

Annex 1: Measurement diagrams to TESTREPORT No.: 18-1-0245501T05a

> According to: 47 CFR Part 95 RSS-Gen Issue 5 RSS-251 Issue 2

> > for

Veoneer US, Inc.

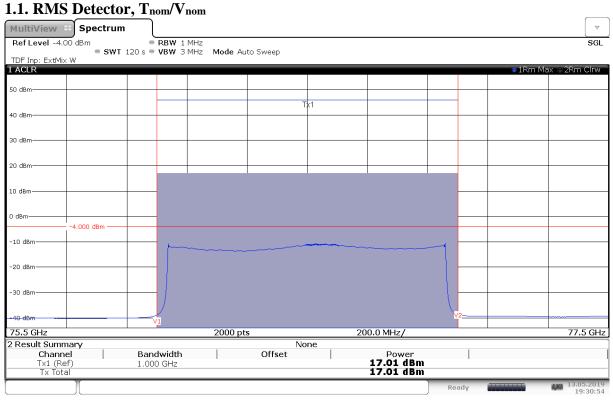
77V12BSM 77 GHz BSM Radar Sensor

> FCC ID: WU877V12BSM IC: 8436B-77V12BSM

Laboratory Accreditation
Deutsche PP-12047 01-01 D-PL-12047 01-03 D-PL-12047-01-04
accredited according to DIN EN ISO/IEC 17025
CETECOM GmbH Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.com • Internet: www.cetecom.com

Table of contents

1. THE MAXIMUM PEAK POWER EIRP / PEAK EIRP SPECTRAL DENSITY. THE MAXIMUM POWER EIRP/ AVERAGE EIRP	
1.1. RMS Detector, T _{nom} /V _{nom}	
1.2. Peak Detector, T_{nom}/V_{nom}	
1.3. RMS Detector, T_{min}/V_{nom}	
1.4. Peak Detector, T _{min} /V _{nom}	
1.5. RMS Detector, T_{max}/V_{nom}	
1.6. Peak Detector, T_{max}/V_{nom}	
1.7. RMS Detector, T_{nom}/V_{min}	
1.8. Peak Detector, T _{nom} /V _{min}	
1.9. RMS Detector, T_{nom}/V_{max}	
1.10. Peak Detector, T_{nom}/V_{max}	
2. MODULATION CHARACTERISTICS	10
2.1. Peak Detector, T _{nom} /V _{nom}	10
2.2. Peak Detector, T_{min}/V_{nom}	
2.3. Peak Detector, T_{max}/V_{nom}	
2.4. Peak Detector, T_{nom}/V_{min}	
2.5. Peak Detector, T_{nom}/V_{max}	
3. OCCUPIED BANDWIDTH	
3.1. Peak Detector, Tnom/Vnom, RBW 10 MHz (only required for 99% RSS Gen Occupied BW)	11
3.2. Peak Detector, T _{nom} /V _{nom} . KBW 10 WHZ (only required for 99% KSS Gen Occupied BW)	
3.3. Peak Detector, T_{min}/V_{nom}	
3.4. Peak Detector, T_{max}/V_{nom}	
3.4. Peak Detector, $T_{\text{nom}}/V_{\text{nom}}$.	
3.5. Peak Detector, T_{nom}/V_{max}	
4. FIELD STRENGTH OF EMISSIONS (BAND EDGE)	12
4.1. RMS Detector, low edge, 74.1 GHz – 75 GHz.	12
4.2. RMS Detector, low edge, 75 GHz – 76.1 GHz	
4.3. RMS Detector, high edge, SigID USB + LSB	
5. FIELD STRENGTH OF EMISSIONS (RADIATED SPURIOUS)	14
5.1. 9 kHz - 30 MHz, laying, valid for f_CW_low + f_CW_center + f_CW_high	14
5.2. 9 kHz - 30 MHz, standing, valid for f_CW_low + f_CW_center + f_CW_high	14
5.3. 30 MHz – 1 GHz, laying, valid for f_CW_low + f_CW_center + f_CW_high	15
5.4. 30 MHz – 1 GHz, standing, valid for f_CW_low + f_CW_center + f_CW_high	15
5.5. 960 MHz – 1 GHz, valid for f_CW_low + f_CW_center + f_CW_high	16
5.6. 1 GHz – 7 GHz, valid for f_CW_low + f_CW_center + f_CW_high	
5.7. 7 GHz – 18 GHz, valid for f_CW_low + f_CW_center + f_CW_high	
5.8. 18 GHz – 40 GHz, ANT VER, valid for f_CW_low + f_CW_center + f_CW_high	
5.9. 18 GHz – 40 GHz, ANT HOR, valid for f_CW_low + f_CW_center + f_CW_high	
5.10. 40 GHz – 55 GHz, ANT HOR + VER, all positions, f_CW_low	
5.11. 40 GHz – 55 GHz, ANT HOR + VER, all positions, f_CW_center	
5.12. 40 GHz – 55 GHz, ANT HOR + VER, all positions, f_CW_high	
5.13. 40 GHz – 55 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW	
5.14. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low	20
5.15. 55 GHz – 75 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_low	
5.16. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_low	
$5.17.55 \text{ GHz} - 75 \text{ GHz}$, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center	
5.18. 55 GHz – 75 GHz, ANT HOR + VER, SigID USD + EDD, all positions, f_CW_center	
5.19. 55 GHz – 75 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_center	
5.20. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high	
5.21. 55 GHz – 75 GHz, ANT HOR + VER, SigID USD + ESD, an positions, f_CW_high	
5.22. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_high	


