.: E01A22030657F00701 13 of 62

5. Test Facility

Site Description

EMC Lab : Accredited by CNAS, 2017.06.26

The certificate is valid until 2022.10.28

The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to

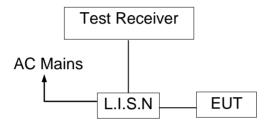
ISO/IEC 17025:2005)

The Certificate Registration Number is L6214.

Accredited by A2LA, 2018.03.15 The Certificate Number is 4422.01.

Name of Firm : Dong Guan Anci Electronic Technology Co., Ltd. Site Location : 1-2 Floor, Building A, No.11, Headquarters 2 Road,

Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.


Report No.: E01A22030657F00701 14 of 62

6. Conducted Emissions Test

6.1 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Equipment Used:

Conducted Emission Test Site								
EQUIPMENT MFR TYPE		MODEL SERIAL NUMBER NUMBER		Calibrated until				
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-669	2023-05-12				
10 db attenuator	JFW	50FP-010-H4	4360846-427-1	2023-05-12				
RF Cable	N/A	N/A	2#	2023-05-12				
EMI Test Receiver	ROHDE&SCHWAR Z	ESCI	101358	2023-05-12				
Shielded Room	chengyu	8m*4m*3m	N/A	2024-11-12				
Test Software	Farad	EZ-EMC Ver:ANCI-8A1	N/A	N/A				

6.4 Conducted Emission Limit

(7) Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies
- 2.The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Report No.: E01A22030657F00701 15 of 62

6.5 Measurement Result:

Not applicable.

Report No.: E01A22030657F00701 16 of 62

7. Radiated Emission Test

7.1 Measurement Procedure

- 1. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane, And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measured was complete.

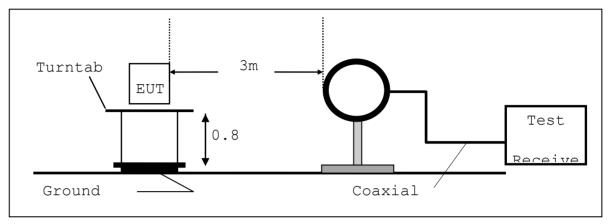
When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

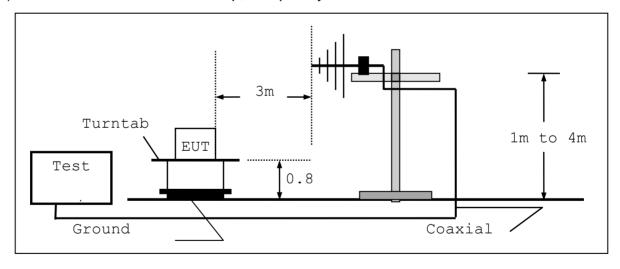
EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

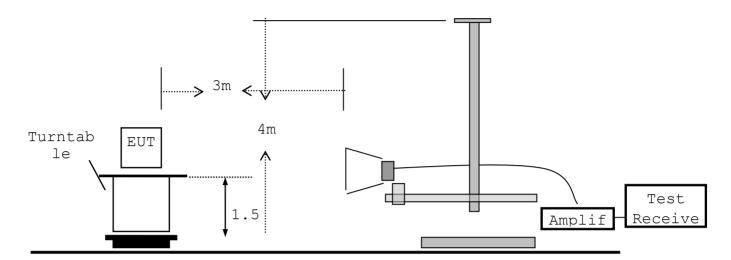
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:


EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	AVG
Trace	Max hold


Report No.: E01A22030657F00701 17 of 62

7.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

Report No.: E01A22030657F00701 18 of 62 (C) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 Measurement Equipment Used

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1.	EMI Test Receiver	Rohde & Schwarz	ESPI	100502	2022-11-13	
2.	Pre-Amplifier	HP	8447D	2727A06172	2023-05-12	
3.	Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-588	2023-05-12	
4.	Loop Antenna	Schwarzbeck	FMZB 1516	1516-141	2022-11-13	
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-13	
6.	Low noise Amplifiers	A-INFO	LA1018N4009	J101313052400 1	2023-05-12	
7.	Horn antenna	A-INFO	LB-10180-SF	J203109061212 3	2023-05-12	
8.	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX10 0KHz-40GHz	J101313052400 1	2022-11-13	
9.	DRG Horm Antenna	A.H.SYSTEMS	EMS SAS-574 J2031090		2022-11-13	
10.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-2m	N/A	2022-11-13	
11.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-0.3m	N/A	2022-11-13	
12.	RF Cable	N/A	N/A	6#	2023-05-12	
13.	RF Cable	N/A	N/A	1-1#	2023-05-12	
14.	RF Cable	N/A	N/A	1-2#	2023-05-12	
15.	RF Cable	N/A	N/A	7#	2023-05-12	
16.	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2024-11-12	
17.	Test Software	Farad	EZ-EMC Ver:ANCI-3A1	N/A	N/A	

Report No.: E01A22030657F00701 19 of 62

7.4 Radiated Emission Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

- Measurement was performed at an antenna to the closed point of EUT distance of meters.
 - 3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

Report No.: E01A22030657F00701 20 of 62

7.5 Measurement Result

Below 30MHz:

All the modulation modes were tested the data of the test mode are recorded in the following pages.

Operation Mode: TX Mode Test Date: 2022-04-24

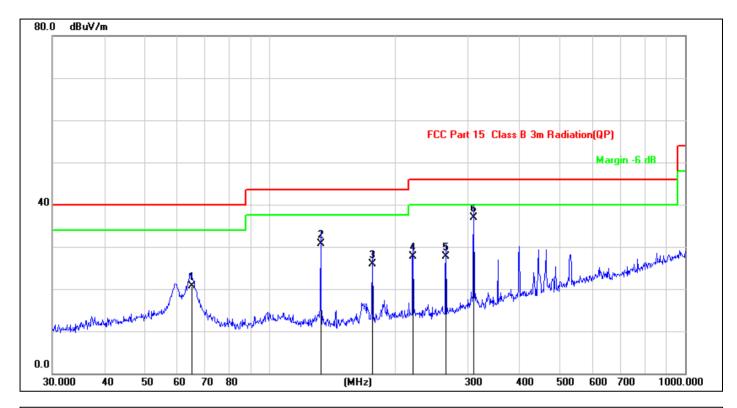
Frequency Range: 9KHz~30MHz Temperature: 26℃
Test Result: PASS Humidity: 60 %
Measured Distance: 3m Test By: Best

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.


