

CFR 47 FCC PART 15 SUBPART C(DTS)

TEST REPORT

For

A28PROWIFI

MODEL NUMBER: BT532967

REPORT NUMBER: E04A23070241F00201

ISSUE DATE: Aug 24, 2023

FCC ID: WUI-A28PRO

Prepared for

Winplus Co., Ltd.

Suites 6-11, 7th Floor, Corporation Park, 11 On La Shatin, Hong Kong

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	Aug 24, 2023	Initial Issue	Win

TRF No.: 04-E001-1A

Summary of Test Results						
Test Item	Clause	Limit/Requirement	Result			
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass			
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207	N/A			
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3)	Pass			
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2)	Pass			
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e)	Pass			
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass			
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.205/15.209	Pass			
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass			

Note:

1. N/A: In this whole report not applicable.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATTE	STATION OF TEST RESULTS	5
2. TEST	METHODOLOGY	6
3. FACI	LITIES AND ACCREDITATION	6
4. CALI	BRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQUI	PMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	CHANNEL LIST	8
5.3.	MAXIMUM AVERAGE EIRP	9
5.4.	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	
5.7.	SUPPORT UNITS FOR SYSTEM TEST	
F 0	SETUP DIAGRAM	10
5.8.	SETUR DIAGRAM	
	SURING EQUIPMENT AND SOFTWARE USED	
6. MEAS		12
6. MEAS	SURING EQUIPMENT AND SOFTWARE USED	12
6. MEAS 7. ANTE	SURING EQUIPMENT AND SOFTWARE USED	12 13 13
 6. MEAS 7. ANTE 7.1. 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS Conducted Output Power	12 13 13 14
 6. MEAS 7. ANTE 7.1. 7.2. 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS Conducted Output Power	12 13 13 14 15
 6. MEAS 7. ANTE 7.1. 7.2. 7.3. 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS Conducted Output Power 6dB Bandwidth Power Spectral Density	
 6. MEAS 7. ANTE 7.1. 7.2. 7.3. 7.4. 7.5. 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS Conducted Output Power	
 6. MEAS 7. ANTE 7.1. 7.2. 7.3. 7.4. 7.5. 8. RADI 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS	
 6. MEAS 7. ANTE 7.1. 7.2. 7.3. 7.4. 7.5. 8. RADI 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS	
 MEAS ANTE 7.1. 7.2. 7.3. 7.4. 7.5. RADI ANTE 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS	
 MEAS ANTE 7.1. 7.2. 7.3. 7.4. 7.5. RADI ANTE 10. 11. 	SURING EQUIPMENT AND SOFTWARE USED ENNA PORT TEST RESULTS	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:Winplus Co., Ltd.Address:Suites 6-11, 7th Floor, Corporation Park, 11 On La Shatin, Hong
Kong

Manufacturer Information

Company Name:	Winplus Co., Ltd.
Address:	Suites 6-11, 7th Floor, Corporation Park, 11 On La Shatin, Hong Kong

EUT Information

EUT Name:	A28PROWIFI
Model:	BT532967
Brand:	N/A
Sample Received Date:	Jul 28, 2023
Sample Status:	Normal
Sample ID:	A23070241 004
Date of Tested:	Jul 28, 2023 to Aug 24, 2023

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C(DTS)	Pass			

Prepared By:

Checked By:

Lan La

Alan He Project Engineer

Win Huang Project Engineer

Approved By:

les

Shawn Wen General Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DTS), DD

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 6947.01) Guangdong Global Testing Technology Co., Ltd. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment subject to Supplier's Declaration of Conformity (SDoC) and Certification rules ISED (Company No.: 30714) Guangdong Global Testing Technology Co., Ltd. has been registered and fully described in a report filed with ISED. The
	has been registered and fully described in a report filed with ISED. The
	Company Number is 30714 and the test lab Conformity Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	К	U(dB)			
AC Power Line Conducted	0.009 MHz ~ 0.15 MHz	2	4.00			
Emission	0.15 MHz ~ 30 MHz	2	3.62			
	9kHz ~ 30MHz	2	2.20			
Radiated Band edge and	30 MHz ~ 1 GHz	2	3.16			
Spurious Emission	1 GHz ~ 18 GHz	2	5.64			
	18 GHz ~ 26.5 GHz	2	5.54			
Conducted Output Power	/	2	0.73			
6dB Bandwidth and 99% Occupied Bandwidth	/	2	9.2ppm			
Power Spectral Density	/	2	1.84			
	9kHz ~ 30MHz	2	0.95			
Conducted Band edge and	30 MHz ~ 1 GHz	2	1.49			
spurious emission	1 GHz ~ 18 GHz	2	1.75			
	18 GHz ~ 26.5 GHz	2	2.06			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.						

