

CFR 47 FCC PART 15 SUBPART C(DTS) TEST REPORT

For

Minicam

MODEL NUMBER: BT534349

REPORT NUMBER: E04A24040957F00101

ISSUE DATE: May 22, 2024

FCC ID: WUI-BEON

Prepared for

Winplus Co., Ltd.

Suites 6-11, 7th Floor, Corporation Park, 11 On La Shatin, Hong Kong

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A24040957F00101 Page 2 of 96

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	May 22, 2024	Initial Issue	

REPORT NO.: E04A24040957F00101 Page 3 of 96

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3)	Pass
6dB Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2)	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.205/15.209	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	5
2.	TEST N	METHODOLOGY	6
3.	FACILI	TIES AND ACCREDITATION	6
4.	CALIBI	RATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQUIPI	MENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	CHANNEL LIST	8
	5.3.	MAXIMUM EIRP	9
	5.4.	TEST CHANNEL CONFIGURATION	9
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
	5.7.	EUT ACCESSORY	10
	5.8.	SUPPORT UNITS FOR SYSTEM TEST	11
	5.9.	SETUP DIAGRAM	11
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	12
7.	ANTEN	INA PORT TEST RESULTS	14
	7.1.	Conducted Output Power	14
	7.2.	6dB Bandwidth	15
	7.3.	Power Spectral Density	17
	7.4.	Conducted Band edge and spurious emission	18
	7.5.	Duty Cycle	20
8.	RADIA [*]	TED TEST RESULTS	21
	8.1.	Radiated Band edge and Spurious Emission	26
9.	ANTEN	INA REQUIREMENT	42
10		AC POWER LINE CONDUCTED EMISSION	43
11		TEST DATA - Appendix A	46
ΑF	PPENDIX:	PHOTOGRAPHS OF TEST CONFIGURATION	83
ΑF	PPENDIX:	: PHOTOGRAPHS OF THE EUT	85

REPORT NO.: E04A24040957F00101

Page 5 of 96

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Winplus Co., Ltd.

Address: Suites 6-11, 7th Floor, Corporation Park, 11 On La Shatin, Hong

Kong

Manufacturer Information

Company Name: ADC Solutions Auto, LLC

Address: 2975 Red Hill Ave., Ste. 100, Costa Mesa, CA 92626, USA

EUT Information

Product Description: Minicam
Model: BT534349

Series Model: N/A Brand: N/A

Sample Received Date: May 07, 2024

Sample Status: Normal

Sample ID: A24040957 001

Date of Tested: May 07, 2024 to May 22, 2024

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C(DTS)	Pass				

Checked By:

Prepared By:

Win Huang Alan He

Project Engineer Laboratory Leader

Shavn Wen

TRF No.:

Approved By:

Laboratory Manager TE

04-E001-0B

REPORT NO.: E04A24040957F00101 Page 6 of 96

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DTS)

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)		
	Guangdong Global Testing Technology Co., Ltd.		
	has been assessed and proved to be in compliance with A2LA.		
	FCC (FCC Designation No.: CN1343)		
	Guangdong Global Testing Technology Co., Ltd.		
	has been recognized to perform compliance testing on equipment		
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and		
	Certification rules		
	ISED (Company No.: 30714)		
	Guangdong Global Testing Technology Co., Ltd.		
	has been registered and fully described in a report filed with ISED.		
	The Company Number is 30714 and the test lab Conformity		
	Assessment Body Identifier (CABID) is CN0148.		

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A24040957F00101 Page 7 of 96

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
Conducted Courieus Fraissies	4.00	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB
Conducted Spurious Emission	1.96	1GHz-12.75GHz: ± 1.8 dB
		12.75 GHz-26.5 GHz: ± 2.1dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	K	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E04A24040957F00101 Page 8 of 96

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Minicam	
Model		BT534349	
Series Model		N/A	
Model Difference		N/A	
Hardware Version		V1.0	
Software Version		V1.0	
Ratings		DC 5V	
Power Supply	DC	5V	
	Battery	N/A	

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2412 MHz to 2462 MHz		
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40		
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)		
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7		
Number of Channels:	IEEE 802.11b/g/n-HT20: 11 IEEE 802.11n-HT40: 7		
Maximum Peak Power:	IEEE 802.11b: 18.60 dBm IEEE 802.11g: 14.36 dBm IEEE 802.11n-HT20: 14.55 dBm IEEE 802.11n-HT40: 14.62 dBm		
Antenna Type:	Ceramic Antenna		
Antenna Gain:	1.85 dBi		
Normal Test Voltage:	5 Vdc		
EUT Test software:	SecureCRT		
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.		

5.2. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	1	1

REPORT NO.: E04A24040957F00101 Page 9 of 96

Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	1	1

5.3. MAXIMUM EIRP

IEEE Std. 802.11 Frequency (MHz)		Channel Number	Maximum Conducted Output Power (dBm)	Maximum EIRP (dBm)
b	2412 ~ 2462	1-11[11]	18.60	1
g	2412 ~ 2462	1-11[11]	14.36	1
n HT20	2412 ~ 2462	1-11[11]	14.55	/
n HT40	2422 ~ 2452	3-9[7]	14.62	1

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The W	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Softw	vare			Secu	reCRT			
M 1 1 C	Transmit		Test Channel					
Modulation Mode	Antenna	NCB: 20MHz			NCB: 40MHz			
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	6C	6C	6C				
802.11g	1	27	27	27 /				
802.11n HT20	1	27 27 27						
802.11n HT40	1		/		27	27	27	

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

REPORT NO.: E04A24040957F00101 Page 10 of 96

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	Ceramic	1.85

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
Note:		

5.7. EUT ACCESSORY

	Cable					
Accessory:	Car Charger Cable					
Model No.:	BT532967					
Description:	USB Type-C Plug Cable					
Cable Type:	Unshielded without ferrite; Unshielded with two ferrite					
Length:	3.5 Meter					

REPORT NO.: E04A24040957F00101 Page 11 of 96

5.8. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	PC	Lenovo	B4650-D002	M90601U3	GTG Support
E-2	Test serial board	N/A	USB-TTL	N/A	GTG Support

The following cables were used to form a representative test configuration during the tests.

Item	Type of cable	Shielded Type	Ferrite Core	Length
C-1	Dupont cable	Unshielded	without ferrite	0.4 m
C-2	USB-C cable	Unshielded	without ferrite	1.0 m

5.9. SETUP DIAGRAM

Radiated emissions:

AC Power Line Conducted Emission:

REPORT NO.: E04A24040957F00101 Page 12 of 96

6. MEASURING EQUIPMENT AND SOFTWARE USED

	Test Equipment of Conducted RF							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17			
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17			
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17			
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17			
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17			
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17			
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17			
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A			

	Test Equipment of Radiated emissions below 1GHz							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29			
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17			
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17			
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09			
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22			
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29			
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A			

Test Equipment of Radiated emissions above 1GHz								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29			
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17			
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17			
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10			
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17			

REPORT NO.: E04A24040957F00101 Page 13 of 96

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

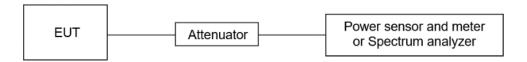
Test Equipment of Conducted emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28		
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17		
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17		
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17		
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A		

REPORT NO.: E04A24040957F00101 Page 14 of 96

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24040957F00101

Page 15 of 96

7.2. 6DB BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz
VBW	For 6 dB Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

REPORT NO.: E04A24040957F00101 Page 16 of 96

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24040957F00101

Page 17 of 96

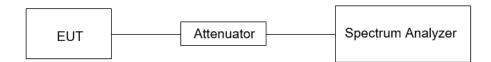
7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24040957F00101 Page 18 of 96

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

IShan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

REPORT NO.: E04A24040957F00101 Page 19 of 96

TEST SETUP

TEST ENVIRONMENT

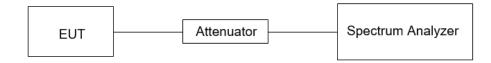
Temperature	22.1℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24040957F00101 Page 20 of 96

7.5. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1 ℃	Relative Humidity	53%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24040957F00101 Page 21 of 96

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz					
Frequency Range	Field Strength Limit	Field Strength Limit			
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m			
		Quasi-Peak			
30 - 88	100	40			
88 - 216	150	150 43.5 200 46 500 54			
216 - 960	200				
Above 960	500				
Above 1000	500	Peak	Average		
Above 1000	500	74	54		

FCC Emissions radiated outside of the specified frequency bands below 30 MHz					
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30.0	30	30			

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6c

REPORT NO.: E04A24040957F00101 Page 22 of 96

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

REPORT NO.: E04A24040957F00101 Page 23 of 96

Below 1 GHz and above 30 MHz

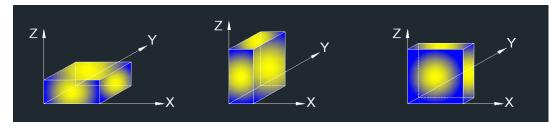
The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

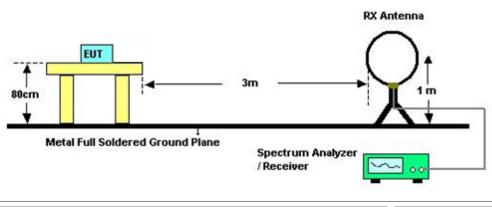
Above 1G

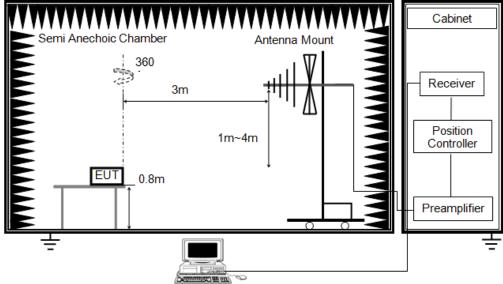
The setting of the spectrum analyser

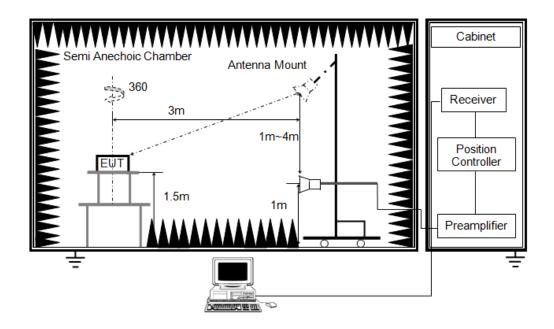

RBW	1 MHz
IVRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T

REPORT NO.: E04A24040957F00101 Page 24 of 96


video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

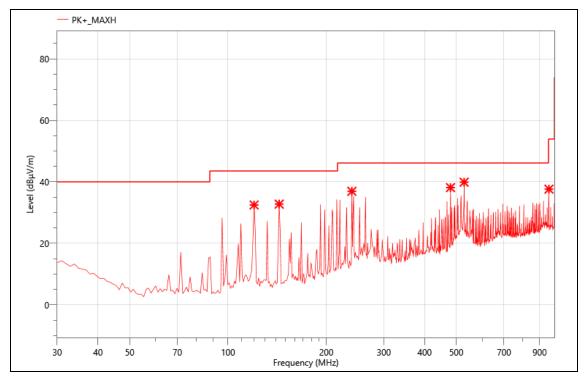

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

REPORT NO.: E04A24040957F00101 Page 25 of 96

TEST ENVIRONMENT

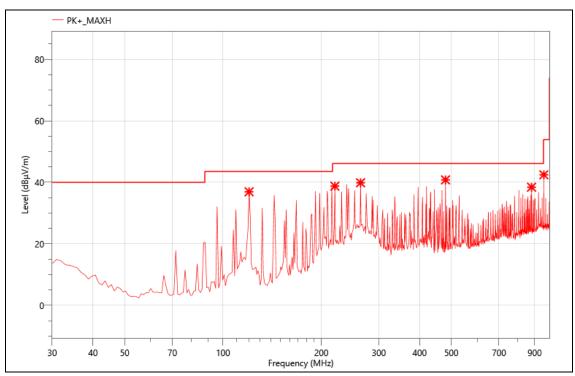
Temperature	24.1℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		