Below 1000MHz:

All the modulation modes were tested the data of the worst mode (TX 802.11b 2462MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

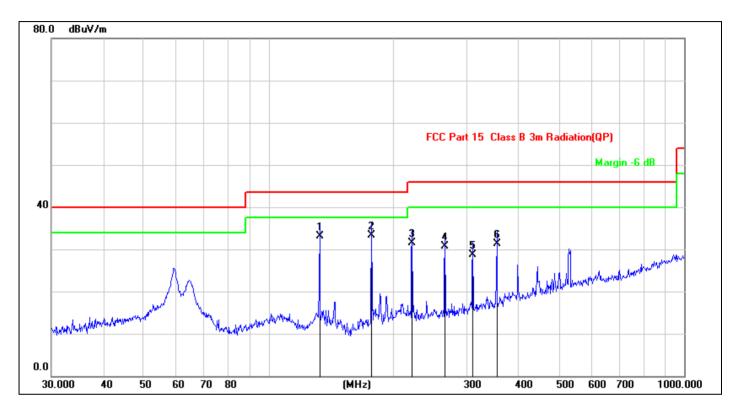
Please refer to the following test plots:

Report No.: E01A22030657F00701 21 of 62

Site: LAB Antenna::Horizont Temperature(C):26(C)

Limit: FCC Part 15 C 3m Radiation Humidity(%):60%

EUT: CAMWIFI Test Time: 2022-04-24 M/N.: BT532767 Power Rating: DC 24V Mode: TX2462 Test Engineer: Sunshine


Note:

No	Frequenc	Readin	Factor	Level	Limit	Margin	Det.	Remark
-	y (MHz)	g (dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	64.8865	34.83	-14.17	20.66	40.00	-19.34	QP	
2	132.6850	45.18	-14.52	30.66	43.50	-12.84	QP	
3	176.8878	38.68	-12.78	25.90	43.50	-17.60	QP	
4	221.3921	38.48	-10.81	27.67	46.00	-18.33	QP	
5	265.6757	37.65	-9.99	27.66	46.00	-18.34	QP	
6 *	309.9977	45.97	-9.11	36.86	46.00	-9.14	QP	

Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor

22 of 62 Report No.: E01A22030657F00701

Site: LAB Antenna::Vertical Temperature(C):26(C)

Limit: FCC Part 15 C 3m Radiation Humidity(%):60%

2022-04-24 **CAMWIFI Test Time:**

EUT: M/N.: BT532767 **Power Rating: DC 24V** Mode: TX2462 **Test Engineer: Sunshine**

Note:

No	Frequenc	Readin	Factor	Level	Limit	Margin	Det.	Remark
-	у	g	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
	(MHz)	(dBuV)						
1	132.6850	47.55	-14.52	33.03	43.50	-10.47	QP	
2 *	176.8878	46.17	-12.78	33.39	43.50	-10.11	QP	
3	221.3921	42.29	-10.81	31.48	46.00	-14.52	QP	
4	265.6757	40.73	-9.99	30.74	46.00	-15.26	QP	
6	354.1831	39.31	-8.08	31.23	46.00	-14.77	QP	
1	132.6850	47.55	-14.52	33.03	43.50	-10.47	QP	

Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor

Report No.: E01A22030657F00701 23 of 62

Above 1GHz:

All the modulation modes were tested the data of the worst mode (TX 802.11b) are recorded in the following pages and the others modulation methods do not exceed the limits. The frequency range from 1GHz to 25GHz is investigated.

Operation Mode: 802.11b Lowest Test Date: 2022-04-24

Test Voltage: DC 24V Test by: Best

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m((dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4824	V	65.3	45.69	74	54	-8.7	-8.31
7236	V	60.32	41.36	74	54	-13.68	-12.64
9648	V	58.6	40.66	74	54	-15.4	-13.34
12060	V	55.69	41.25	74	54	-18.31	-12.75
14472	V	55.32	40.25	74	54	-18.68	-13.75
16884	V	55.69	39.58	74	54	-18.31	-14.42
4824	Н	65.8	45.96	74	54	-8.2	-8.04
7236	Н	60.35	41.58	74	54	-13.65	-12.42
9648	Н	58.47	40.23	74	54	-15.53	-13.77
12060	Н	57.69	38.71	74	54	-16.31	-15.29
14472	Н	55.32	36.48	74	54	-18.68	-17.52
16884	Н	56.32	38.69	74	54	-17.68	-15.31

Operation Mode: 802.11b Middle Test Date: 2022-04-24

Test Voltage: DC 24V Test by: Best

Report No.: E01A22030657F00701 24 of 62

Freq.	Ant. Pol.	Emission Le	vel(dBuV/m)	Limit 3m((dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4874	V	64.32	44.99	74	54	-9.68	-9.01
7311	V	61.02	42.52	74	54	-12.98	-11.48
9688	V	59.63	40.69	74	54	-14.37	-13.31
12185	V	58.63	40.36	74	54	-15.37	-13.64
14622	V	58.47	40.69	74	54	-15.53	-13.31
17059	V	57.63	38.96	74	54	-16.37	-15.04
4874	Н	63.14	64.32	74	54	-10.86	10.32
7311	Н	61.23	42.58	74	54	-12.77	-11.42
9688	Н	59.65	41.32	74	54	-14.35	-12.68
12185	Н	58.47	40.02	74	54	-15.53	-13.98
14622	Н	58.78	39.47	74	54	-15.22	-14.53
17059	Н	58.18	39.65	74	54	-15.82	-14.35

Operation Mode: 802.11b Highest Test Date: 2022-04-24

Test Voltage: DC 24V Test by: Best

Freq.	Ant. Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4924	V	63.02	43.19	74	54	-10.98	-10.81
7386	V	60.36	41.38	74	54	-13.64	-12.62
9848	V	58.69	40.25	74	54	-15.31	-13.75
12310	V	59.3	40.36	74	54	-14.7	-13.64
14772	V	58.47	39.85	74	54	-15.53	-14.15
17234	V	58.31	39.69	74	54	-15.69	-14.31
4924	Н	62.96	43.69	74	54	-11.04	-10.31
7386	Н	61.35	42.47	74	54	-12.65	-11.53
9848	Н	59.03	40.36	74	54	-14.97	-13.64
12310	Н	58.14	39.02	74	54	-15.86	-14.98
14772	Н	58.63	39.47	74	54	-15.37	-14.53
17234	Н	58.19	39.6	74	54	-15.81	-14.4

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

No others harmonics emissions are higher than 20 dB below the limits of 47 CFR

Report No.: E01A22030657F00701 25 of 62

Part 15.247.

Note: (1) All Readings are Peak Value and AV.

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " – " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: E01A22030657F00701 26 of 62

7.6 Radiated Measurement Photos:

Report No.: E01A22030657F00701 27 of 62

8. 6dB Bandwidth Test

8.1 Measurement Procedure

The EUT was operating in IEEE 802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40) mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function. The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02.

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequency) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

8.2 Test SET-UP (Block Diagram of Configuration)

EUT	Spectrum Analyzer
-----	-------------------

8.3 Measurement Equipment Used

	EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-13
	Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-13
Ī	Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-13

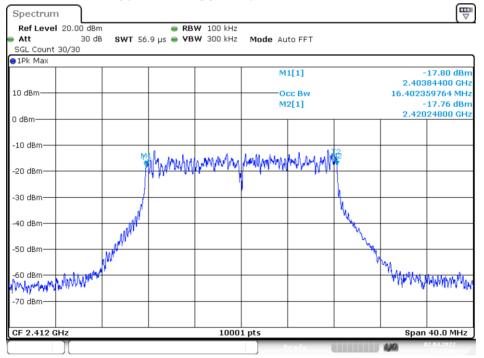
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

8.4 Measurement Results

6db Bandwidth Test Data Chart:

Refer to attached data chart.