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		A28PROWIFI		
Model		BT532967		
Hardware Version		PS013E-MAIN-V10		
Software Version		20230731		
Ratings		DC 3.3V		
AC		/		
Power Supply	DC	12.0V (Host)		

Frequency Band:	2400 MHz to 2483.5 MHz			
Frequency Range:	2412 MHz to 2462 MHz			
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40			
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)			
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7			
Number of Channels:	IEEE 802.11b/g/n-HT20: 11 IEEE 802.11n-HT40: 7			
Maximum Peak Power:	IEEE 802.11b: 15.06dBm IEEE 802.11g: 13.74dBm IEEE 802.11n-HT20: 13.44dBm IEEE 802.11n-HT40: 13.82dBm			
Antenna Type:	FPC Antenna			
Antenna Gain:	0.52dBi			
Normal Test Voltage:	DC 3.3V			
EUT Test software:	SecureCRT			

5.2. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452	/	/		

Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)

TRF No.: 04-E001-1A

Global Testing , Great Quality.

3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	/	/

5.3. MAXIMUM AVERAGE EIRP

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)	Maximum AVG EIRP (dBm)
b	2412 ~ 2462	1-11[11]	15.06	/
g	2412 ~ 2462	1-11[11]	13.74	/
n HT20	2412 ~ 2462	1-11[11]	13.44	/
n HT40	2422 ~ 2452	3-9[7]	13.82	/

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The W	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Software			SecureCRT					
	Transmit		Test Channel					
Modulation Mode	Antenna	1	NCB: 20MHz NCB: 40MHz			:		
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	Default	Default	Default				
802.11g	1	Default	Default	Default		/		
802.11n HT20	1	Default	Default	Default				
802.11n HT40	1		/		Default	Default	Default	

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

TRF No.: 04-E001-1A

Global Testing, Great Quality.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

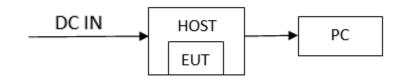
802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	FPC Antenna	0.52

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
Note:		

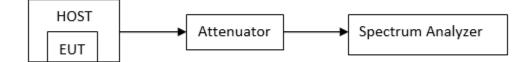
Note: The value of the antenna gain was declared by customer.


5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

Equipment	Manufacturer	Model No.
A28PROWIFI	Winplus Co., Ltd.	BT532967
Host	Winplus Co., Ltd.	BT532967
PC	Lenovo	T14

5.8. SETUP DIAGRAM


Radiated Emission:

TRF No.: 04-E001-1A

Global Testing, Great Quality.

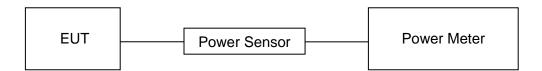
RF Conducted:

6. MEASURING EQUIPMENT AND SOFTWARE USED

	Test Equipment of Conducted RF				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/03/16	2024/03/15
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/03/16	2024/03/15
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A
	Test Equipm	nent of Radiated	emissions below 10	GHz	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A
	Test Equipm	ent of Radiated	emissions above 10	GHz	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17
Horn antenna	A-INFO	3117	246069	2023/09/18	2024/09/17
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17
Horn antenna	ZKJC	3116C	246265	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER


<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth of EUT), the power senor was placed in the RF Control box.

Measure peak emission level, the indicated level is the average output power, after any corrections for external attenuators and cables.

TEST ENVIRONMENT

Temperature	24.1 ℃	Relative Humidity	41%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.2. 6DB BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz
VBW	For 6 dB Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST ENVIRONMENT

Temperature	24.1 ℃	Relative Humidity	41%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	PEAK	
RBW	3 kHz ≤ RBW ≤ 100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST ENVIRONMENT

Temperature	24.1 ℃	Relative Humidity	41%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit				
Conducted at least 20 dB below that in the 100 kHz				
CFR 47 FCC §15.247 (d) Bandedge and Spurious Emissions bandwidth within the band that contains the highest level of the desired power				

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

Shah	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST ENVIRONMENT

Temperature	24.1 ℃	Relative Humidity	41%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

TRF No.: 04-E001-1A

7.5. DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST ENVIRONMENT

Temperature	24.1 ℃	Relative Humidity	41%
Atmosphere Pressure	101kPa		

TEST RESULTS

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m	
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

TRF No.: 04-E001-1A

Global Testing , Great Quality.

²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1	GHz	and	above	30	MHz
---------	-----	-----	-------	----	-----

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP

TRF No.: 04-E001-1A

Global Testing, Great Quality.