TEST RESULTS

8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

30MHz to 1GHz

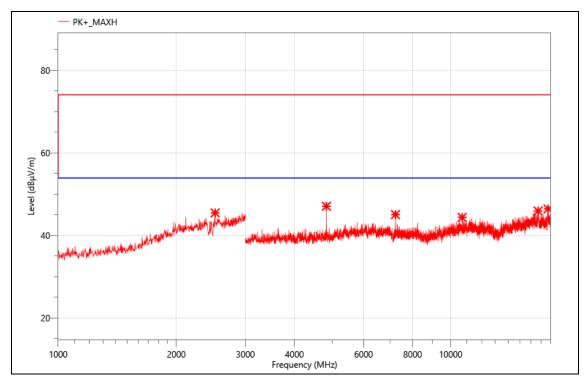
The worst result as bellow:


Mode:	2.4G WIFI b 2412
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	120.210	57.06	-24.59	32.47	43.50	11.03	PK+	V
2	143.490	56.27	-23.52	32.75	43.50	10.75	PK+	V
3	239.520	56.58	-19.66	36.92	46.00	9.08	PK+	V
4	480.080	51.13	-13.01	38.12	46.00	7.88	PK+	V
5	528.580	50.67	-10.79	39.88	46.00	6.12	PK+	V
6	961.200	41.43	-3.82	37.61	53.90	16.29	PK+	V

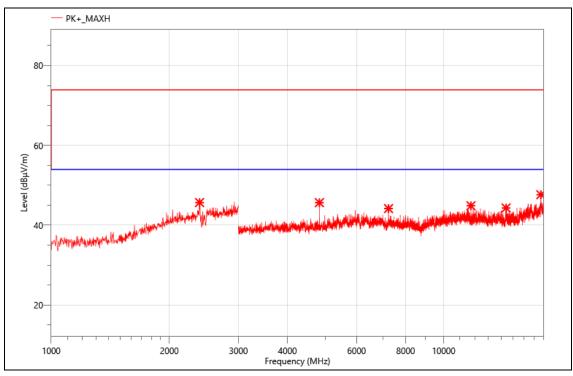
Mode:	2.4G WIFI b 2412
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa



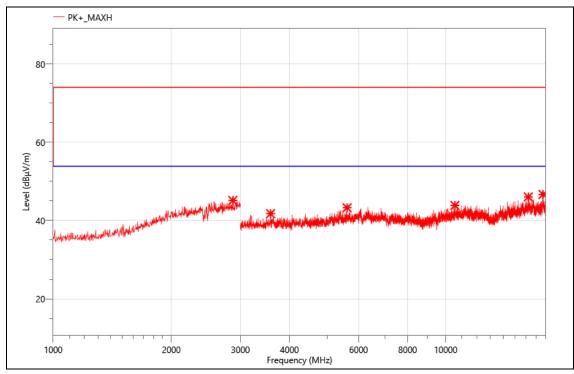
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	120.210	61.51	-24.59	36.92	43.50	6.58	PK+	Н
2	220.120	59.55	-20.79	38.76	46.00	7.24	PK+	Н
3	263.770	58.18	-18.32	39.86	46.00	6.14	PK+	Н
4	480.080	53.81	-13.01	40.80	46.00	5.20	PK+	Н
5	880.690	43.74	-5.33	38.41	46.00	7.59	PK+	Н
6	960.230	46.27	-3.82	42.45	53.90	11.45	PK+	Н

Above 1GHz

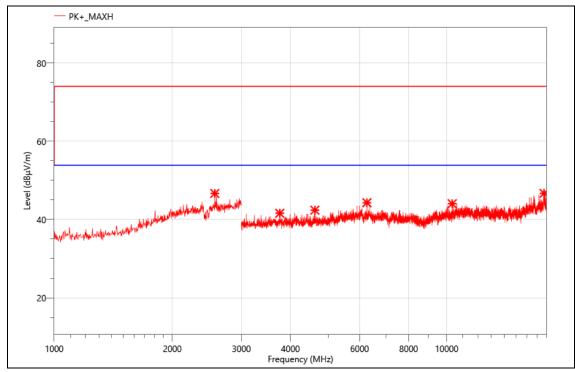
The worst result as bellow:


Mode:	2.4G WIFI b 2412
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1°C/53%/101Kpa

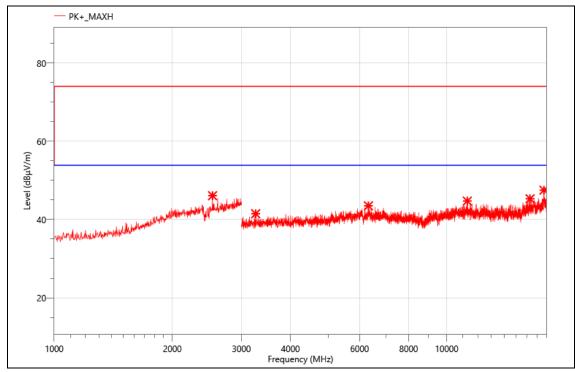
Critical_Freqs


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2512.000	53.93	-8.47	45.46	74.00	28.54	PK+	V
2	4824.000	58.55	-11.47	47.08	74.00	26.92	PK+	V
3	7234.500	53.19	-8.13	45.06	74.00	28.94	PK+	V
4	10696.500	49.24	-4.87	44.37	74.00	29.63	PK+	V
5	16698.000	46.41	-0.48	45.93	74.00	28.07	PK+	V
6	17706.000	46.38	0.05	46.43	74.00	27.57	PK+	V

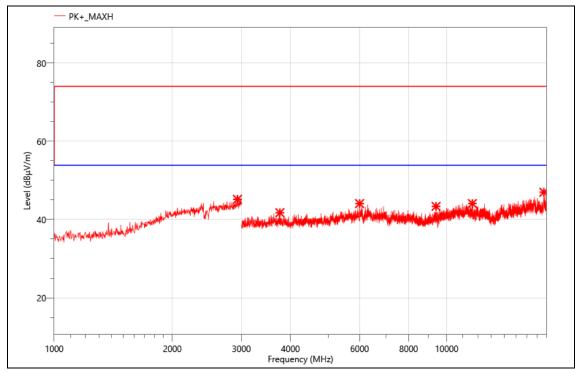
Mode:	2.4G WIFI b 2412
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2388.000	54.20	-8.53	45.67	74.00	28.33	PK+	Н
2	4824.000	57.12	-11.47	45.65	74.00	28.35	PK+	Н
3	7236.000	52.30	-8.14	44.16	74.00	29.84	PK+	Н
4	11733.000	49.96	-5.1	44.86	74.00	29.14	PK+	Н
5	14419.500	47.63	-3.32	44.31	74.00	29.69	PK+	Н
6	17682.000	47.36	0.28	47.64	74.00	26.36	PK+	Н

Mode:	2.4G WIFI b 2437
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2870.000	53.40	-8.26	45.14	74.00	28.86	PK+	V
2	3580.500	55.66	-13.9	41.76	74.00	32.24	PK+	V
3	5608.500	52.53	-9.27	43.26	74.00	30.74	PK+	V
4	10560.000	48.98	-5.11	43.87	74.00	30.13	PK+	V
5	16239.000	46.76	-0.74	46.02	74.00	27.98	PK+	V
6	17700.000	46.48	0.18	46.66	74.00	27.34	PK+	V

Mode:	2.4G WIFI b 2437
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2566.000	54.70	-8.04	46.66	74.00	27.34	PK+	Н
2	3756.000	55.07	-13.47	41.60	74.00	32.40	PK+	Н
3	4615.500	53.95	-11.55	42.40	74.00	31.60	PK+	Н
4	6262.500	52.75	-8.45	44.30	74.00	29.70	PK+	Н
5	10330.500	49.69	-5.65	44.04	74.00	29.96	PK+	Н
6	17701.500	46.56	0.14	46.70	74.00	27.30	PK+	Н

Mode:	2.4G WIFI b 2462
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

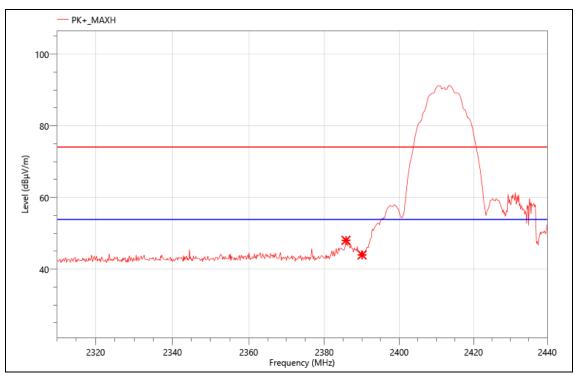
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2532.000	54.70	-8.61	46.09	74.00	27.91	PK+	Н
2	3261.000	56.24	-14.75	41.49	74.00	32.51	PK+	Н
3	6319.500	51.25	-7.75	43.50	74.00	30.50	PK+	Н
4	11286.000	48.92	-4.2	44.72	74.00	29.28	PK+	Η
5	16308.000	47.28	-1.98	45.30	74.00	28.70	PK+	Н
6	17694.000	47.29	0.21	47.50	74.00	26.50	PK+	Н