Report No.: E01A22030657F00701 28 of 62

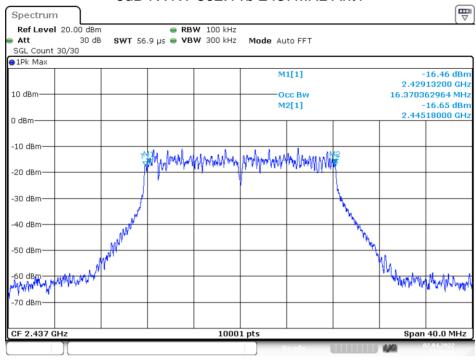

Spectrum Detector: PK Test Date: 2022-04-02

Test By: Best Temperature : 26℃

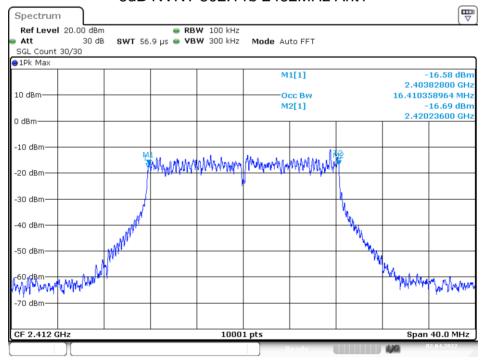
Humidity: 60%

IEEE 802.11b						
Channel	Measurement level	Required Limit	Result			
frequency (MHz)	(MHz)	(KHz)	Result			
2412	16.404	>500				
2437	16.372	>500	Pass			
2462	16.38	>500				

6dB NVNT 802.11b 2412MHz Ant1



Date: 2.APR.2022 14:31:06


Report No.: E01A22030657F00701 29 of 62

6dB NVNT 802.11b 2437MHz Ant1

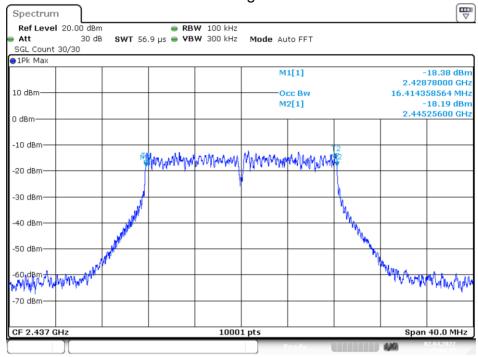
Date: 2.APR.2022 14:41:15

6dB NVNT 802.11b 2462MHz Ant1

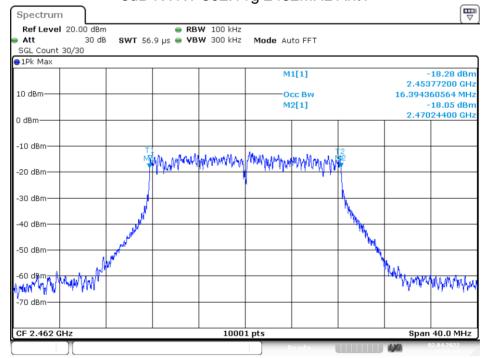
Date: 2.APR.2022 15:04:07

Report No.: E01A22030657F00701 30 of 62

IEEE 802.11g						
Channel	Result					
frequency (MHz)	(MHz)	(KHz)	Result			
2412	16.412	>500				
2437	16.416	>500	Pass			
2462	16.396	>500				


6dB NVNT 802.11g 2412MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 100 kHz 30 dB SWT 56.9 µs ● VBW 300 kHz Mode Auto FFT Att SGL Count 30/30 ●1Pk Max M1[1] -22.29 dBm 2.40374800 GHz 10 dBm Occ Bw 16.450354965 MHz M2[1] -22.51 dBm 2.42023600 GHz 0 dBm--10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm+ -70 dBm Span 40.0 MHz CF 2.412 GHz 10001 pts

Date: 30.MAR.2022 13:40:43


Report No.: E01A22030657F00701 31 of 62

6dB NVNT 802.11g 2437MHz Ant1

Date: 2.APR.2022 15:08:35

6dB NVNT 802.11g 2462MHz Ant1

Date: 2.APR.2022 15:13:37

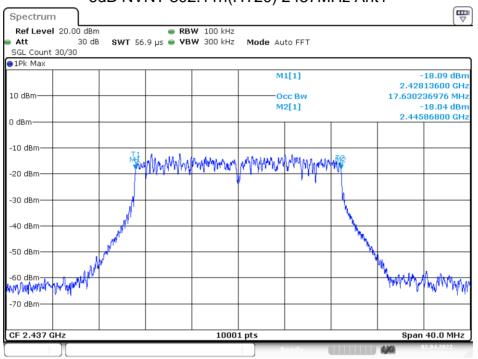
Span 40.0 MHz

Report No.: E01A22030657F00701 32 of 62

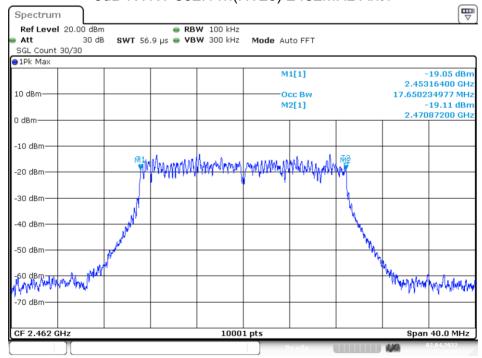
IEEE 802.11n(HT20)						
Channel frequency (MHz)	Measurement level (MHz)	Required Limit (KHz)	Result			
2412	17.62	>500				
2437	17.632	>500	Pass			
2462	17.652	>500				

6dB NVNT 802.11n(HT20) 2412MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 100 kHz 30 dB SWT 56.9 µs 👄 VBW 300 kHz Att Mode Auto FFT SGL Count 30/30 ●1Pk Max M1[1] -18.97 dBm 2.40315200 GHz 10 dBm Occ Bw 17.618238176 MHz M2[1] -19.05 dBm 2.42087600 GHz 0 dBm--10 dBm and have been been been able to the contract of the contract o -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm-