Trace Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

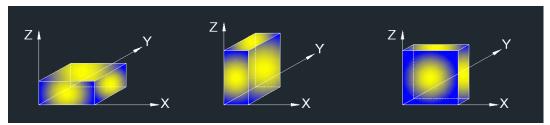
Above 1G

The setting of the spectrum analyser

RBW	MHz			
NBW	EAK: 3 MHz /G: see note 6			
Sweep	Nuto			
Detector	eak			
Trace	lax hold			

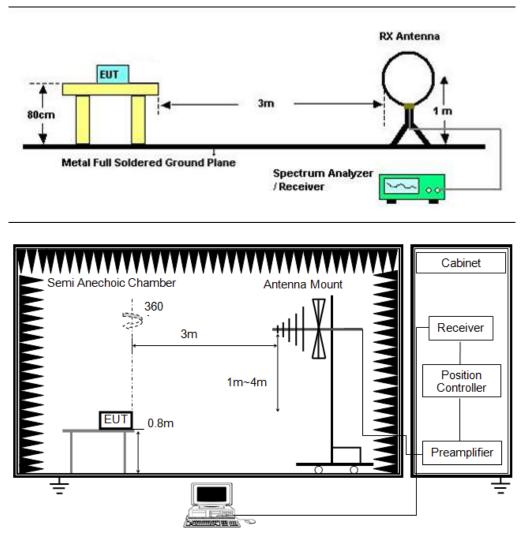
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

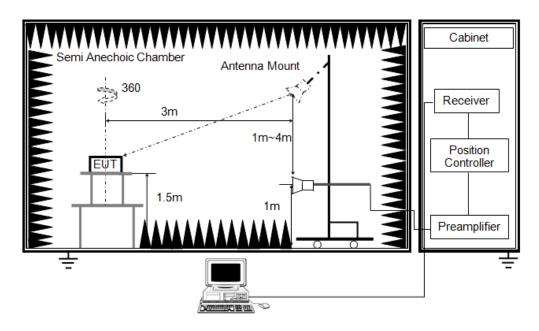
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

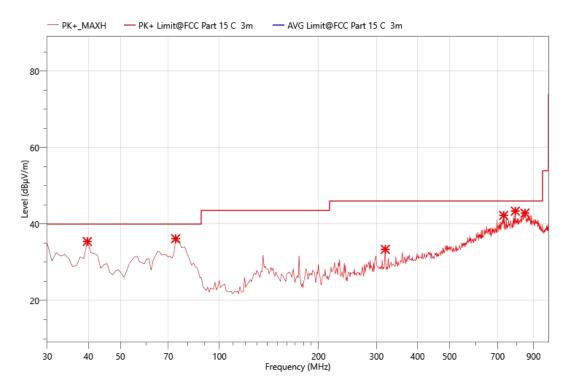

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

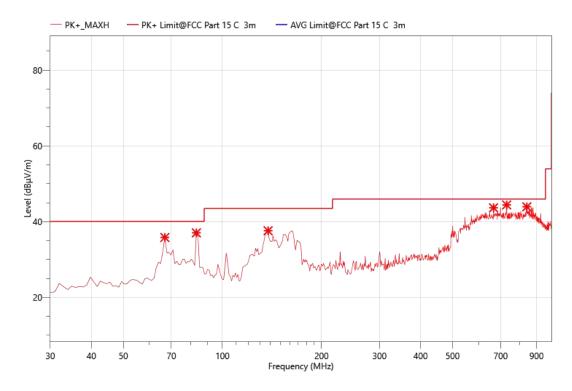
TEST SETUP

TEST ENVIRONMENT


Temperature	24.1 ℃	Relative Humidity	41%
Atmosphere Pressure	101kPa		

TEST RESULTS

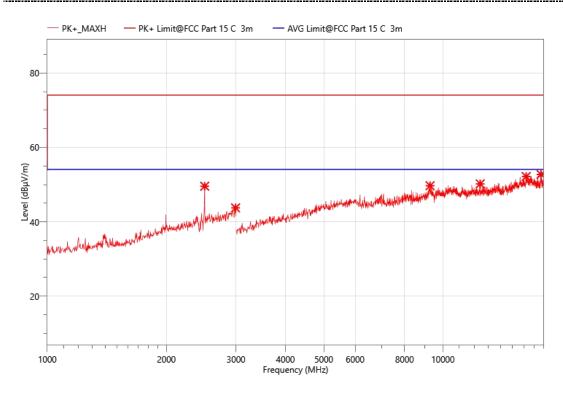
• Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)


We tested all modes, The worst case scenario is as follows:

Mode:	11B 2412MHz
Power:	DC 5V
TE:	Berny
Date	2023/7/31
T/A/P	24.1°C/54%/101Kpa

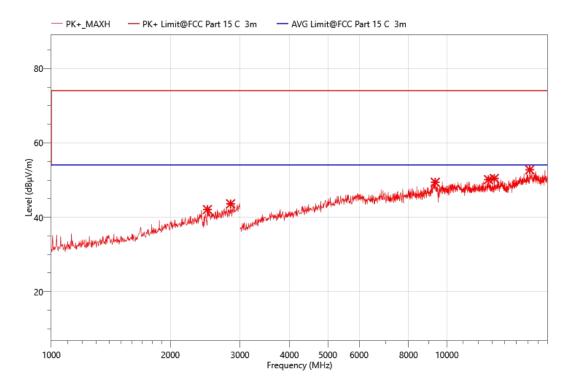
No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Pol.	Corr.
INO.	(MHz)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Det.	P01.	(dB)
1	39.700	40.20	35.43	40.00	4.57	PK+	V	-4.77
2	73.650	41.38	36.17	40.00	3.83	PK+	V	-5.21
3	319.060	33.63	33.39	46.00	12.61	PK+	V	-0.24
4	730.340	31.49	42.26	46.00	3.74	PK+	V	10.77
5	792.420	30.98	43.38	46.00	2.62	PK+	V	12.4
6	847.710	28.90	42.88	46.00	3.12	PK+	V	13.98

Mode:	11B 2412MHz
Power:	DC 5V
TE:	Berny
Date	2023/7/31
T/A/P	24.1°C/54%/101Kpa

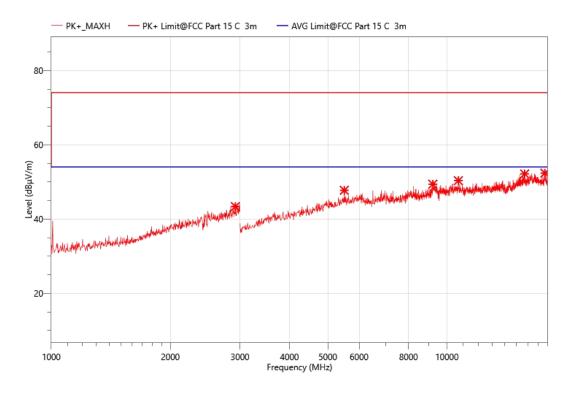


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	66.860	40.06	35.82	40.00	4.18	PK+	Н	-4.24
2	83.350	43.64	37.05	40.00	2.95	PK+	Н	-6.59
3	137.670	43.40	37.60	43.50	5.90	PK+	Н	-5.8
4	666.320	34.43	43.65	46.00	2.35	PK+	Н	9.22
5	730.340	33.65	44.42	46.00	1.58	PK+	Н	10.77
6	840.920	30.04	43.93	46.00	2.07	PK+	Н	13.89

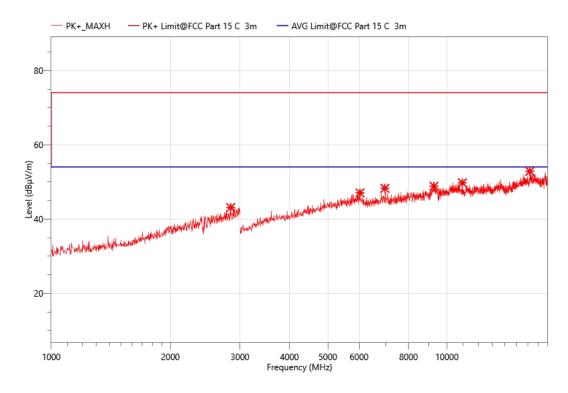
Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor


• Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz) All modes has been tested and the worst result (801.11b) recorded as below

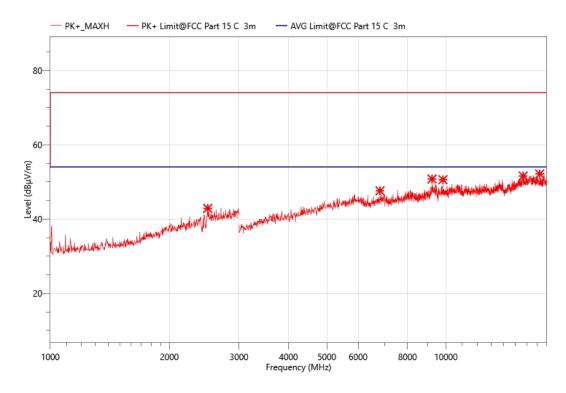
Mode:	11B 2412MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2500.000	61.17	49.57	74.00	24.43	PK+	V	-11.6
2	2992.000	53.07	43.75	74.00	30.25	PK+	V	-9.32
3	9280.000	50.31	49.71	74.00	24.29	PK+	V	-0.6
4	12425.000	50.45	50.20	74.00	23.80	PK+	V	-0.25
5	16240.000	47.91	52.18	74.00	21.82	PK+	V	4.27
6	17705.000	48.07	52.73	74.00	21.27	PK+	V	4.66