Mode:	2.4G WIFI b 2462
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2930.000	52.70	-7.54	45.16	74.00	28.84	PK+	V
2	3759.000	55.21	-13.46	41.75	74.00	32.25	PK+	V
3	6000.000	52.95	-8.87	44.08	74.00	29.92	PK+	V
4	9396.000	50.55	-7.19	43.36	74.00	30.64	PK+	>
5	11623.500	48.99	-4.91	44.08	74.00	29.92	PK+	>
6	17686.500	46.72	0.25	46.97	74.00	27.03	PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

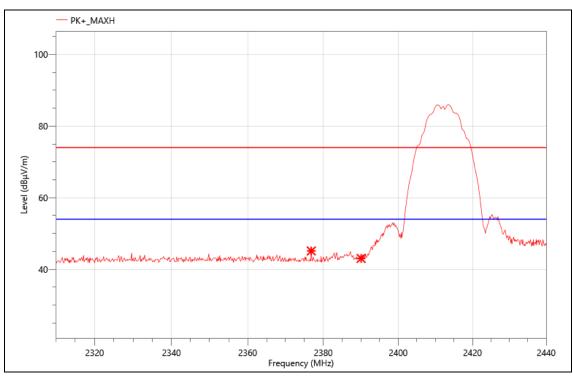
Note:


- 1. Measurement = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

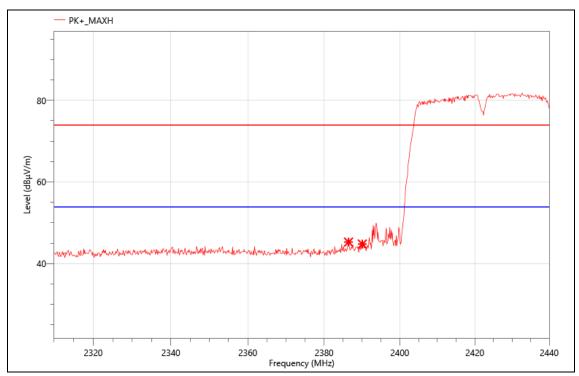
For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

Band Edge

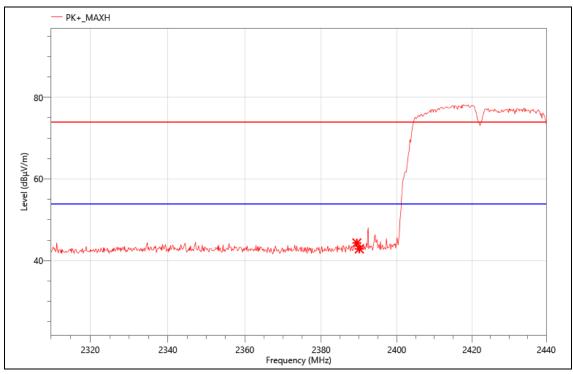
The worst result as bellow:


Mode:	2.4G WIFI b 2412
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

Critical_Freqs

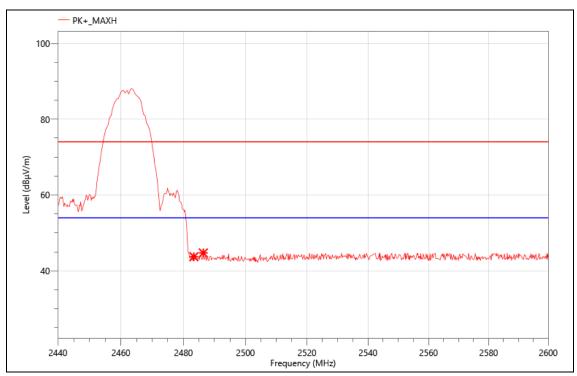

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2385.790	25.41	22.64	48.05	74.00	25.95	PK+	Н
2	2390.080	21.26	22.72	43.98	74.00	30.02	PK+	Н

Mode:	2.4G WIFI b 2412
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2376.820	22.56	22.56	45.12	74.00	28.88	PK+	V
2	2390.080	20.32	22.72	43.04	74.00	30.96	PK+	V

Mode:	2.4G WIFI n40 2422
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1°C/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2386.440	22.64	22.65	45.29	74.00	28.71	PK+	Н
2	2390.080	22.08	22.72	44.80	74.00	29.20	PK+	Н


Mode:	2.4G WIFI n40 2422
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

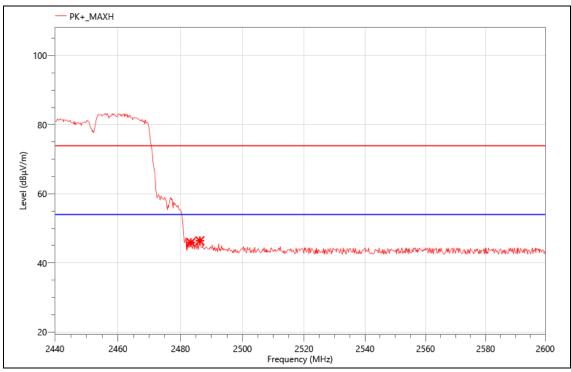
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2389.430	21.63	22.71	44.34	74.00	29.66	PK+	V
2	2390.080	20.16	22.72	42.88	74.00	31.12	PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Mode:	2.4G WIFI b 2462
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

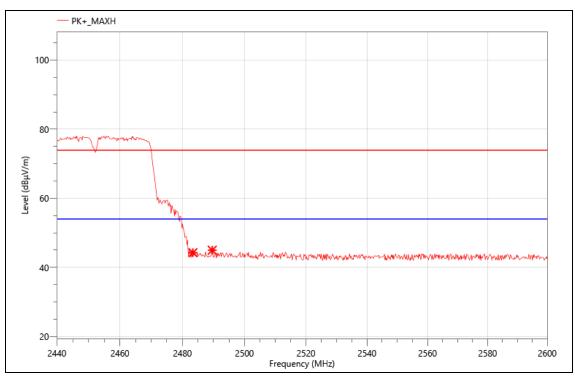
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.360	20.57	23.15	43.72	74.00	30.28	PK+	V
2	2486.400	21.58	23.14	44.72	74.00	29.28	PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]


Mode:	2.4G WIFI b 2462
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.360	20.35	23.15	43.50	74.00	30.50	PK+	Н
2	2507.040	23.73	23.1	46.83	74.00	27.17	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]


Mode:	2.4G WIFI n40 2452
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1℃/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.360	22.73	23.15	45.88	74.00	28.12	PK+	Н
2	2486.240	23.25	23.14	46.39	74.00	27.61	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Mode:	2.4G WIFI n40 2452
Power:	DC 5V
TE:	Vier
Date	2024/05/10
T/A/P	24.1°C/53%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.360	21.10	23.15	44.25	74.00	29.75	PK+	V
2	2489.600	21.83	23.13	44.96	74.00	29.04	PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

REPORT NO.: E04A24040957F00101 Page 42 of 96

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

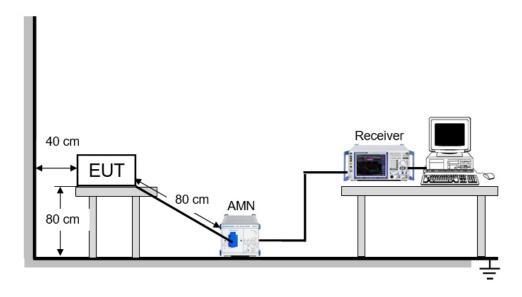
Pass.

REPORT NO.: E04A24040957F00101 Page 43 of 96

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a)

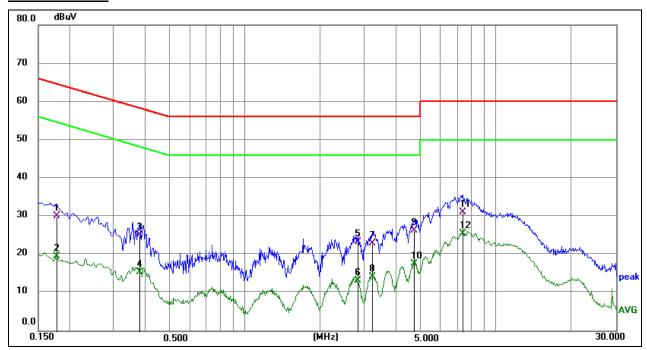

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

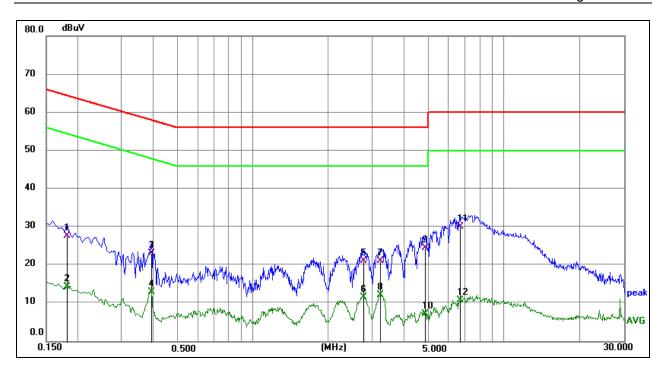
TEST SETUP



TEST ENVIRONMENT

Temperature	25.4℃	Relative Humidity	54%
Atmosphere Pressure	100kPa		

REPORT NO.: E04A24040957F00101 Page 44 of 96


TEST RESULTS

Phase: L1 Mode: 11B 2412 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1770	20.31	9.81	30.12	64.63	-34.51	QP
2	0.1770	9.71	9.81	19.52	54.63	-35.11	AVG
3	0.3795	15.35	9.78	25.13	58.29	-33.16	QP
4	0.3795	5.60	9.78	15.38	48.29	-32.91	AVG
5	2.8140	13.51	9.83	23.34	56.00	-32.66	QP
6	2.8140	3.33	9.83	13.16	46.00	-32.84	AVG
7	3.2235	13.13	9.82	22.95	56.00	-33.05	QP
8	3.2235	4.32	9.82	14.14	46.00	-31.86	AVG
9	4.7355	16.53	9.81	26.34	56.00	-29.66	QP
10	4.7355	7.76	9.81	17.57	46.00	-28.43	AVG
11	7.3905	21.39	9.77	31.16	60.00	-28.84	QP
12	7.3905	15.83	9.77	25.60	50.00	-24.40	AVG

REPORT NO.: E04A24040957F00101 Page 45 of 96

Phase: N	Mode: 11B 2412 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1815	17.74	9.89	27.63	64.42	-36.79	QP
2	0.1815	4.50	9.89	14.39	54.42	-40.03	AVG
3	0.3930	13.32	9.80	23.12	58.00	-34.88	QP
4	0.3930	3.27	9.80	13.07	48.00	-34.93	AVG
5	2.7600	11.18	10.00	21.18	56.00	-34.82	QP
6	2.7600	1.61	10.00	11.61	46.00	-34.39	AVG
7	3.2190	11.20	9.99	21.19	56.00	-34.81	QP
8	3.2190	2.29	9.99	12.28	46.00	-33.72	AVG
9	4.8570	14.54	10.04	24.58	56.00	-31.42	QP
10	4.8570	-2.79	10.04	7.25	46.00	-38.75	AVG
11	6.6930	20.02	10.14	30.16	60.00	-29.84	QP
12	6.6930	0.72	10.14	10.86	50.00	-39.14	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