10001 pts


Date: 2.APR.2022 15:19:32

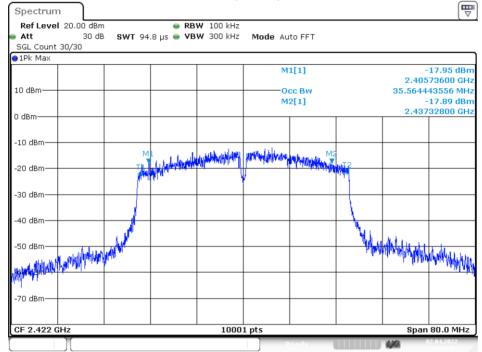
CF 2.412 GHz


Report No.: E01A22030657F00701 33 of 62

6dB NVNT 802.11n(HT20) 2437MHz Ant1

Date: 2.APR.2022 15:24:16

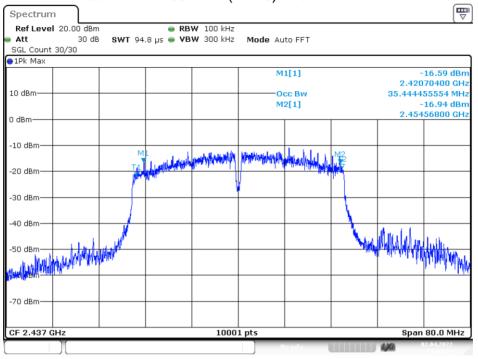
6dB NVNT 802.11n(HT20) 2462MHz Ant1


Date: 2.APR.2022 15:29:49

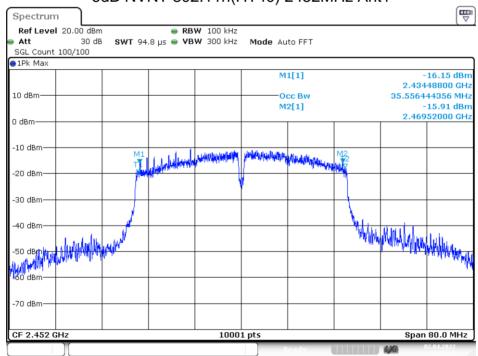
Report No.: E01A22030657F00701 34 of 62

	IEEE 802.11n(HT40)						
Channel frequency (MHz)	Measurement level (MHz)	Required Limit (KHz)	Result				
2422	35.568	>500					
2437	35.448	>500	Pass				
2452	35.56	>500					

6dB NVNT 802.11n(HT40) 2422MHz Ant1



Date: 2.APR.2022 19:03:01


Report No.: E01A22030657F00701 35 of 62

6dB NVNT 802.11n(HT40) 2437MHz Ant1

Date: 2.APR.2022 19:04:21

6dB NVNT 802.11n(HT40) 2452MHz Ant1

Date: 2.APR.2022 19:05:35

Report No.: E01A22030657F00701 36 of 62

9. Maximum Peak Output Power Test

9.1 Measurement Procedure

- The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

9.2 Test SET-UP (Block Diagram of Configuration)

9.3 Measurement Equipment Used

EQUIPMENT	Manufactur	Model No.	Serial Number	Calibrated until.
TYPE	er			
USB RF Power	RadiPower	DDD3006/W	17I00015SNO88	2022-11-13
sensor		KEKSUUUVV	17100013311066	2022-11-13
RF Test Software	MAIWEI	MTS 8310	N/A	N/A

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Peak Power output limit

The maximum peak power shall be less 1Watt.

9.5 Measurement Results

Spectrum Detector: PK Test Date: 2022-04-02

Test By: Best Temperature: 26℃ Test Result: PASS Humidity: 60%

Test		Peak Output Power (dBm)				Result
Channel	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	m)	Result
Lowest	9.05	8.87	8.89	11.19		
Middle	9.68	9.79	9.71	11.99	30	Pass
Highest	10.46	10.27	8.25	12.83		

Report No.: E01A22030657F00701 37 of 62

10. Band Edge Test

10.1 Measurement Procedure

For Conducted Test

- 1. The testing follows FCC KDB Publication No. 5558074 D01 15.247 Meas Guidance v05r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

For Radiated emission Test

- The testing follows FCC KDB Publication No. 5558074 D01 15.247 Meas Guidance v05r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor =
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Repeat above procedures until all frequency measured were complete.

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz.

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

Report No.: E01A22030657F00701 38 of 62

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz.

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	AVG
Trace	Max hold

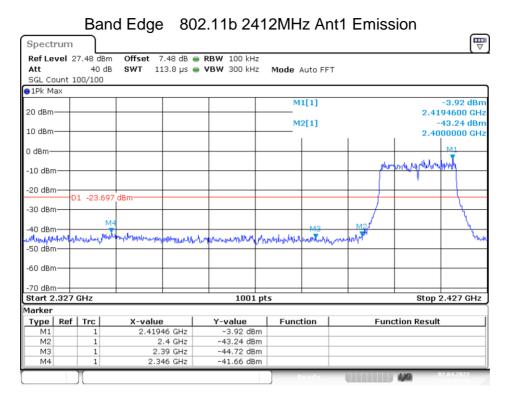
10.2Test SET-UP (Block Diagram of Configuration)

EUT	Spectrum Analyzer	
-----	-------------------	--

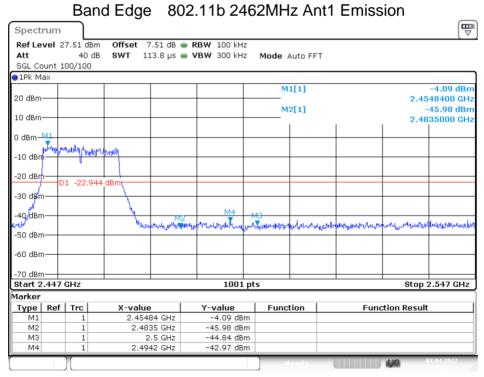
10.3Measurement Equipment Used

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-13
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-13
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-13

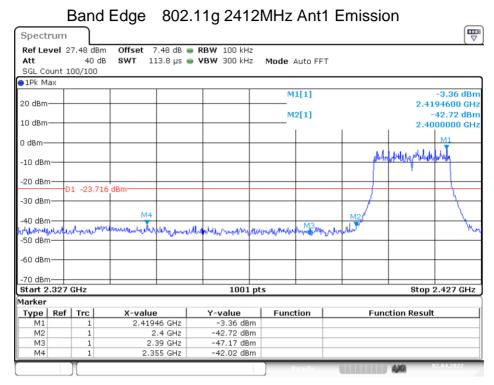
Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

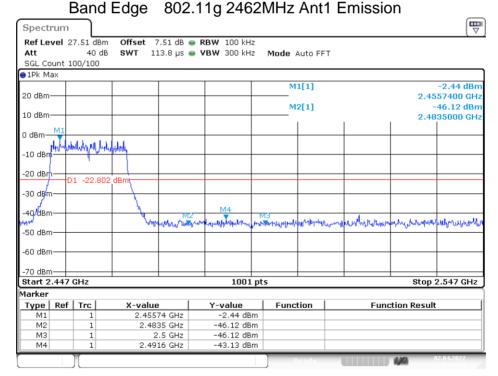

10.4Measurement Results

1. Conducted Test

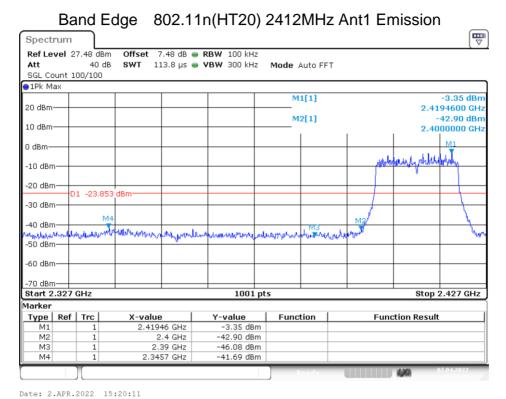

Please refer to the following pages.