5.23. 55 GHz – 73.5 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.24. 73.5 GHz – 74.5 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.37. 78.5 GHz – 79.5 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.38. 79.5 GHz – 81 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.39. 81 GHz – 90 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.40. 90 GHz – 98 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.50. 98 GHz – 110 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.59. 110 GHz – 122 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.60. 122 GHz – 138 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.61. 138 GHz – 140 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), 5.64. 140 GHz - 162 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high 45 5.65. 140 GHz – 154 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW 46

5.73. 200 GHz – 220 GHz, ANT HOR + VER	, SigID USB + LSB, all positions, f_CW_center	50
5.74. 200 GHz – 220 GHz, ANT HOR + VER	, SigID USB + LSB, all positions, f_CW_high	50
5.75. 200 GHz – 220 GHz, ANT HOR + VER	, position with the highest power (RMS), FMCW	51
5.76. 220 GHz – 243 GHz, ANT HOR + VER	, SigID USB + LSB, all positions, f_CW_low	51
5.77. 220 GHz – 243 GHz, ANT HOR + VER	, SigID USB + LSB, all positions, f_CW_center	52
5.78. 220 GHz – 243 GHz, ANT HOR + VER	, SigID USB + LSB, all positions, f_CW_high	52
	, position with the highest power (RMS), FMCW	
6.1. T _{nom} /V _{nom}		54 54
6.1. T _{nom} /V _{nom}		54 54
6. FREQUENCY STABILITY 6.1. T _{nom} /V _{nom} 6.2. T _{min} /V _{nom}		54 54 54
6. FREQUENCY STABILITY 6.1. T _{nom} /V _{nom} 6.2. T _{min} /V _{nom} 6.3. T _{max} /V _{nom} 6.4. T _{nom} /V _{min}		54 54 54 55 55
6. FREQUENCY STABILITY 6.1. T _{nom} /V _{nom} 6.2. T _{min} /V _{nom} 6.3. T _{max} /V _{nom} 6.4. T _{nom} /V _{min}		54 54 54 55 55

1. The maximum peak power EIRP / peak EIRP spectral density. The maximum power EIRP/ average EIRP.

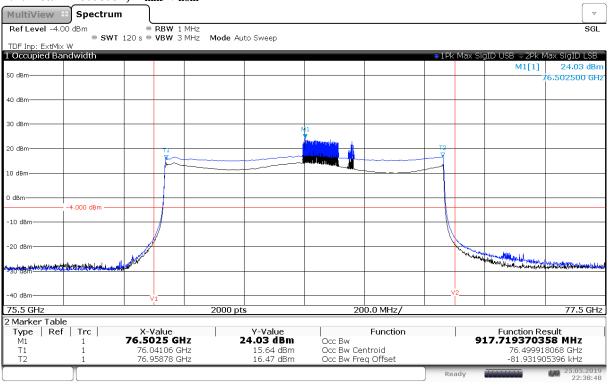
19:30:55 13.05.2019

* -4 dBm is only a reference line from the FSW67. Limit: 50 dBm (Average), 55 dBm (Peak).