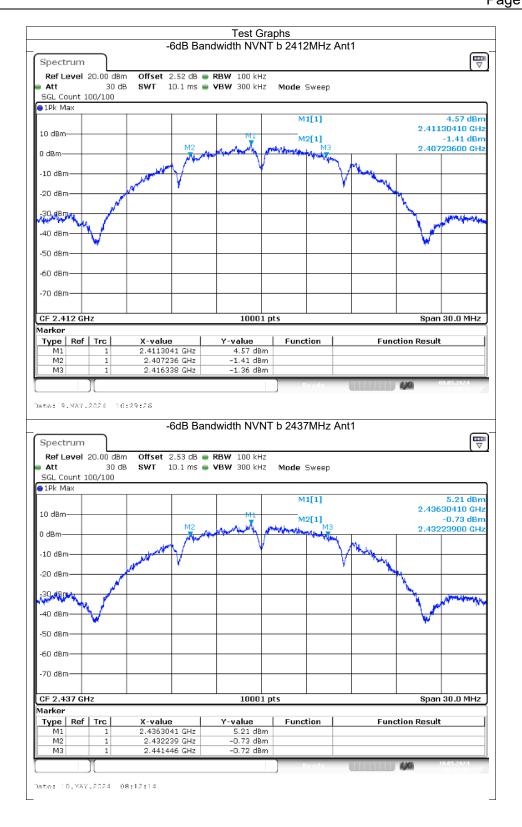
REPORT NO.: E04A24040957F00101 Page 46 of 96

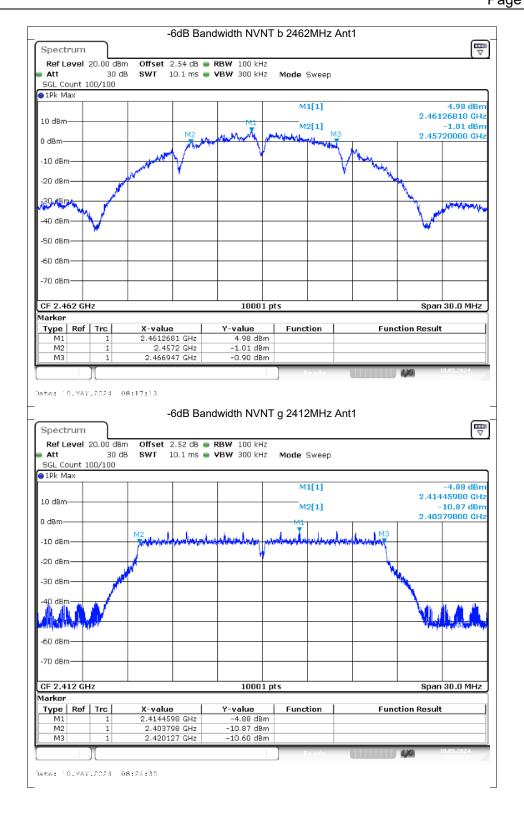
11. TEST DATA - Appendix A

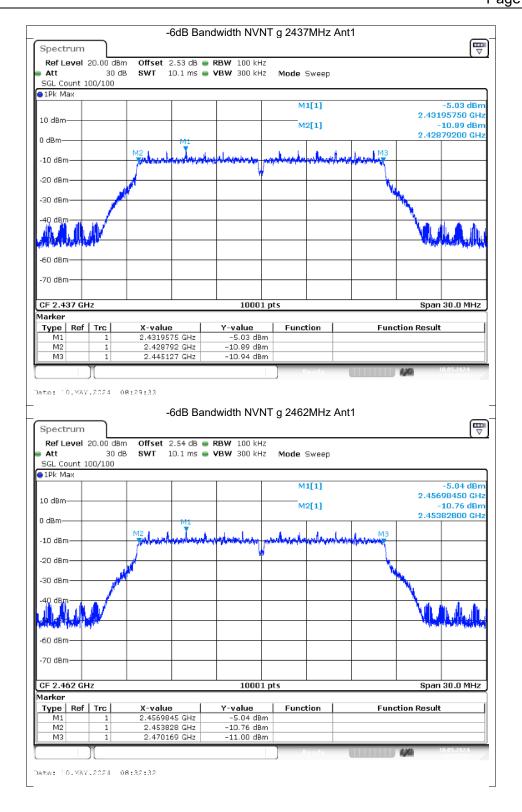
Duty Cycle

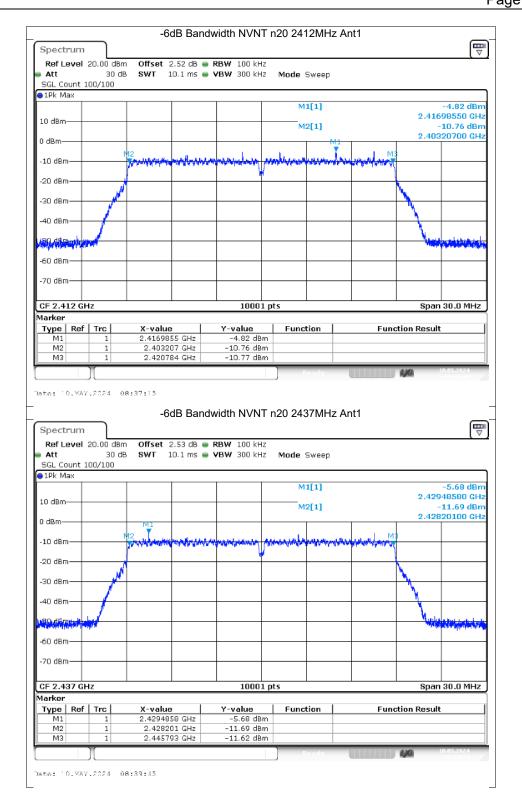
Condition	Mode	Frequency	Antenna	On Time	Period	Duty	Correction	1/T	Final settingFor
		(MHz)		(ms)	(ms)	Cycle (%)	Factor (dB)	(kHz)	VBW (kHz)
NVNT	b	2412	Ant1	4.29	4.31	99.54	0	0.23	1
NVNT	b	2437	Ant1	4.29	4.31	99.54	0	0.23	1
NVNT	b	2462	Ant1	4.29	4.31	99.54	0	0.23	1
NVNT	g	2412	Ant1	1.39	1.41	98.58	0	0.72	1
NVNT	g	2437	Ant1	1.39	1.41	98.58	0	0.72	1
NVNT	g	2462	Ant1	1.4	1.41	99.29	0	0.72	1
NVNT	n20	2412	Ant1	5.08	5.1	99.61	0	0.2	1
NVNT	n20	2437	Ant1	5.08	5.1	99.61	0	0.2	1
NVNT	n20	2462	Ant1	5.09	5.1	99.8	0	0.2	1
NVNT	n40	2422	Ant1	2.47	2.48	99.6	0	0.41	1
NVNT	n40	2437	Ant1	2.47	2.49	99.2	0	0.41	1
NVNT	n40	2452	Ant1	2.47	2.48	99.6	0	0.41	1

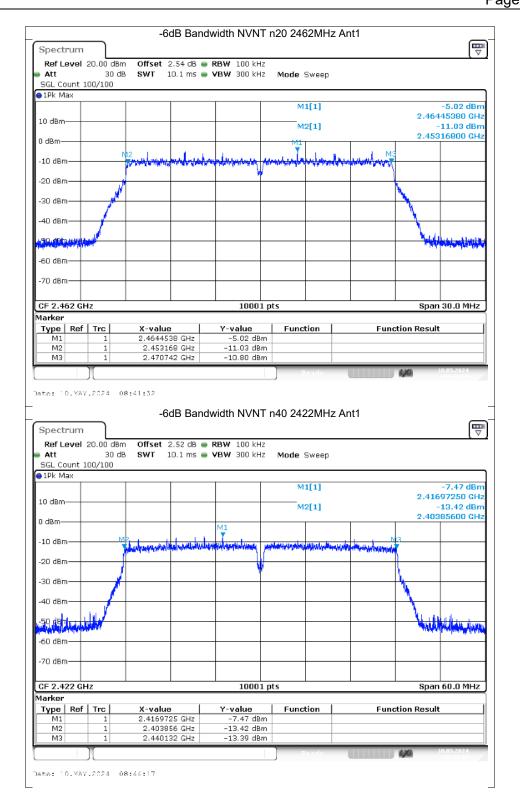
REPORT NO.: E04A24040957F00101 Page 47 of 96

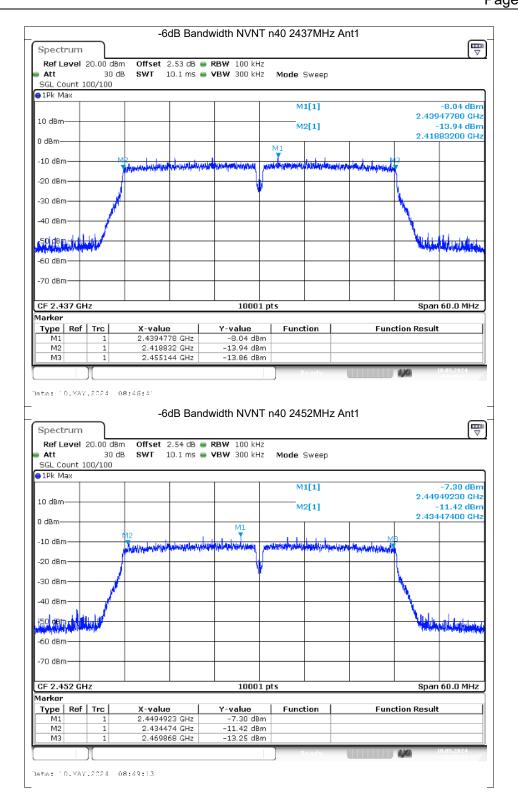

Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	18.6	0	18.6	30	Pass
NVNT	b	2437	Ant1	18.58	0	18.58	30	Pass
NVNT	b	2462	Ant1	18.32	0	18.32	30	Pass
NVNT	g	2412	Ant1	14.36	0	14.36	30	Pass
NVNT	g	2437	Ant1	14.15	0	14.15	30	Pass
NVNT	g	2462	Ant1	14.18	0	14.18	30	Pass
NVNT	n20	2412	Ant1	14.55	0	14.55	30	Pass
NVNT	n20	2437	Ant1	14.38	0	14.38	30	Pass
NVNT	n20	2462	Ant1	14.31	0	14.31	30	Pass
NVNT	n40	2422	Ant1	14.62	0	14.62	30	Pass
NVNT	n40	2437	Ant1	14.61	0	14.61	30	Pass
NVNT	n40	2452	Ant1	14.51	0	14.51	30	Pass