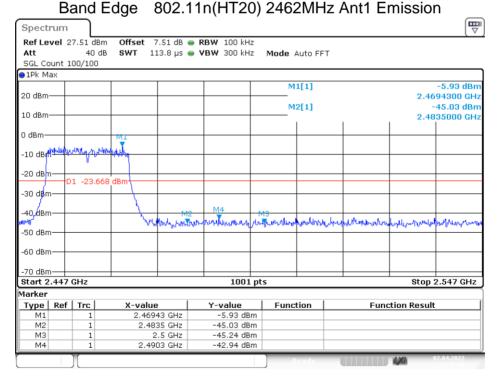
Report No.: E01A22030657F00701 39 of 62


Date: 2.APR.2022 14:31:50


Date: 2.APR.2022 14:46:53

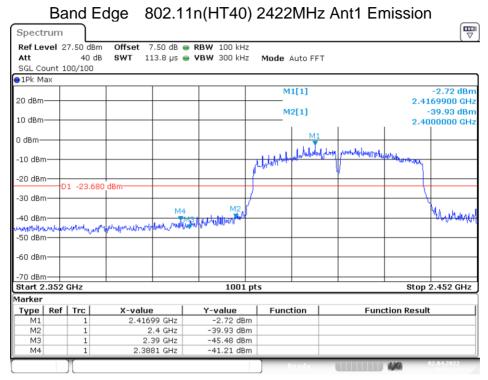
Report No.: E01A22030657F00701 40 of 62

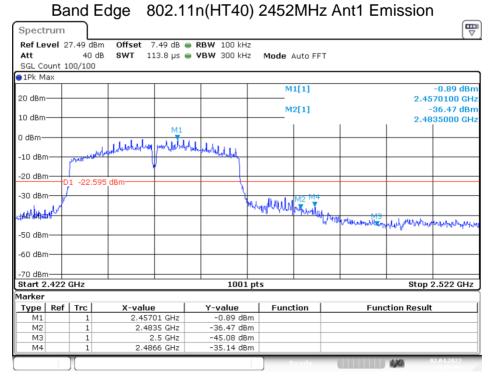

Date: 2.APR.2022 15:04:37



Date: 2.APR.2022 15:14:10

Report No.: E01A22030657F00701 41 of 62




Date: 2.APR.2022 15:30:19

Report No.: E01A22030657F00701 42 of 62

Date: 2.APR.2022 19:03:23

Date: 2.APR.2022 19:06:02

Report No.: E01A22030657F00701 43 of 62

2. Radiated emission Test

Spectrum Detector: PK/AV Test Date : 2022-04-02 Test By: Best Temperature : 28 $^{\circ}$ C

Humidity: 65 %

	IEEE 802.11b SISO Ant1									
Freq.	Ant. Pol.	Rea Level(d	ding BuV/m)	Correct Factor	Emis Level(d		3m(dB		Margin(d	В)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
<2400	Ι	85.32	66.3	-26.3	59.02	40	74	54	-14.98	-14
<2400	V	84.32	65.02	-26.1	58.22	38.92	74	54	-15.78	-15.08
>2483.5	Ι	84.36	65.55	-26.3	58.06	39.25	74	54	-15.94	-14.75
>2483.5	V	85.13	65.03	-26.1	59.03	38.93	74	54	-14.97	-15.07

	IEEE 802.11g SISO Ant1									
Freq.	Ant. Pol.	Rea Level(d	ding BuV/m)	Correct Factor		ssion BuV/m)	3m(dB		Margin(d	B)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
<2400	Ι	83.25	64.98	-26.3	56.95	38.68	74	54	-17.05	-15.32
<2400	V	84.12	64.25	-26.1	58.02	38.15	74	54	-15.98	-15.85
>2483.5	Ι	84.03	64.25	-26.3	57.73	37.95	74	54	-16.27	-16.05
>2483.5	V	84.36	64.52	-26.1	58.26	38.42	74	54	-15.74	-15.58

	IEEE 802.11n(HT20) SISO									
Freq.	Ant. Pol.	Rea Level(d	ding BuV/m)	Correct Factor	Emission Level(dBuV/m)		3m(dB		Margin(d	B)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
<2400	Ι	83.02	63.25	-26.3	56.72	36.95	74	54	-17.28	-17.05
<2400	V	83.12	64.28	-26.1	57.02	38.18	74	54	-16.98	-15.82
>2483.5	Ι	83.23	64.02	-26.3	56.93	37.72	74	54	-17.07	-16.28
>2483.5	V	83.26	64.23	-26.1	57.16	38.13	74	54	-16.84	-15.87

	IEEE 802.11n(H40) SISO									
Freq.	Ant. Pol.	Rea Level(d	ding BuV/m)	Correct Factor	Emis Level(d		3m(dB		Margin(d	В)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
<2400	I	80.36	61.14	-26.3	54.06	34.84	74	54	-19.94	-19.16
<2400	V	80.96	61.25	-26.1	54.86	35.15	74	54	-19.14	-18.85
>2483.5	Η	78.32	60.28	-26.3	52.02	33.98	74	54	-21.98	-20.02
>2483.5	V	78.36	60.14	-26.1	52.26	34.04	74	54	-21.74	-19.96

Report No.: E01A22030657F00701 44 of 62

11. Power Density

11.1Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-13
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-13
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-13

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

11.2Measuring Instruments and Setting

The following table is the setting of spectrum analyzer.

Spectrum analyzer	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS bandwidth.
RB	3kHz
VB	10KHz
Detector	Peak
Trace	Max hold
Sweep Time	Automatic

11.3Test Procedures

The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02.

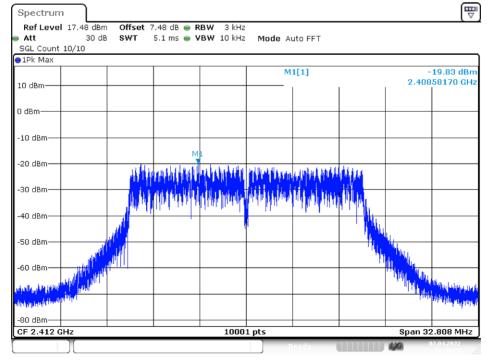
- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set analyzer center frequency to DTS channel center frequency.
- c. Set the analyzer span to a minimum of 1.5 times the DTS bandwidth.
- d. Set the RBW \geq 3 kHz. Set the VBW \geq 3 x RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level.

11.4Block Diagram of Test Setup

Report No.: E01A22030657F00701 45 of 62

11.5Limit

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3 kHz bandwidth.