1.2. Peak Detector, T_{nom}/V_{nom}

MultiView 8	Spectrum	l										\bigtriangledown
Ref Level -4.00			RBW 1									SGL
TDF Inp: ExtMix '	● S₩T : ₩	120 s 🖷	VBW 3	MHz Mo	de Aut	o Sweep						
1 Occupied Ban									●1P	k Max Sig	gID USB © 2Pk N	4ax SigID LSB
											M1[1]	22.81 dBm
50 dBm												6.531500 GHz
40 dBm												
30 dBm							M1					
							and an allow a					
20 dBm									T2 7			
10 dBm												
10 dBm												
0.45.0												
0 dBm	-4.000 dBm											
-10 dBm												
-10 UBIII									1			
-20 dBm												
-20 UBM		A AND AND AND AND AND AND AND AND AND AN								A CONTRACTOR	Witness Index 16	μ.
- home by a strategies	humuhard and have	and the second									an and a second second	Analis and the states
-30 ubm												
-40 dBm										V2		
			V1		00.1							77 5 011
75.5 GHz 2 Marker Table				20	00 pts		2	00.0 MHz/				77.5 GHz
Type Ref	Trc	X-1	√alue			Y-Value		Function			Function Re	sult
M1	1	76.53	315 GH		2	2.81 dBm	Occ Bw			9:	16.6689004	48 MHz
T1 T2	1		03967 GH 95634 GH			15.38 dBm	Occ Bw Ce					7798 GHz
	1 W	70.5	90034 Gr	72		15.86 dBm	Occ Bw Fr	eq onset			-1.99220	1952 MHz
L									R	eady		19:28:32

19:28:32 13.05.2019



MultiView # Spectrum	<u> </u>						_ ▽
Ref Level -4.00 dBm	■ RBW 1 MHz						SGL
SWT TDF Inp: ExtMix W	120 s 🔍 VBW 3 MHz	Mode Auto Swee	*P				
1 ACLR						●1Rm Ma	ax ⊜2Rm Clrw
50 dBm							
			Tx1				
40 dBm							
30 dBm							
20 dBm							
10 dBm							
0 dBm							
-4.000 dBm							
-10 dBm							
-20 dBm-							
-30 dBm							
	V1				V2 <u></u>		
75.5 GHz		2000 pts		200.0 MHz/			77.5 GHz
2 Result Summary			None				
Channel Tx1 (Ref)	Bandwidth 1.000 GHz	Off	set	Power 18.99 dBm			
Tx Total	1.000 GHZ			18.99 dBn	<u> </u>		
T T					Ready	20000000	25.05.2019
					Reduy		22:34:32

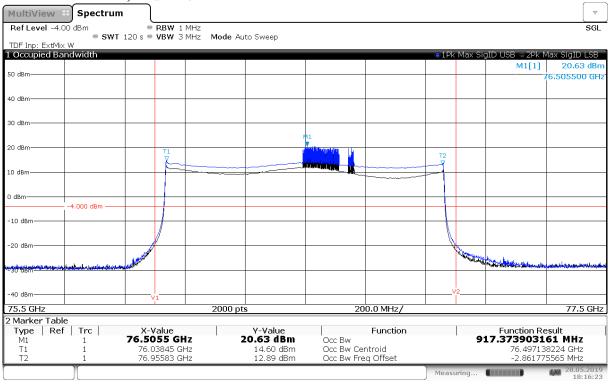
1.3. RMS Detector, T_{min}/V_{nom}

22:34:33 25.05.2019

* -4 dBm is only a reference line from the FSW67. Limit: 50 dBm (Average), 55 dBm (Peak).

1.4. Peak Detector, T_{min}/V_{nom}

22:38:48 25.05.2019



MultiView 🕀 Spectrum							▼
Ref Level -4.00 dBm	● RBW 1 MHz 120 s ● VBW 3 MHz	Mode Auto Sween					SGL
TDF Inp: ExtMix W		Hode Adio Shieop					
1 ACLR						●1Rm Ma	ix ⊜2Rm Clrw
50 dBm							
			Tx1				
40 dBm							
30 dBm							
20 dBm							
10 dBm							
0 dBm							
-10 dBm							
-10 dBm					-1		
-20 dBm							
20 0011							
-30 dBm							
	V1				V2		
75.5 GHz		2000 pts		200.0 MHz/			77.5 GHz
2 Result Summary		N	one				
Channel Tx1 (Ref)	Bandwidth 1.000 GHz	Offset		Power 17.74 dBm			
Tx Total	1.000 GH2			17.74 dBm			
l l				١	Ready		13.05.2019 19:01:01
)			19:01:01