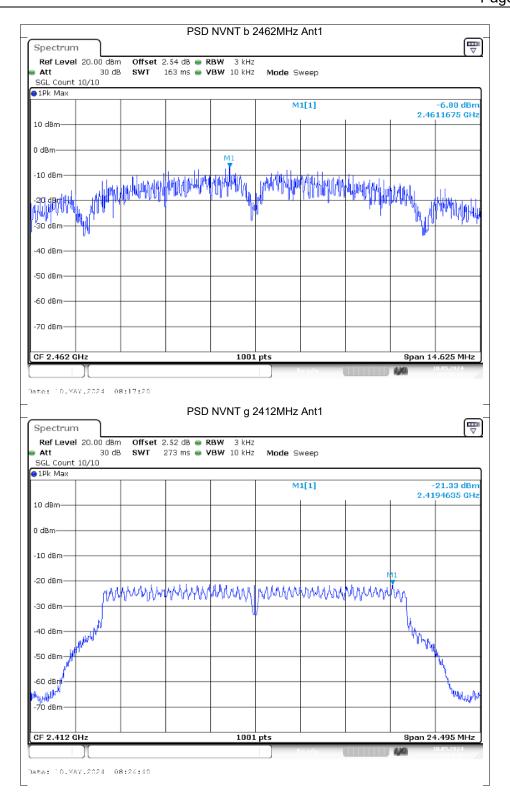

REPORT NO.: E04A24040957F00101 Page 48 of 96

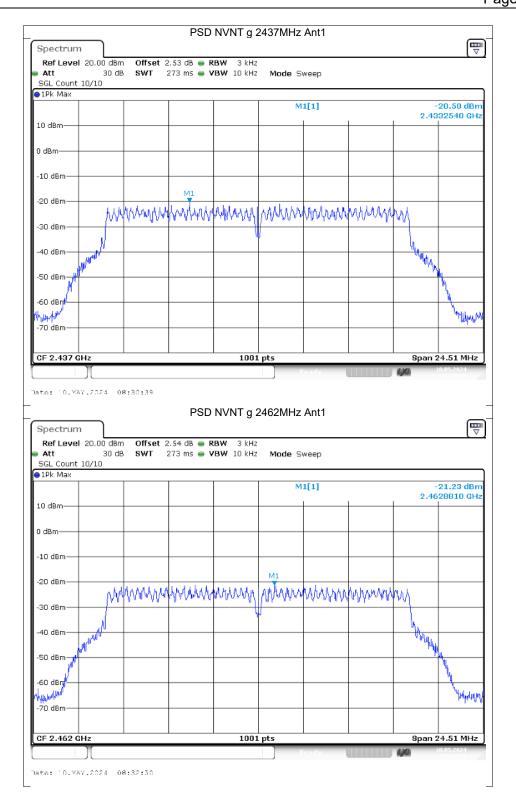

-6dB Bandwidth

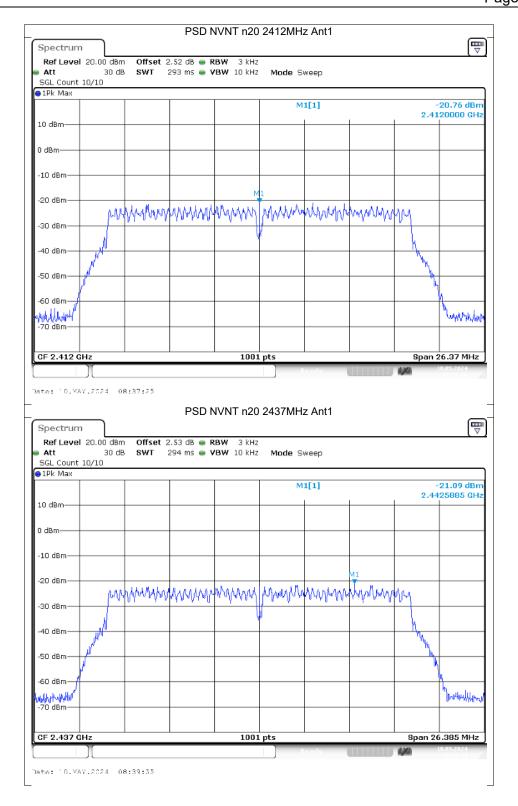

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	9.1	0.5	Pass
NVNT	b	2437	Ant1	9.21	0.5	Pass
NVNT	b	2462	Ant1	9.75	0.5	Pass
NVNT	g	2412	Ant1	16.33	0.5	Pass
NVNT	g	2437	Ant1	16.34	0.5	Pass
NVNT	g	2462	Ant1	16.34	0.5	Pass
NVNT	n20	2412	Ant1	17.58	0.5	Pass
NVNT	n20	2437	Ant1	17.59	0.5	Pass
NVNT	n20	2462	Ant1	17.57	0.5	Pass
NVNT	n40	2422	Ant1	36.28	0.5	Pass
NVNT	n40	2437	Ant1	36.31	0.5	Pass
NVNT	n40	2452	Ant1	35.39	0.5	Pass