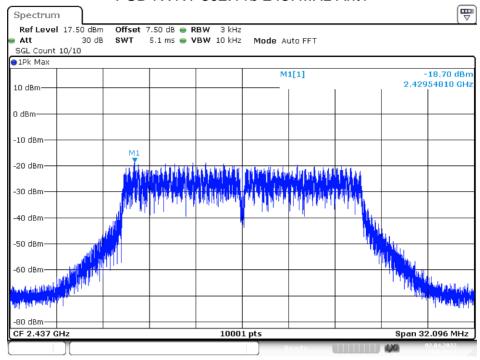

11.6Test Result

Spectrum Detector: PK Test Date: 2022-04-02

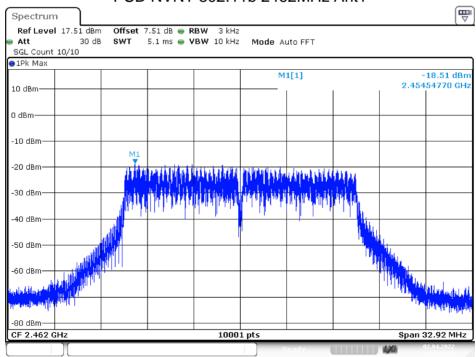
Test By: Best Temperature : 26° C Test Result: PASS Humidity : 60°

IEEE 802.11b								
Channel Measurement level Limit(dBm) Resulting Resulting (dBm)								
2412	-19.826							
2437	-18.705	8	Pass					
2462	-18.512							

PSD NVNT 802.11b 2412MHz Ant1



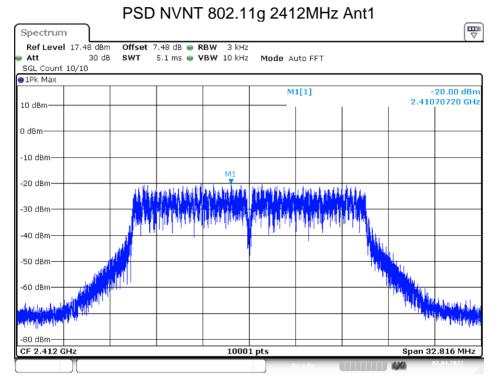
Date: 2.APR.2022 14:31:31


Report No.: E01A22030657F00701 46 of 62

PSD NVNT 802.11b 2437MHz Ant1

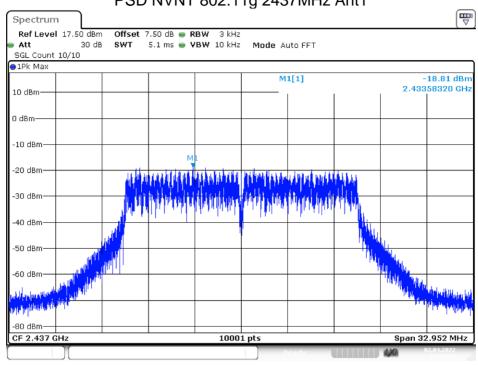
Date: 2.APR.2022 14:41:53

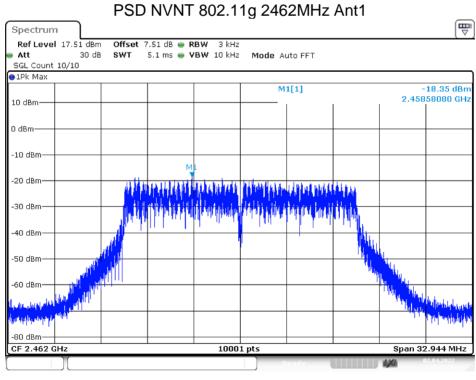
PSD NVNT 802.11b 2462MHz Ant1



Date: 2.APR.2022 14:46:39

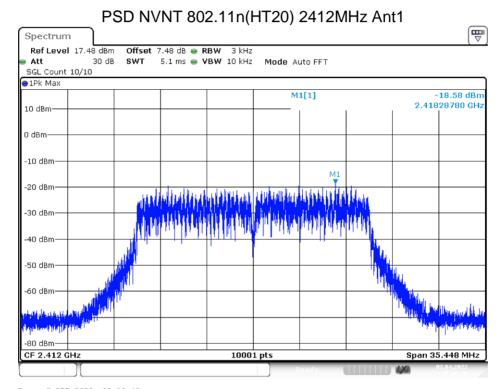
Report No.: E01A22030657F00701 47 of 62


IEEE 802.11g								
Channel frequency (MHz)	Measurement level (dBm)	Limit(dBm)	Result					
2412	-19.998							
2437	-18.809	8	Pass					
2462	-18.354							


Date: 2.APR.2022 15:04:24

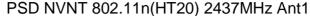
Report No.: E01A22030657F00701 48 of 62 PSD NVNT 802.11g 2437MHz Ant1

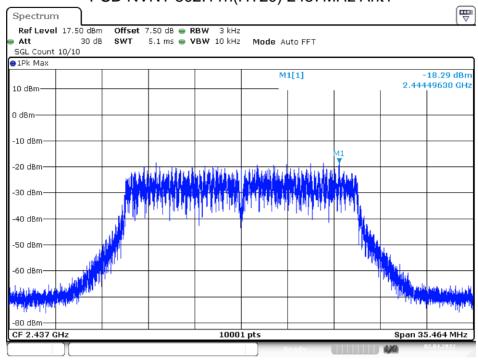
Date: 2.APR.2022 15:08:53



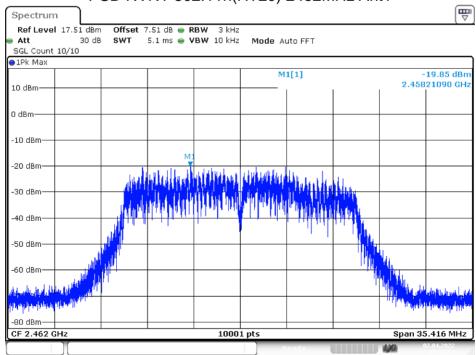
Date: 2.APR.2022 15:13:56

Report No.: E01A22030657F00701 49 of 62


IEEE 802.11n(HT20)				
Channel frequency (MHz)	Measurement level (dBm)	Limit(dBm)	Result	
2412	-18.577			
2437	-18.294	8	Pass	
2462	-19.851			



Date: 2.APR.2022 15:19:49

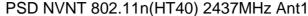

Report No.: E01A22030657F00701 50 of 62

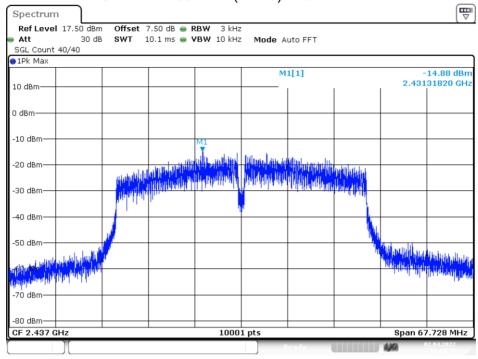
Date: 2.APR.2022 15:24:33

PSD NVNT 802.11n(HT20) 2462MHz Ant1

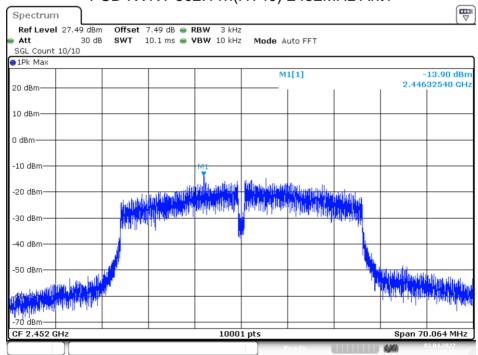
Date: 2.APR.2022 15:30:04

Report No.: E01A22030657F00701 51 of 62


IEEE 802.11n(HT40)				
Channel frequency (MHz)	Measurement level (dBm)	Limit(dBm)	Result	
2422	-16.373			
2437	-14.879	8	Pass	
2452	-13.901			


PSD NVNT 802.11n(HT40) 2422MHz Ant1 Spectrum Ref Level 17.50 dBm Offset 7.50 dB • RBW 3 kHz Att 30 dB SWT 9.5 ms • VBW 10 kHz Mode Auto FFT SGL Count 10/10 ●1Pk Max M1[1] -16.37 dBn 2.42137450 GHz 10 dBm-0 dBm--10 dBm -20 dBm -30 dBm -40 dBm Span 63.184 MHz 10001 pts CF 2.422 GHz

Date: 2.APR.2022 19:03:10


Report No.: E01A22030657F00701 52 of 62

Date: 2.APR.2022 19:04:33

PSD NVNT 802.11n(HT40) 2452MHz Ant1

Date: 2.APR.2022 19:05:42

Report No.: E01A22030657F00701 53 of 62

12. Antenna Port Emission

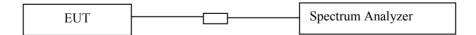
12.1Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-13
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-13
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-13

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

12.2Measuring Instruments and Setting

The following table is the setting of spectrum analyzer.