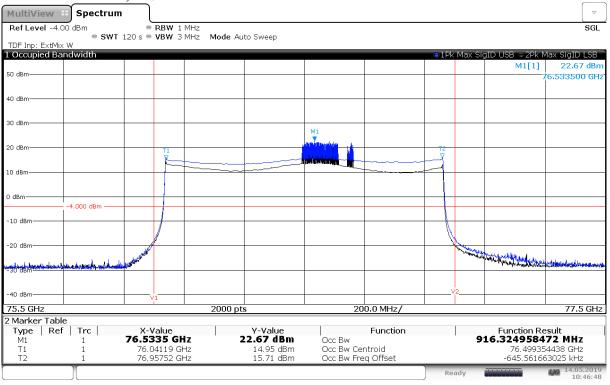
1.5. RMS Detector, T_{max}/V_{nom}

19:01:02 13.05.2019

* -4 dBm is only a reference line from the FSW67. Limit: 50 dBm (Average), 55 dBm (Peak).

1.6. Peak Detector, T_{max}/V_{nom}

18:16:24 28.05.2019



• SWT 120 s • VBW 3 MHz Mode Auto Sweep • ACLR • IRm Max = 2Rm Clrw • 0 dem • IRm • IRm Max = 2Rm Clrw • 0 dem • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm • IRm • IRm • 0 dem • IRm • IRm	MultiView ** Spectrum	ź						
IRm Max = 2Rm Clrv ACLR IRm Max = 2Rm Clrv 50 d8m 1 40 d8m 1 20 d8m 1 40 d8m 1 40 d8m 1 20 d8m 1 40 d8m 1 20 d8m 1 40 d8m 1 20 d8m <td< td=""><td>Ref Level -4.00 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td>SGL</td></td<>	Ref Level -4.00 dBm							SGL
ACLR • 1 Rm Max • 2 Rm Clav 50 dBm 0 Tx1 0 0 40 dBm Tx1 0 0 0 30 dBm 0 0 0 0 10 dBm 0 0 0 0 10 dBm 0 0 0 0 10 dBm 0 0 0 0 20 dBm 0 0 0 0 10 dBm 0 0 0 0 20 dBm 0 0 0 0 10 dBm 0 0 0 0 20 dBm 0 0	TDF Inp: ExtMix W	120 s 🔍 VBW 3 MHz N	lode Auto Sweep					
40 d8m T1 Image: Constraint of the second s	1 ACLR						●1Rm Ma	ix ⊜2Rm Clrw
40 d8m T1 Image: Constraint of the second s	F0 dBm							
40 dBm	SU UBII							
30 dBm	40 dBm			1x1				
20 dBm -4.000 dBm -4.000 dBm -4.000 dBm -4.000 dBm -20 dBm -	+o ubii							
20 dBm -4.000 dBm -4.000 dBm -4.000 dBm -4.000 dBm -20 dBm -	30 dBm							
10 dBm -4.000 dBm -4.000 dBm -4.000 dBm -20								
10 dBm -4.000 dBm -4.000 dBm -4.000 dBm -20	20 dBm							
20 dBm -4.000 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -20 dBm -				1				
-4.000 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -10 dBm -20 dBm	10 dBm							
-4.000 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -10 dBm -20 dBm								
10 dBm 20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -30 dBm -20 dBm -30 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -20 dBm -20 dBm	0 dBm							
20 dBm 20 dBm -30 dBm -30 dBm -40 dBm -100 pts 20.0 MHz/ 77.5 GHz 2 Result Summary None Channel Bandwidth 1 U00 GHz 17.18 dBm								
30 dBm v1 40 dBm v1 75.5 GHz 2000 pts 2000 pts 200.0 MHz/ 75.5 GHz 2000 pts 2 Result Summary None Channel Bandwidth 0 GHz 17.18 dBm	-10 dBm							
30 dBm v1 40 dBm v1 75.5 GHz 2000 pts 2000 pts 200.0 MHz/ 75.5 GHz 2000 pts 2 Result Summary None Channel Bandwidth 0 GHz 17.18 dBm								
40 dBm··········vi vi vi 75.5 GHz 2000 pts 200.0 MHz/ 75.6 GHz 200.0 MHz/ 77.5 GHz 2 Result Summary None Channel Bandwidth Offset TX1 (Ref) 1 000 GHz	-20 dBm							
40 dBm··········vi vi vi 75.5 GHz 2000 pts 200.0 MHz/ 75.6 GHz 200.0 MHz/ 77.5 GHz 2 Result Summary None Channel Bandwidth Offset TX1 (Ref) 1 000 GHz								
VI 2000 pts 200.0 MHz/ 77.5 GHz ? Result Summary None Channel Bandwidth Offset Power Image: Channel of the state of th	-30 dBm							
VI 2000 pts 200.0 MHz/ 77.5 GHz ? Result Summary None Channel Bandwidth Offset Power Image: Channel of the state of th								
Result Summary None Channel Bandwidth Offset Power Tx1 (Ref) 1.000 GHz 17.18 dBm	-40 dBm	V1				V2 <u>—</u>		
Channel Bandwidth Offset Power Tx1 (Ref) 1 000 GHz 17.18 dBm	75.5 GHz	2			200.0 MHz/			77.5 GHz
Tx1 (Ref) 1 000 GHz 17.18 dBm	2 Result Summary	Denducidate		one	Deuter			
			Uffset	I	17.18 dBm			I
	Tx Total				17.18 dBm			
Ready 14.05.2019 10:50:24						Ready		14.05.2019 10:50:24