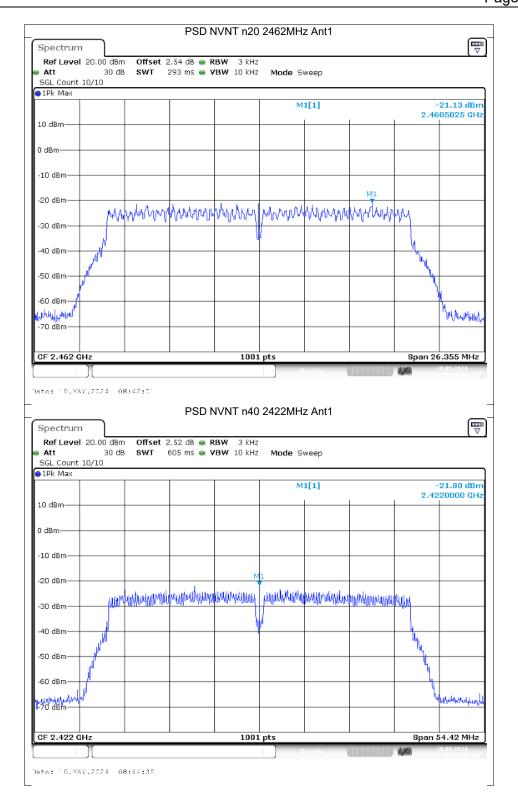


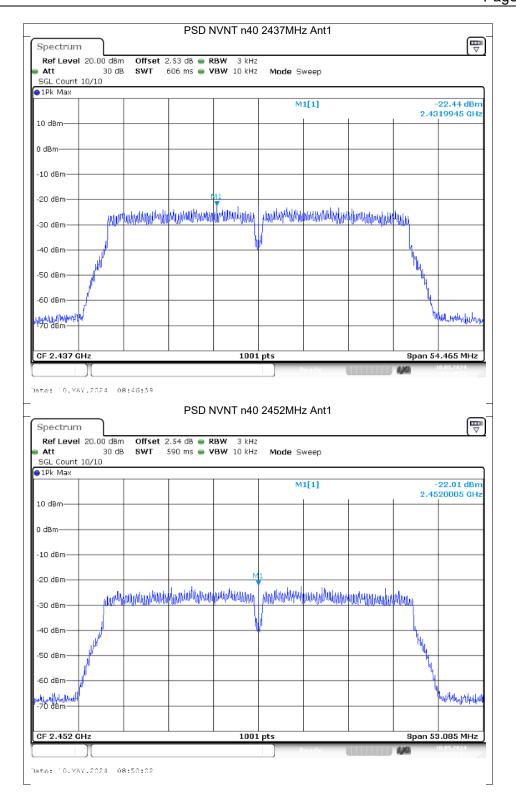


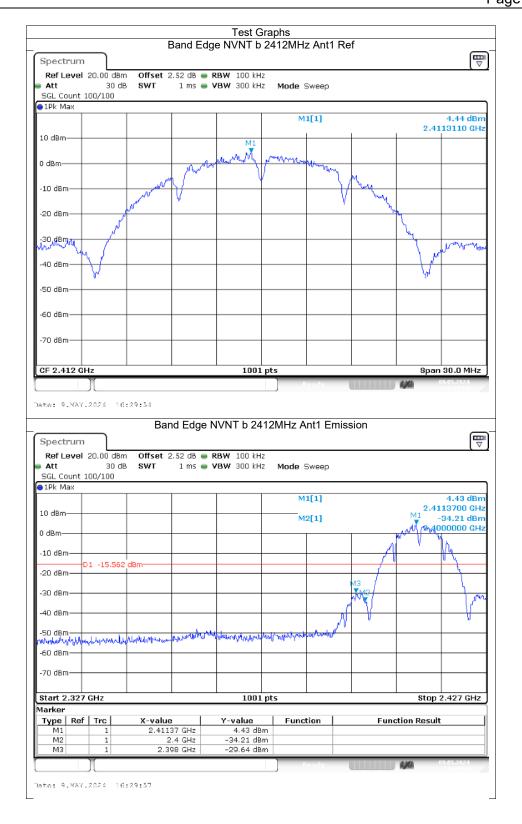


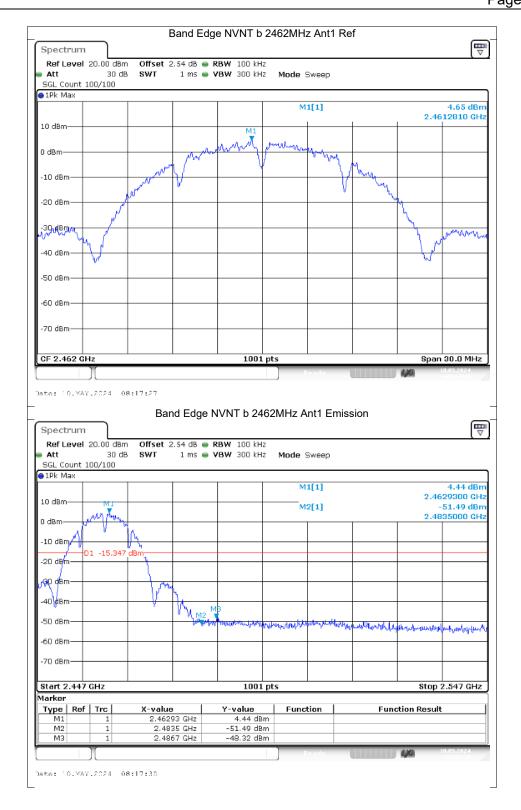

REPORT NO.: E04A24040957F00101 Page 55 of 96

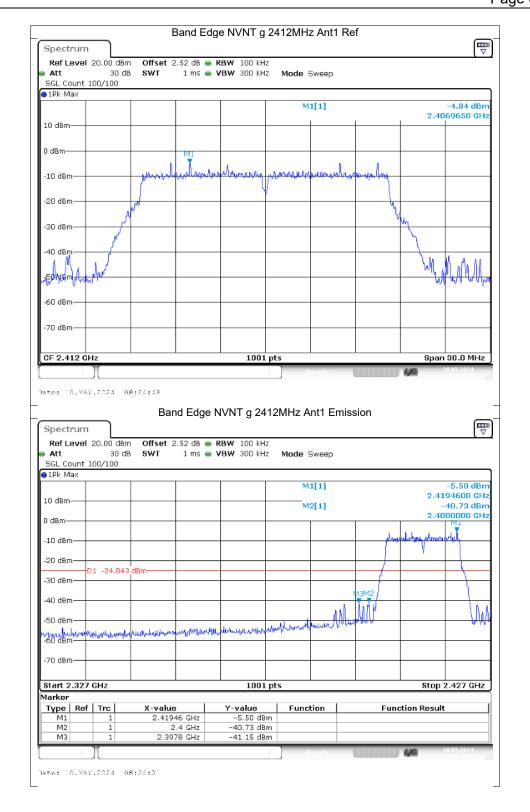

Maximum Power Spectral Density Level

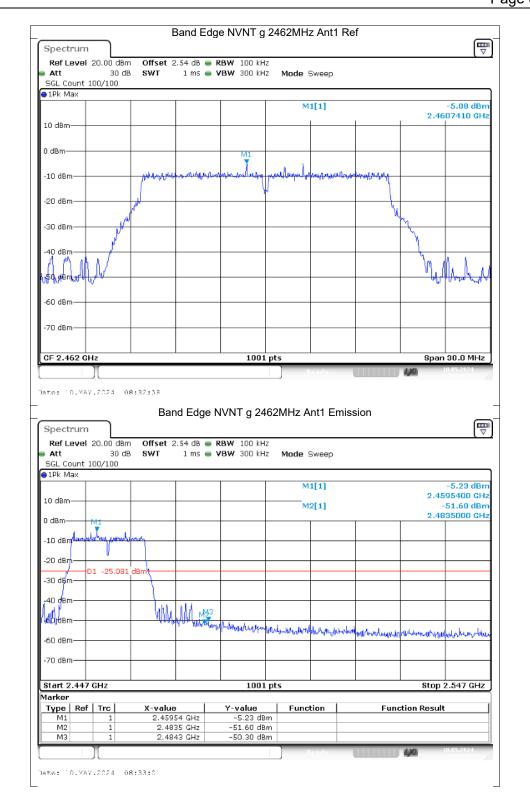

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	Ant1	-7.28	0	-7.28	8	Pass
NVNT	b	2437	Ant1	-6.6	0	-6.6	8	Pass
NVNT	b	2462	Ant1	-6.8	0	- 6.8	8	Pass
NVNT	g	2412	Ant1	-21.33	0	-21.33	8	Pass
NVNT	g	2437	Ant1	-20.5	0	- 20.5	8	Pass
NVNT	g	2462	Ant1	-21.23	0	-21.23	8	Pass
NVNT	n20	2412	Ant1	-20.76	0	-20.76	8	Pass
NVNT	n20	2437	Ant1	-21.09	0	-21.09	8	Pass
NVNT	n20	2462	Ant1	-21.13	0	-21.13	8	Pass
NVNT	n40	2422	Ant1	-21.8	0	-21.8	8	Pass
NVNT	n40	2437	Ant1	-22.44	0	-22.44	8	Pass
NVNT	n40	2452	Ant1	-22.01	0	-22.01	8	Pass