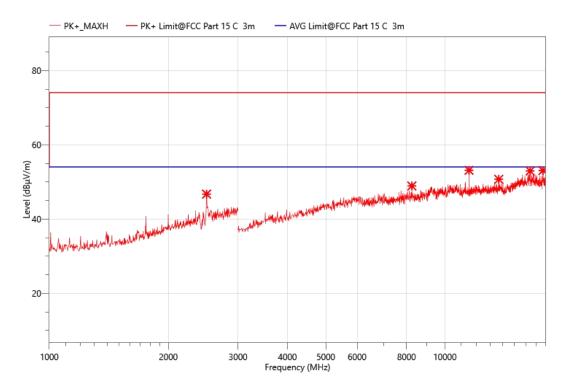
Mode:	11B 2412MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2482.000	53.18	42.10	74.00	31.90	PK+	Н	-11.08
2	2840.000	53.93	43.63	74.00	30.37	PK+	Н	-10.3
3	9345.000	50.36	49.44	74.00	24.56	PK+	Н	-0.92
4	12740.000	49.75	50.15	74.00	23.85	PK+	H	0.4
5	13180.000	50.03	50.46	74.00	23.54	PK+	Н	0.43
6	16195.000	48.62	52.80	74.00	21.20	PK+	Н	4.18

Mode:	11B 2437MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2920.000	53.48	43.37	74.00	30.63	PK+	Н	-10.11
2	5505.000	54.73	47.74	74.00	26.26	PK+	Н	-6.99
3	9215.000	49.99	49.39	74.00	24.61	PK+	Н	-0.6
4	10690.000	50.29	50.34	74.00	23.66	PK+	Н	0.05
5	15725.000	49.04	52.16	74.00	21.84	PK+	H	3.12
6	17680.000	47.36	52.37	74.00	21.63	PK+	Н	5.01

Mode:	11B 2437MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa

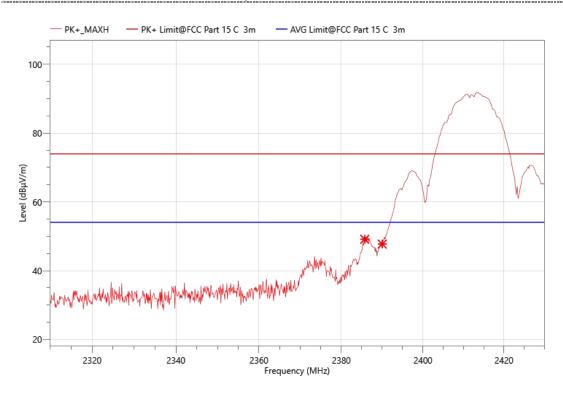

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2842.000	53.47	43.09	74.00	30.91	PK+	V	-10.38
2	6030.000	52.28	47.05	74.00	26.95	PK+	V	-5.23
3	6970.000	51.51	48.29	74.00	25.71	PK+	V	-3.22
4	9275.000	49.44	48.85	74.00	25.15	PK+	V	-0.59
5	10940.000	50.23	49.77	74.00	24.23	PK+	V	-0.46
6	16210.000	48.52	52.84	74.00	21.16	PK+	V	4.32

Mode:	11B 2462MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2500.000	54.46	42.86	74.00	31.14	PK+	V	-11.6
2	6815.000	51.48	47.60	74.00	26.40	PK+	V	-3.88
3	9225.000	51.19	50.79	74.00	23.21	PK+	V	-0.4
4	9830.000	52.05	50.59	74.00	23.41	PK+	V	-1.46
5	15675.000	48.42	51.60	74.00	22.40	PK+	V	3.18
6	17265.000	48.56	52.15	74.00	21.85	PK+	V	3.59

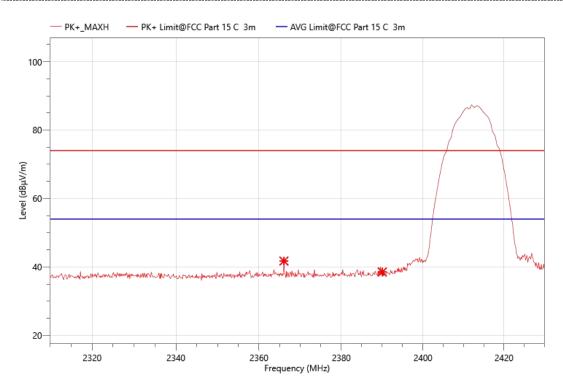
Mode:	11B 2462MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2498.000	57.85	46.72	74.00	27.28	PK+	Н	-11.13
2	8250.000	50.81	48.91	74.00	25.09	PK+	Н	-1.9
3	11510.000	53.07	53.11	74.00	20.89	PK+	Н	0.04
4	13685.000	48.54	50.71	74.00	23.29	PK+	Н	2.17
5	16425.000	48.85	52.94	74.00	21.06	PK+	Н	4.09
6	17690.000	48.14	53.05	74.00	20.95	PK+	Н	4.91