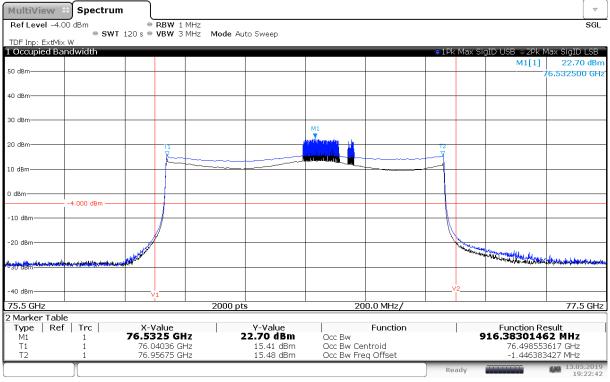
1.7. RMS Detector, T_{nom}/V_{min}

10:50:24 14.05.2019

* -4 dBm is only a reference line from the FSW67. Limit: 50 dBm (Average), 55 dBm (Peak).

1.8. Peak Detector, T_{nom}/V_{min}

10:46:49 14.05.2019


MultiView # Spectrum							_ ▽
Ref Level -4.00 dBm	RBW 1 MHz						SGL
SWT TDF Inp: ExtMix W	120 s 🔍 VBW 3 MHz	Mode Auto Sweep					
1 ACLR						●1Rm Ma	ax ⊜2Rm Clrw
50 dBm							
			Tx1				
40 dBm							
30 dBm							
20 dBm							
10 dBm							
TO dBm							
0 dBm							
-4.000 dBm							
-10 dBm	h						
-20 dBm							
-30 dBm							
-40-dBm					V2		
	V1						
75.5 GHz		2000 pts		200.0 MHz/			77.5 GHz
2 Result Summary	Bandwidth	Offset	None	Deuts	1		1
Channel Tx1 (Ref)	1.000 GHz	Uffset		Power 17.28 dBm			I
Tx Total	1,000 012			17.28 dBm			
r m					Ready		13.05.2019
					Roddy		19:18:24

1.9. RMS Detector, T_{nom}/V_{max}

19:18:24 13.05.2019

* -4 dBm is only a reference line from the FSW67. Limit: 50 dBm (Average), 55 dBm (Peak).

19:22:43 13.05.2019

2. Modulation characteristics

2.1. Peak Detector, Tnom/Vnom See diagram 1.2

2.2. Peak Detector, Tmin/Vnom See diagram 1.4

2.3. Peak Detector, T_{max}/V_{nom} See diagram 1.6

2.4. Peak Detector, Tnom/Vmin See diagram 1.8

2.5. Peak Detector, Tnom/Vmax See diagram 1.10

3. Occupied bandwidth

3.1. Peak Detector, Tnom/Vnom, RBW 10 MHz (only required for 99% RSS Gen Occupied BW)

10:34:12 27.05.2019

3.2. Peak Detector, Tnom/Vnom

See diagram 1.2

3.3. Peak Detector, Tmin/Vnom

See diagram 1.4

3.4. Peak Detector, Tmax/Vnom See diagram 1.6

3.5. Peak Detector, Tnom/Vmin See diagram 1.8

3.6. Peak Detector, Tnom/Vmax See diagram 1.10

^{* -4} dBm is only a reference line from the FSW67. Limit: 50 dBm (Average), 55 dBm (Peak).