	0 1
Spectrum analyzer	Setting
Attenuation	Auto
RB	100kHz
VB	300kHz
Detector	Peak
Trace	Max hold

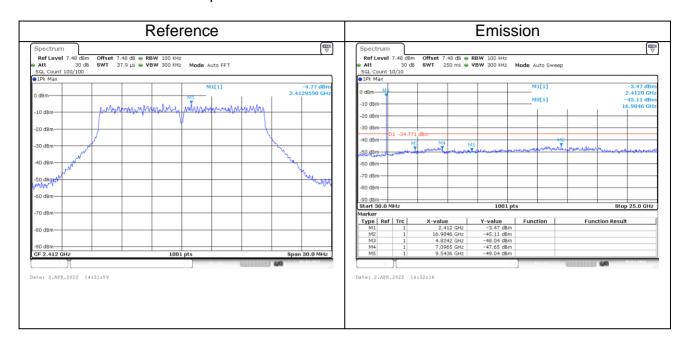
12.3Test Procedures

The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02.

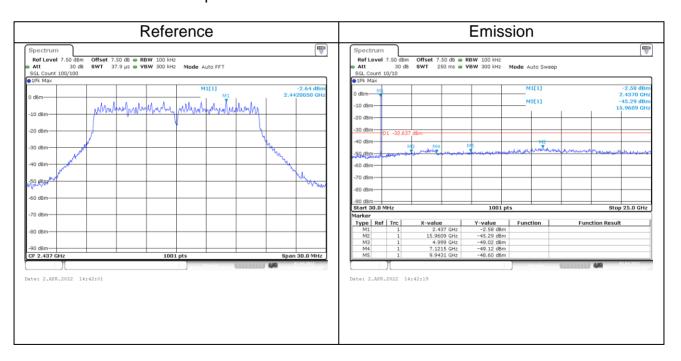
The conducted spurious emissions were measured conducted using a spectrum analyzer at low, Middle, and high channels, the limit was determined by attenuation 20dB of the RF peak power output.

12.4Block Diagram of Test setup

12.5Test Result

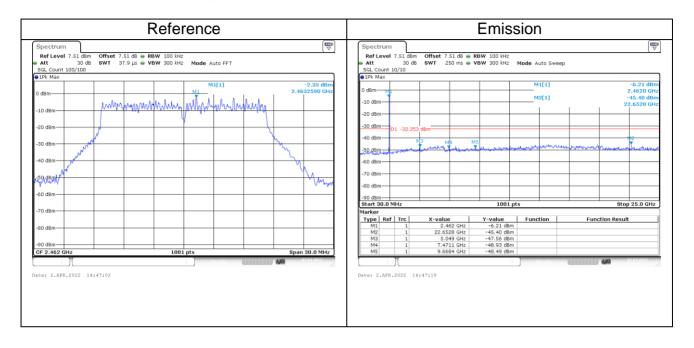

PASS.

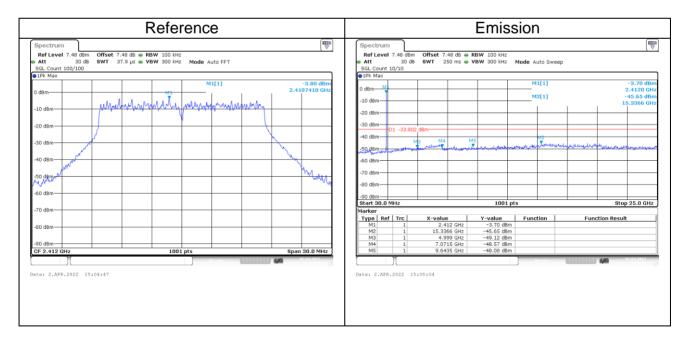
Please refer to following pages.



Report No.: E01A22030657F00701 54 of 62

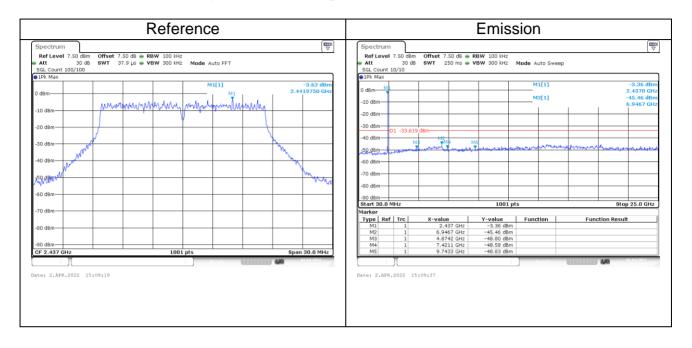
Tx. Spurious 802.11b 2412MHz Ant1 Emission

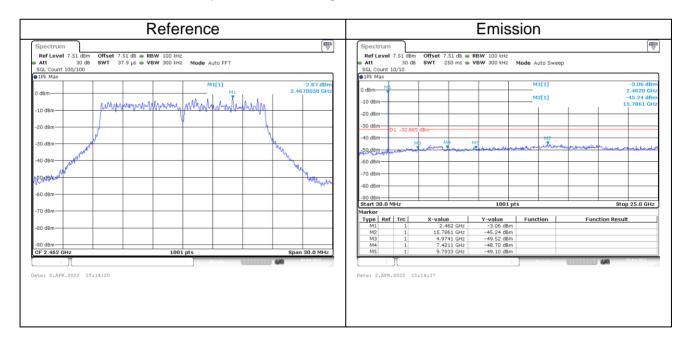

Tx. Spurious 802.11b 2437MHz Ant1 Emission



Report No.: E01A22030657F00701 55 of 62

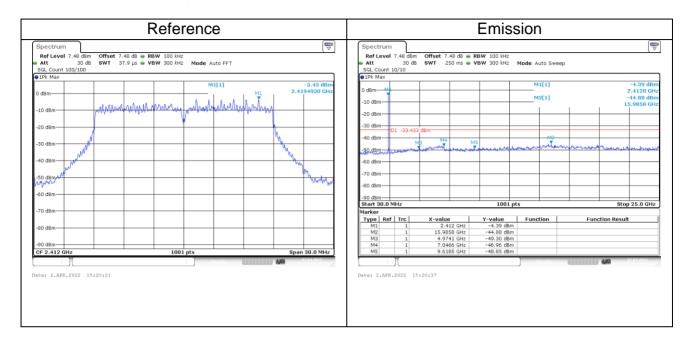
Tx. Spurious 802.11b 2462MHz Ant1 Emission