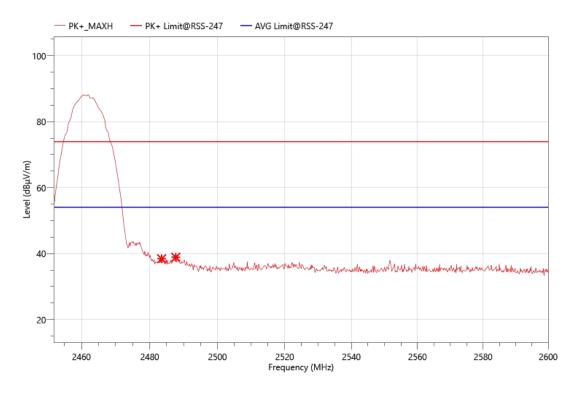

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

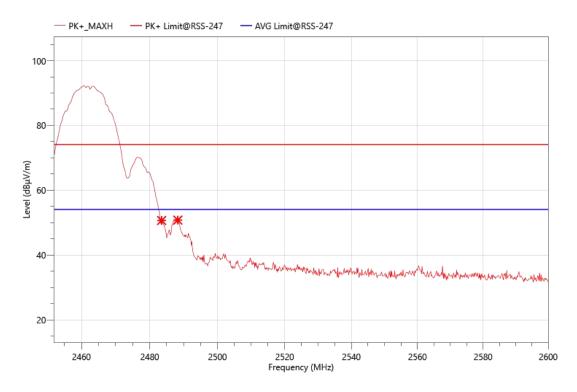
- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
 - (4) Measuring frequencies from 1GHz to 25GHz.


Band Edge

-	and Euge	
	Mode:	11B 2412MHz
	Power:	DC 5V
	TE:	Berny
	Date	2023/8/01
	T/A/P	24.4°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2385.720	69.86	49.12	74.00	24.88	PK+	Н	-20.74
2	2390.000	68.46	47.73	74.00	26.27	PK+	Н	-20.73

Mode:	11B 2412MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2366.040	62.49	41.76	74.00	32.24	PK+	V	-20.73
2	2390.000	59.29	38.56	74.00	35.44	PK+	V	-20.73

Mode:	11B 2462MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2483.500	58.73	38.43	74.00	35.57	PK+	V	-20.3
2	2487.668	59.18	38.90	74.00	35.10	PK+	V	-20.28

Mode:	11B 2462MHz
Power:	DC 5V
TE:	Berny
Date	2023/8/01
T/A/P	24.4°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2483.500	70.98	50.68	74.00	23.32	PK+	Н	-20.3
2	2488.260	71.09	50.81	74.00	23.19	PK+	Н	-20.28

9. ANTENNA REQUIREMENT

REQUIREMENT

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

Systems operating in the 2412-2462MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

DESCRIPTION

Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

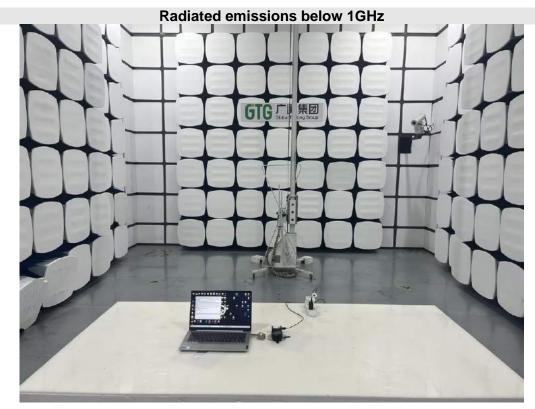
UP

TEST SETUP

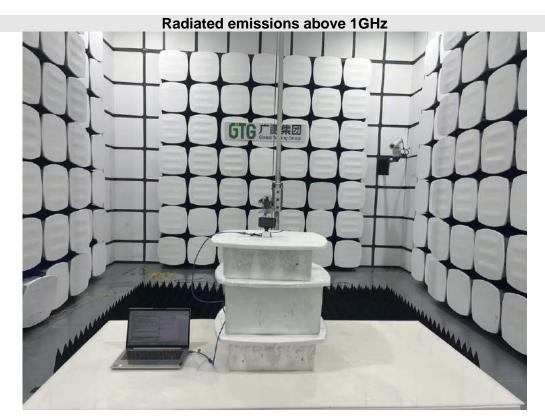
TEST ENVIRONMENT

Temperature	°C	Relative Humidity	
Atmosphere Pressure	kPa		

TEST RESULTS


N/A.