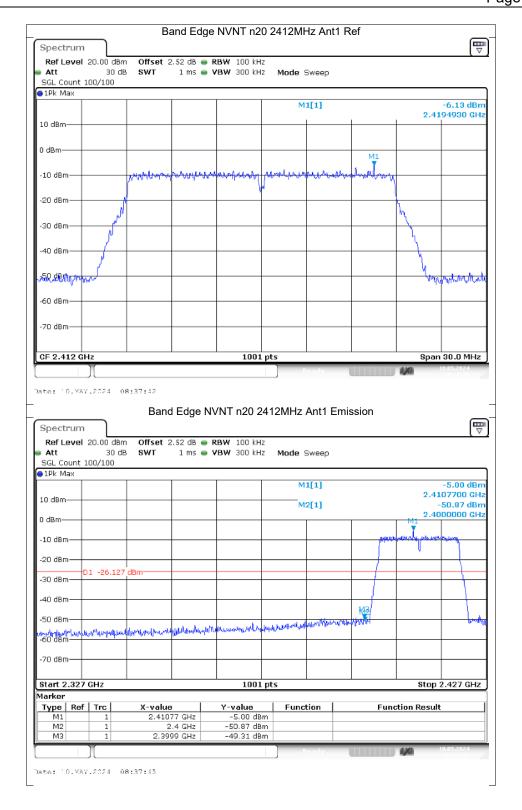


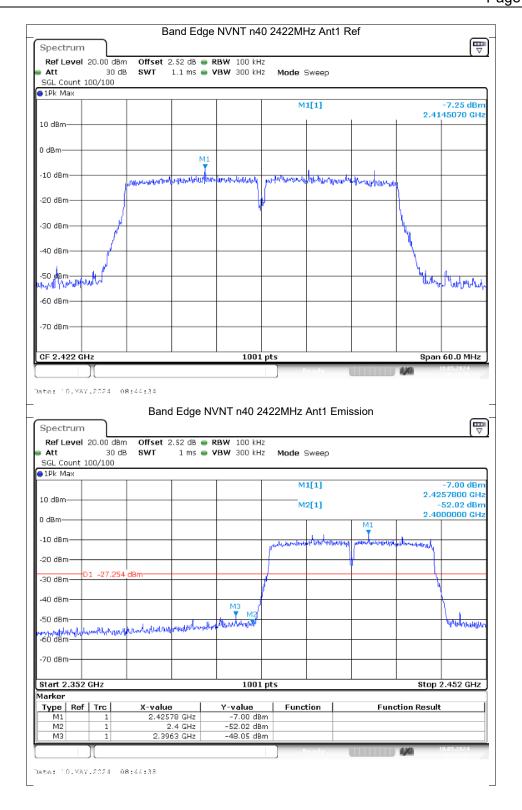


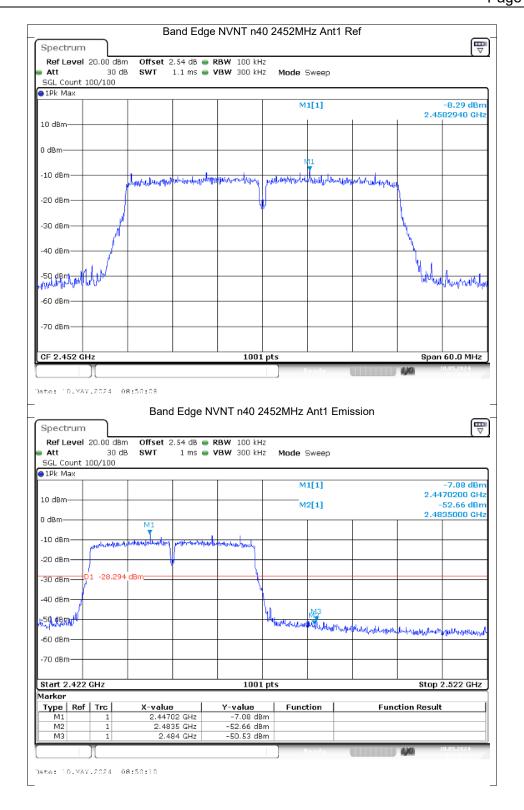


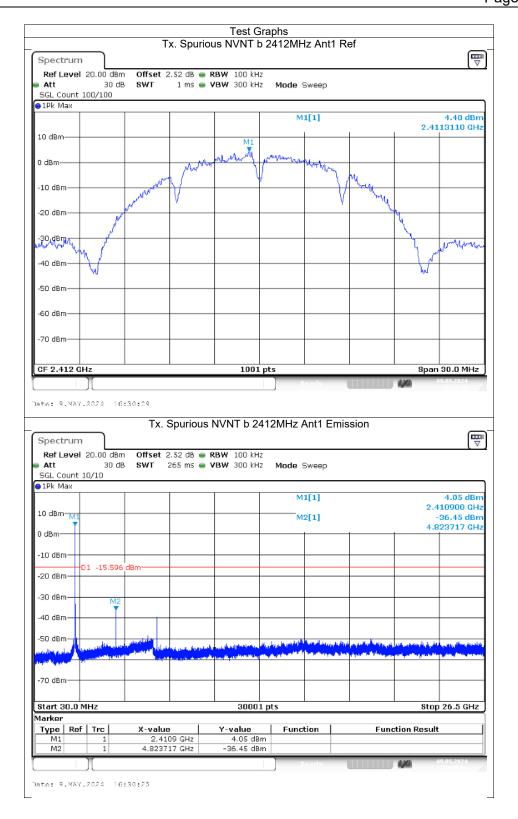

REPORT NO.: E04A24040957F00101 Page 62 of 96

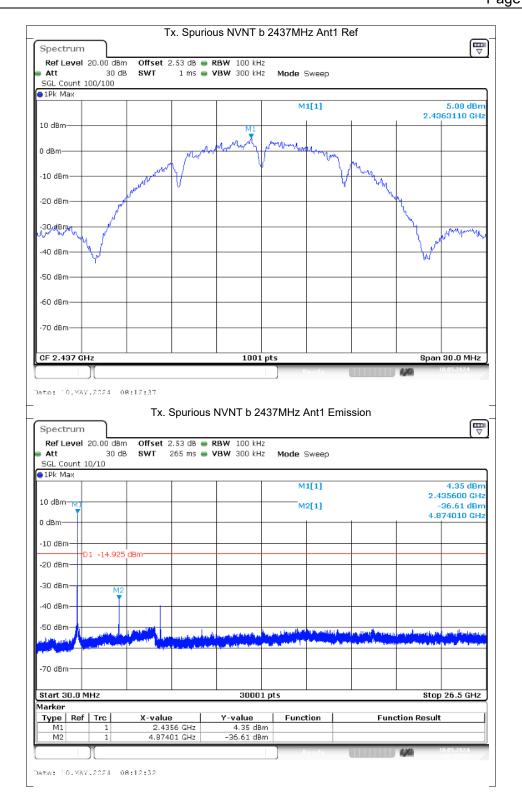

Band Edge

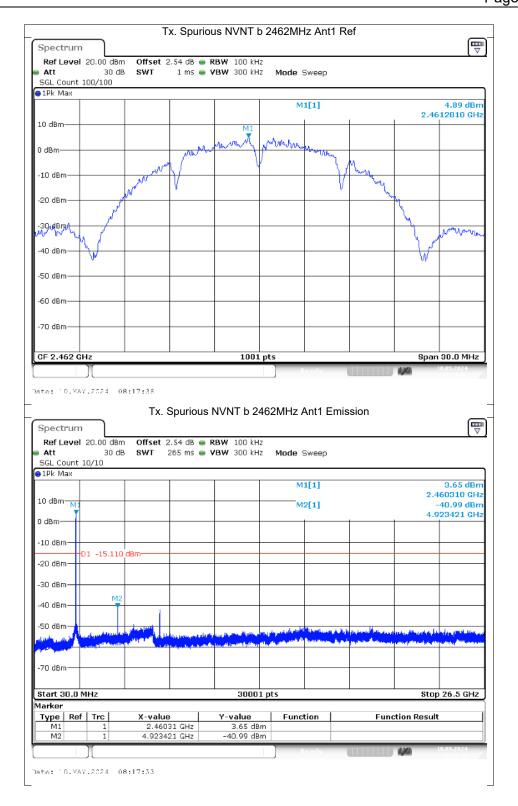

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-34.08	-20	Pass
NVNT	b	2462	Ant1	-52.97	-20	Pass
NVNT	g	2412	Ant1	-35.89	-20	Pass
NVNT	g	2462	Ant1	-45.22	-20	Pass
NVNT	n20	2412	Ant1	-43.18	-20	Pass
NVNT	n40	2422	Ant1	-40.8	-20	Pass
NVNT	n40	2452	Ant1	-42.24	-20	Pass