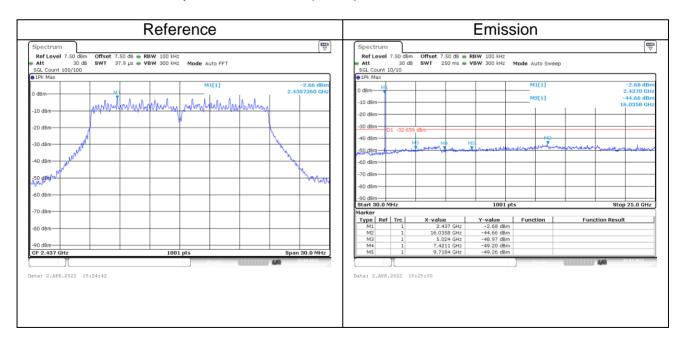

Tx. Spurious 802.11g 2412MHz Ant1 Emission



Report No.: E01A22030657F00701 56 of 62

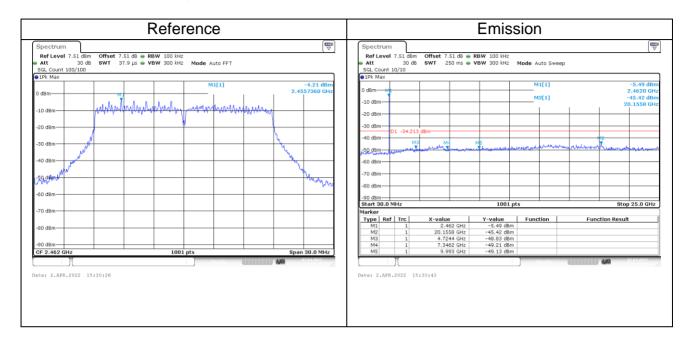
Tx. Spurious 802.11g 2437MHz Ant1 Emission

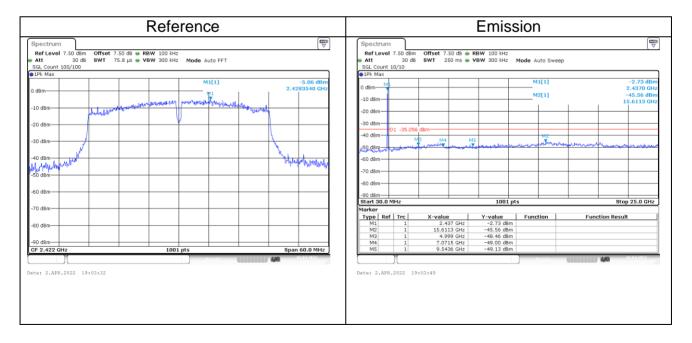

Tx. Spurious 802.11g 2462MHz Ant1 Emission



Report No.: E01A22030657F00701 57 of 62

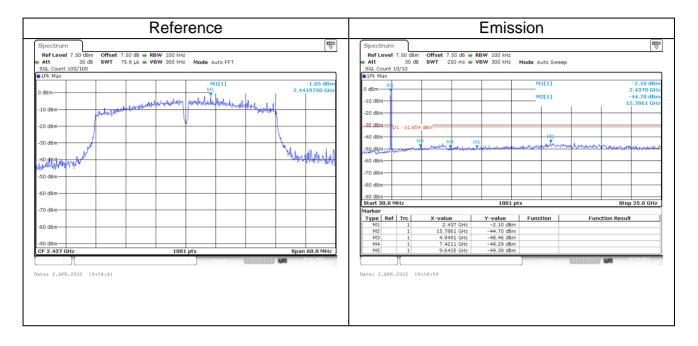
Tx. Spurious 802.11n(HT20) 2412MHz Ant1 Emission

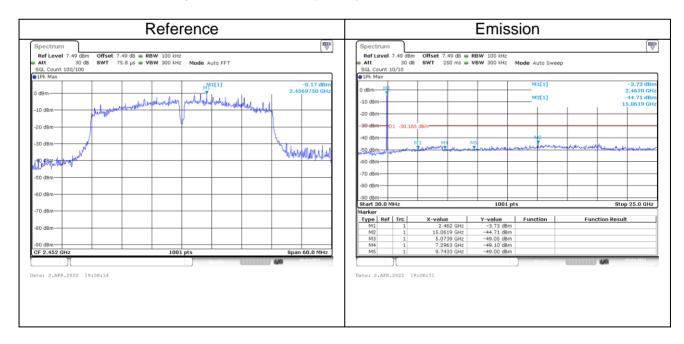

Tx. Spurious 802.11n(HT20) 2437MHz Ant1 Emission



Report No.: E01A22030657F00701 58 of 62

Tx. Spurious 802.11n(HT20) 2462MHz Ant1 Emission


Tx. Spurious 802.11n(HT40) 2422MHz Ant1 Emission



Report No.: E01A22030657F00701 59 of 62

Tx. Spurious 802.11n(HT40) 2437MHz Ant1 Emission

Tx. Spurious 802.11n(HT40) 2452MHz Ant1 Emission

Report No.: E01A22030657F00701 60 of 62

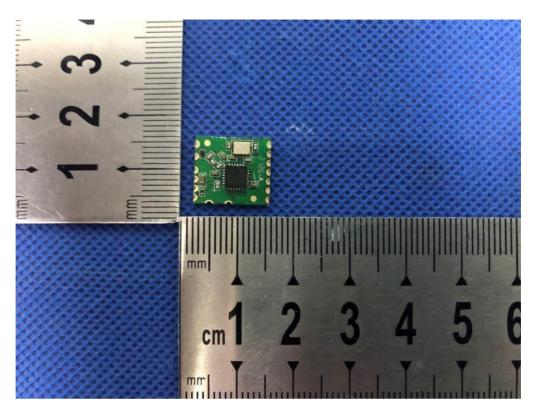
13. Antenna Application

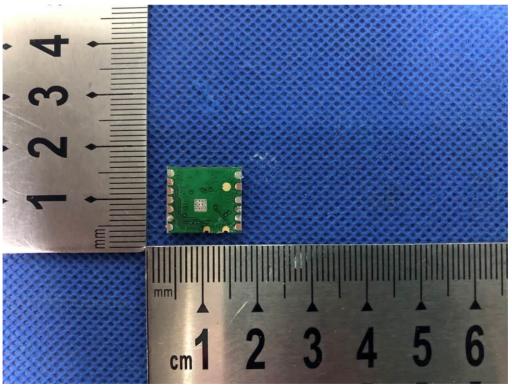
13.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

13.2Result

The module is suitable for host antenna with gain is 0dBi, The Auxiliary test antenna is FPC antenna.




Report No.: E01A22030657F00701 61 of 62

APPENDIX I (Photos of EUT)

Report No.: E01A22030657F00701 62 of 62

-----The end of report-----