TRF No.: 04-E001-1A

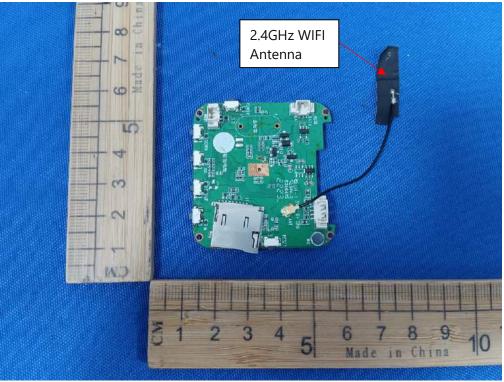

11. TEST DATA

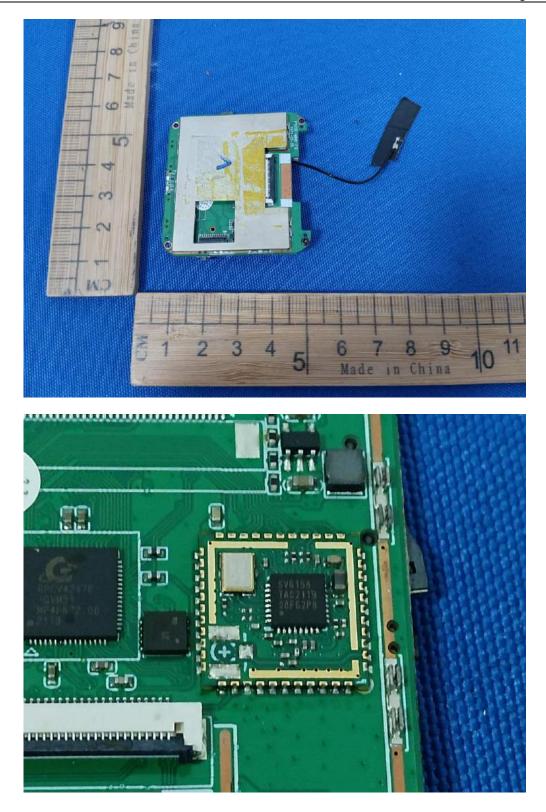
Please refer to section "Test Data" - Appendix A

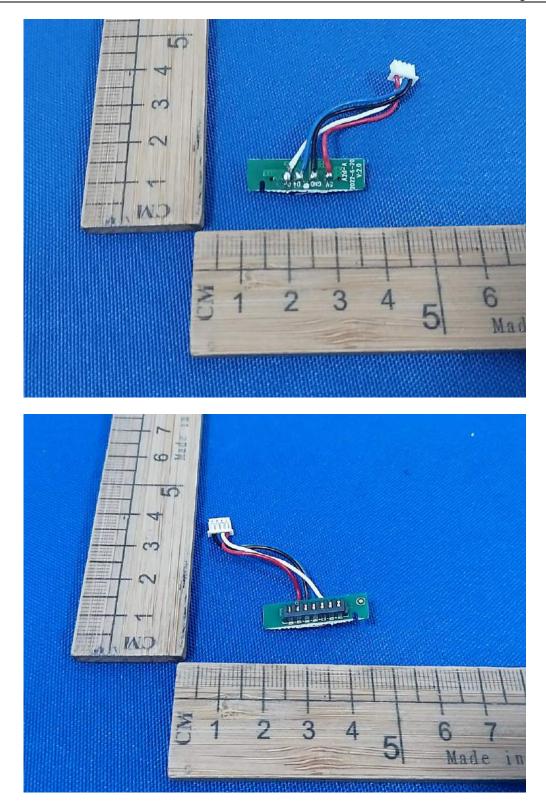
TRF No.: 04-E001-1A

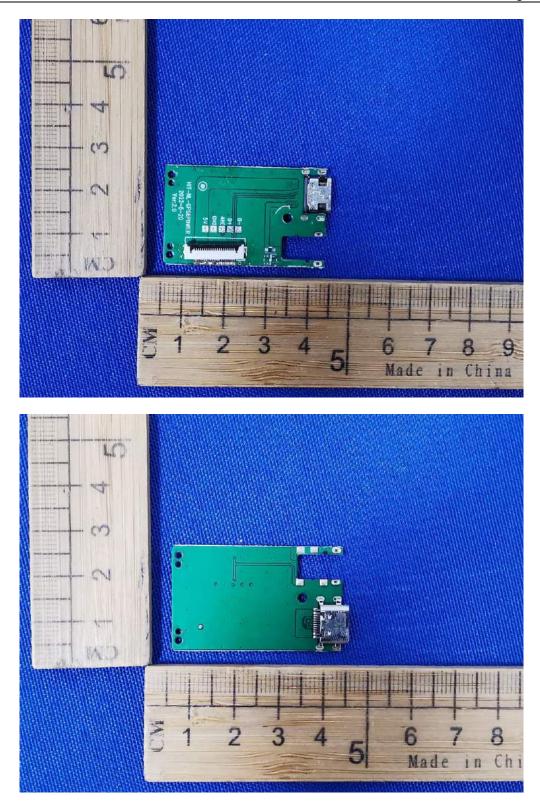
APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