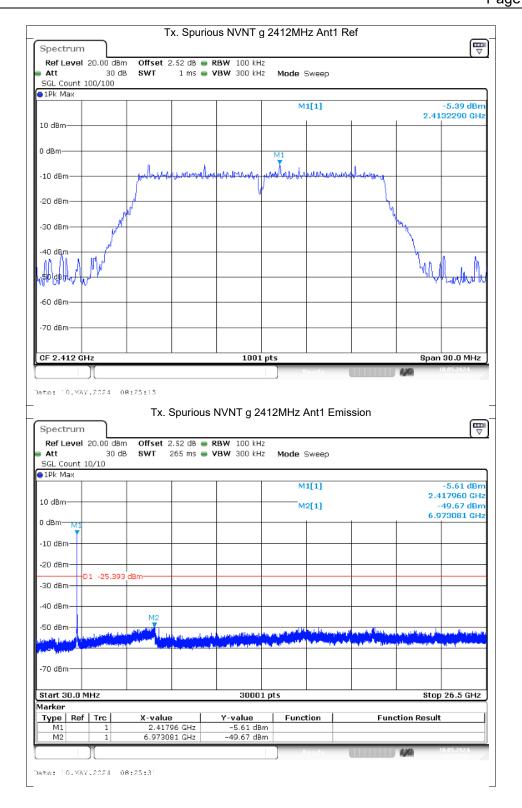


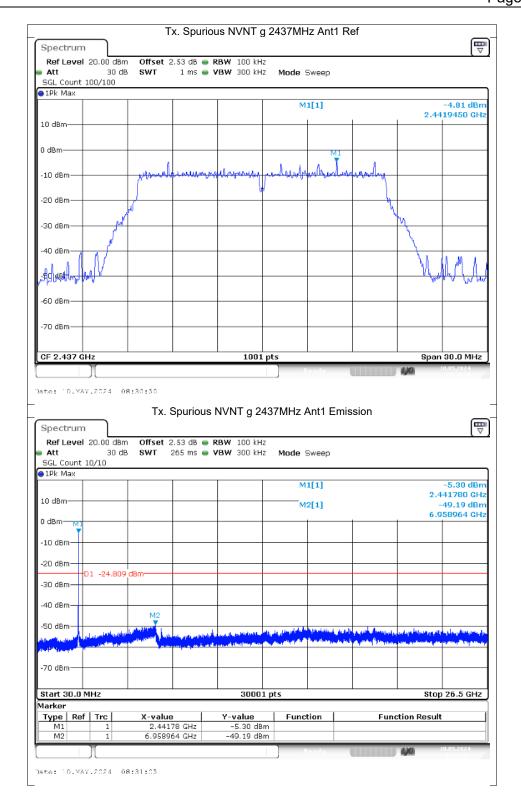


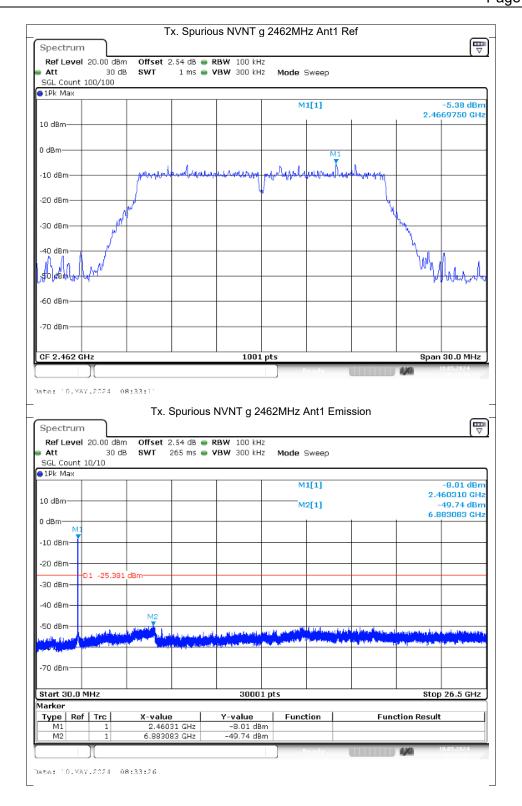


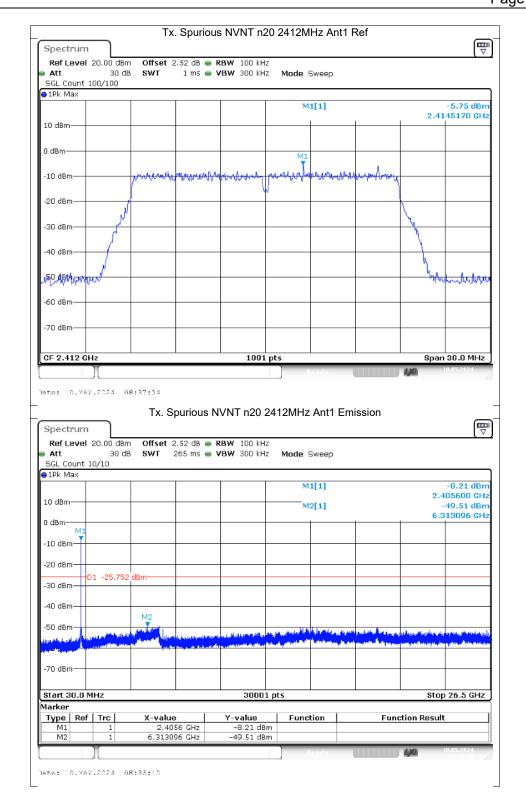


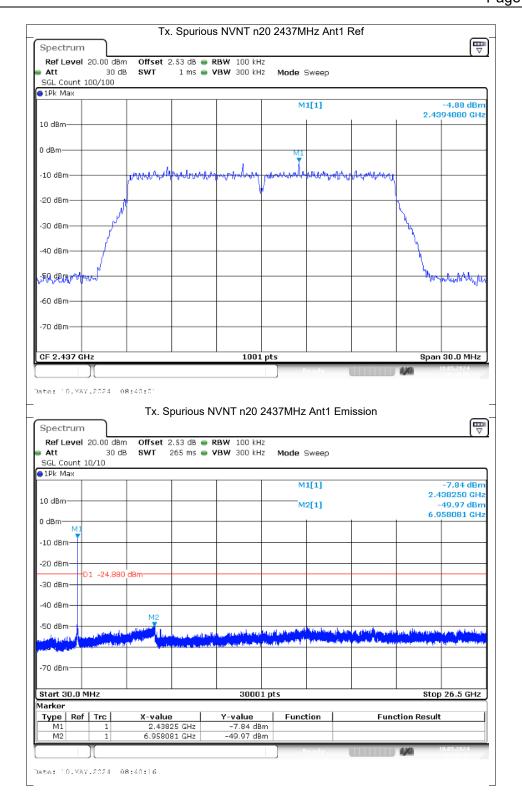

REPORT NO.: E04A24040957F00101 Page 70 of 96

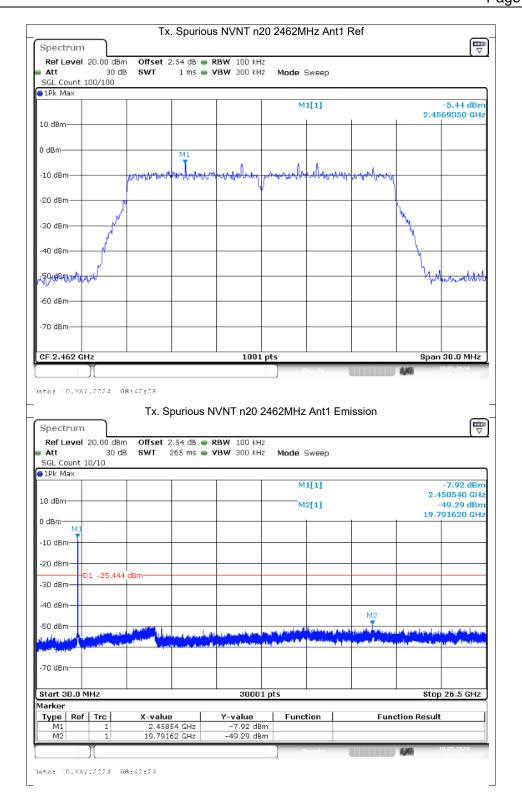

Conducted RF Spurious Emission

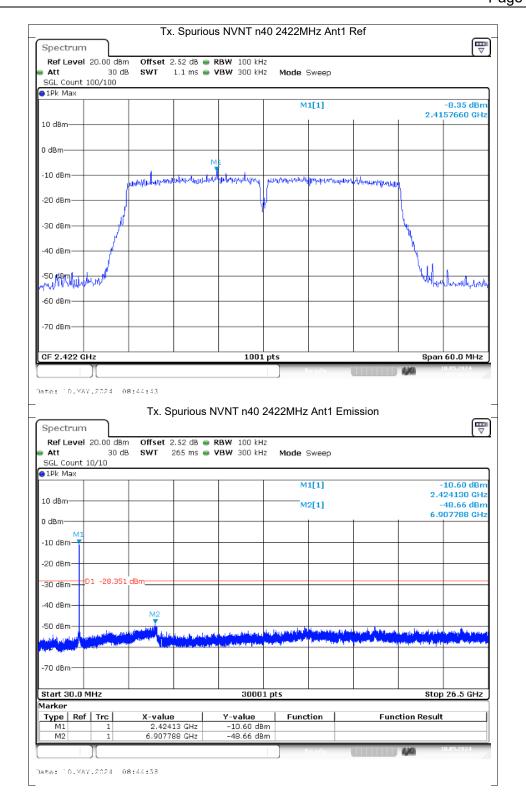

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-40.85	-20	Pass
NVNT	b	2437	Ant1	-41.69	-20	Pass
NVNT	b	2462	Ant1	-45.88	-20	Pass
NVNT	g	2412	Ant1	-44.28	-20	Pass
NVNT	g	2437	Ant1	-44.38	-20	Pass
NVNT	g	2462	Ant1	-44.36	-20	Pass
NVNT	n20	2412	Ant1	-43.76	-20	Pass
NVNT	n20	2437	Ant1	-45.09	-20	Pass
NVNT	n20	2462	Ant1	-43.85	-20	Pass
NVNT	n40	2422	Ant1	-40.31	-20	Pass
NVNT	n40	2437	Ant1	-37.72	-20	Pass
NVNT	n40	2452	Ant1	-42 46	-20	Pass

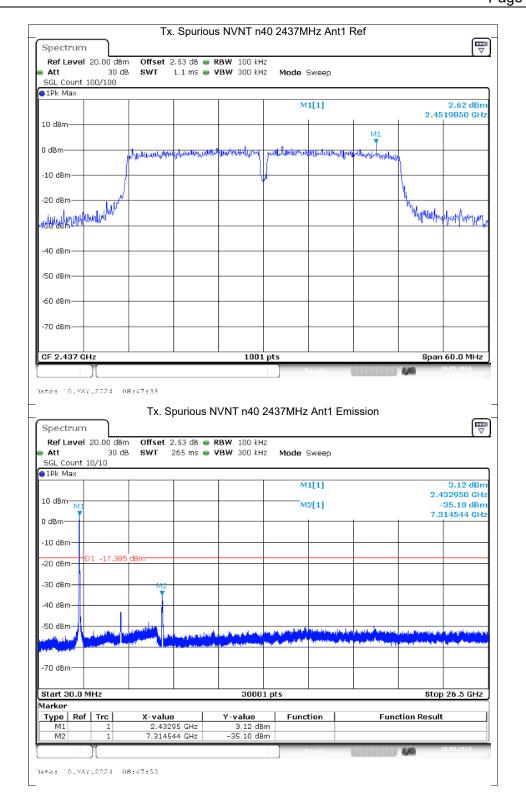


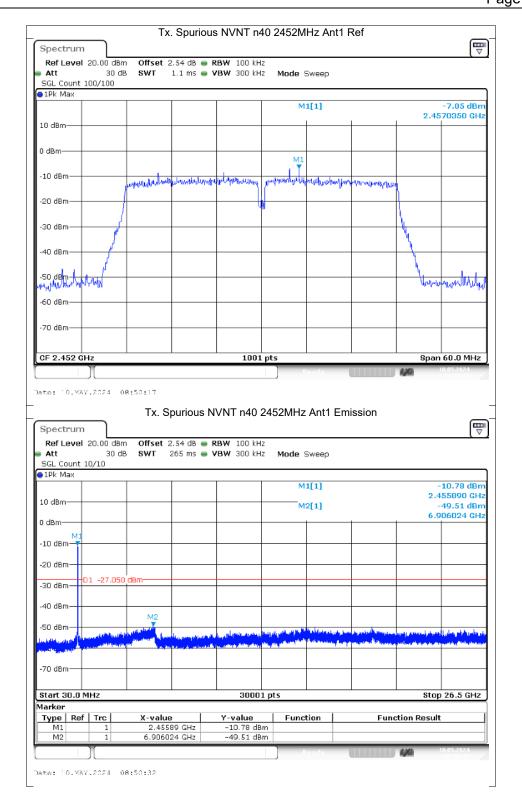


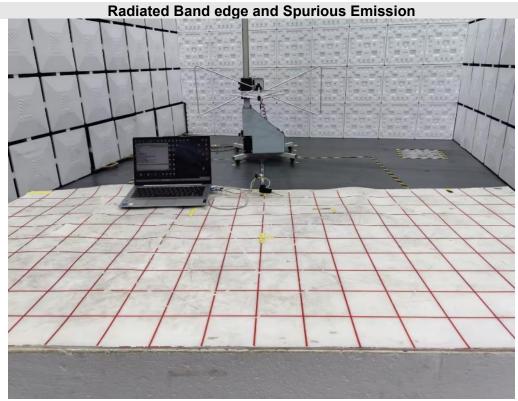


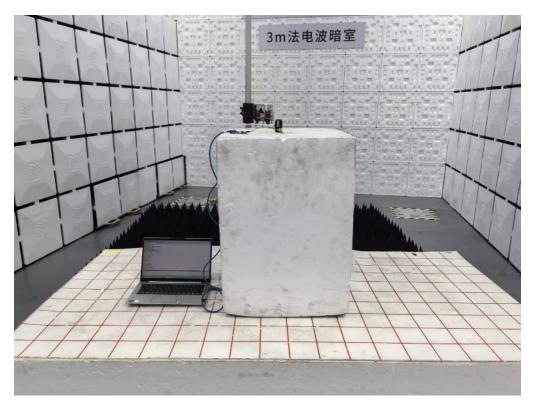






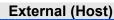






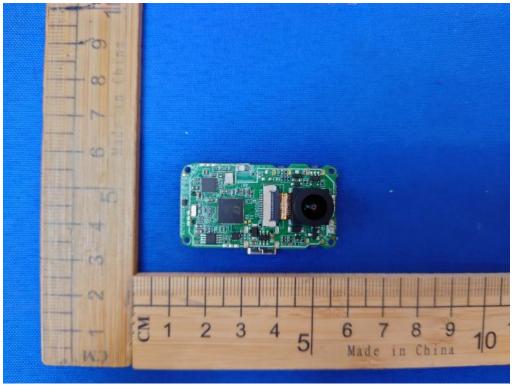

REPORT NO.: E04A24040957F00101 Page 83 of 96

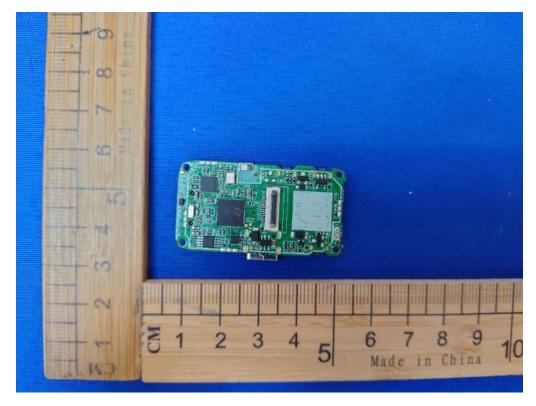
APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

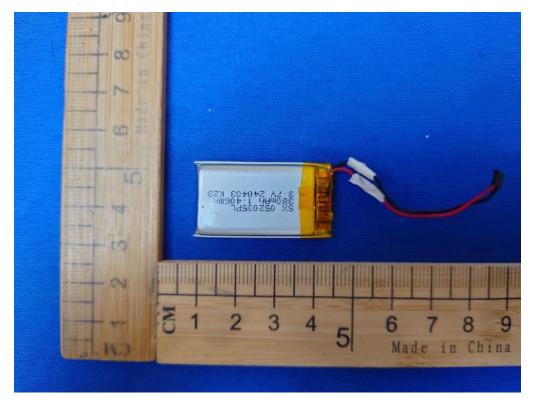


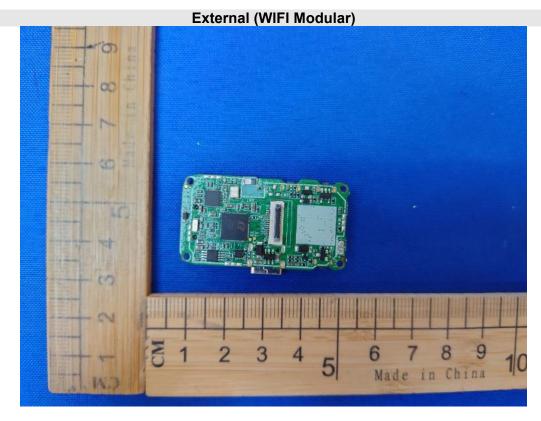
REPORT NO.: E04A24040957F00101 Page 85 of 96

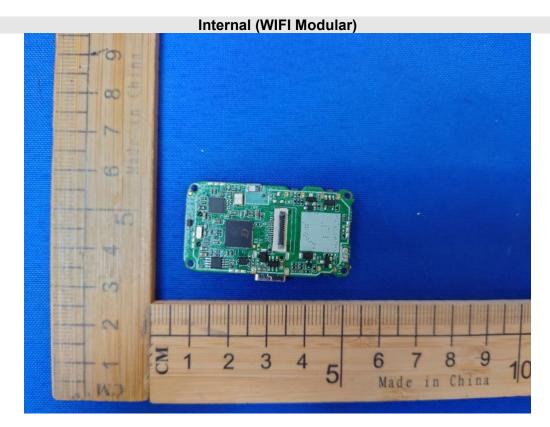
APPENDIX: PHOTOGRAPHS OF THE EUT



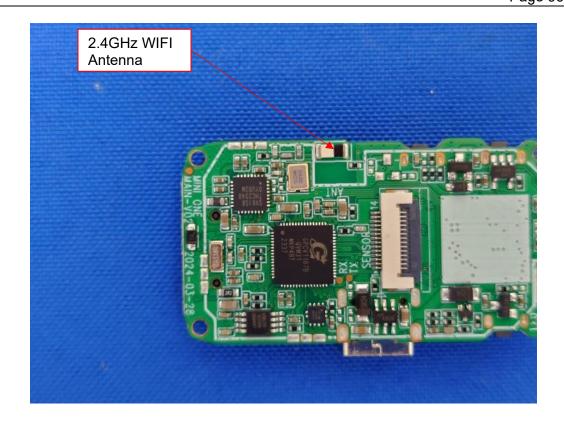












END OF REPORT