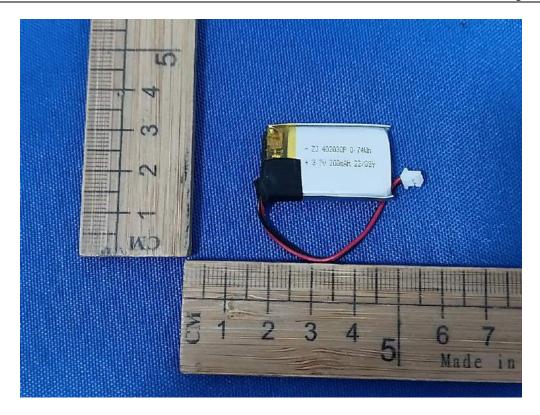
APPENDIX: PHOTOGRAPHS OF THE EUT

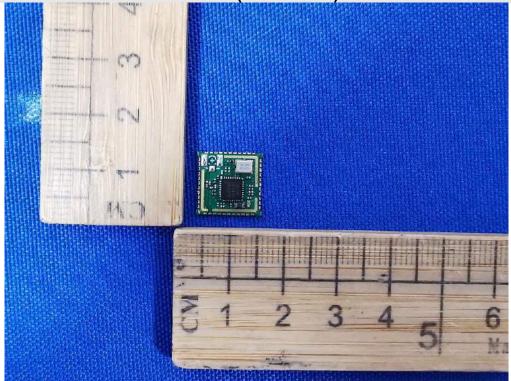


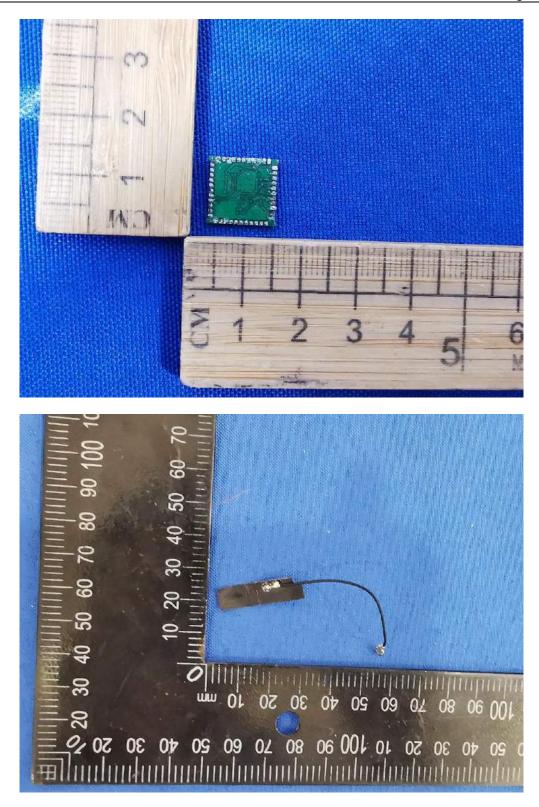


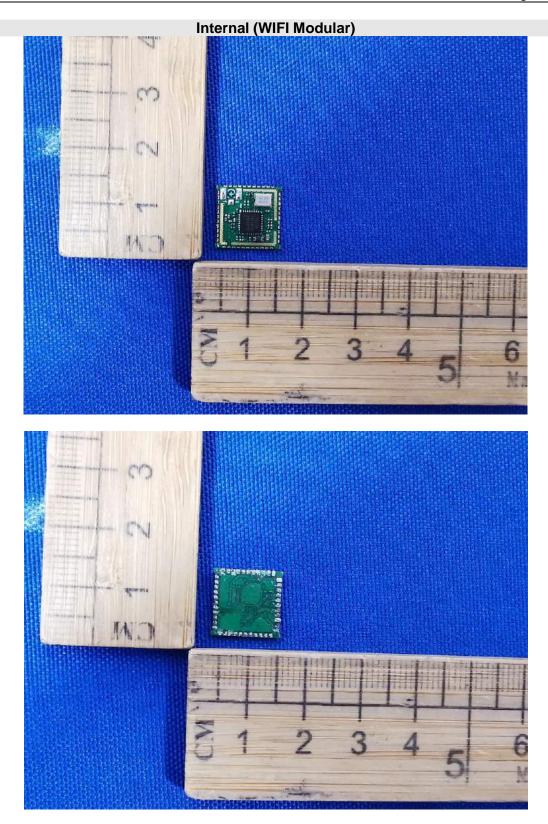

Internal (Host)













External (WIFI Modular)

END OF REPORT

TRF No.: 04-E001-1A

Global Testing , Great Quality.