4. Field strength of emissions (band edge) 4.1. RMS Detector, low edge, 74.1 GHz – 75 GHz

	Spectrum		50 , / 111 0		UII				
Ref Level -2		• RBW 1	MHz						SGL
	SW1	54 s ● VBW 3	MHz Mode Auto	Sweep					JUE
TDF Inp: ExtMi								●1Rm Ma	ax © 2Rm Clrw
5 dBm									
-0-dBm	—H1 0.000 dBm —								
-5 dBm									
-10 dBm									
-15 dBm									
-20 dBm	-21.000	1 d0m							
	-21.000								
-25 dBm									
-30 dBm									
-35 dBm									
-40 dBm									
	V1								
74.1 GHz			900 pts		91	0.0 MHz/			75.0 GHz
l							Ready		16:57:39

16:57:40 19.05.2019

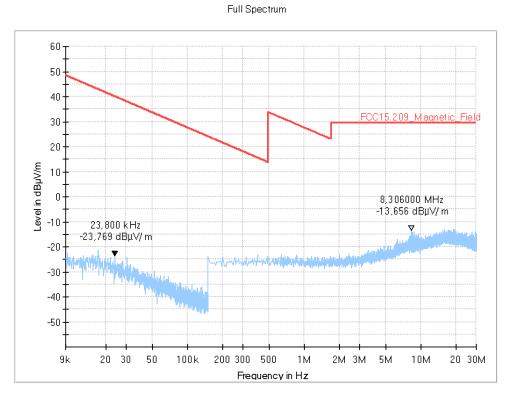
* -21 dBm is only a reference line from the FSW67. Limit is 0 dBm.

4.2. RMS Detector, low edge, 75 GHz – 76.1 GHz

TDF Inp: Ext	tMix W	W 3 MHz Mode Auto				 	
Frequence							ax ⊜2Rm Clrv
) dBm						M1[1]	
						#0	76.043500 G
5 dBm-	-4.000 dBm					 	
10 dBm							
10 aBm							MI
							I I I
15 dBm							
20 dBm							L
25 dBm							
30 dBm							<u>├ </u>
-35 dBm							
00 00							
40 dBm						 	1
45 dBm							<u> </u>
							V1
75.0 GHz		1100 pt		11	.0.0 MHz/		76.1 Gł

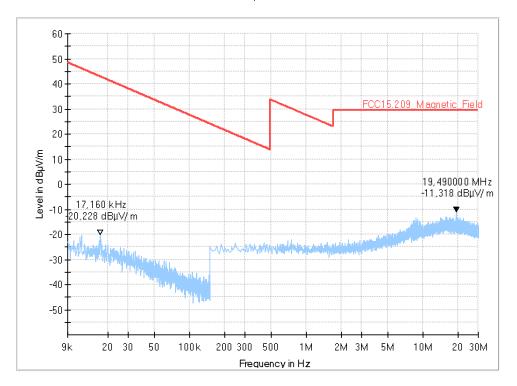
20:32:45 25.05.2019

* -4 dBm is only a reference line from the FSW67. Limit is 0 dBm.



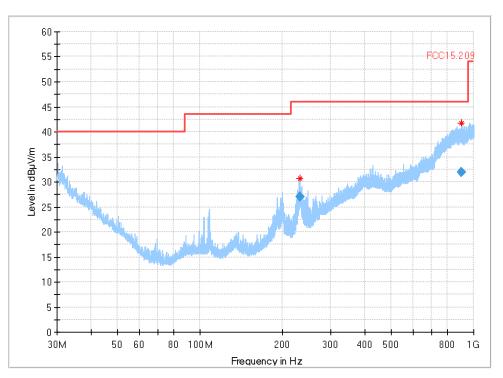
Annex 1 to Test Report 18-1-0245501T05a, Page 13 of 56

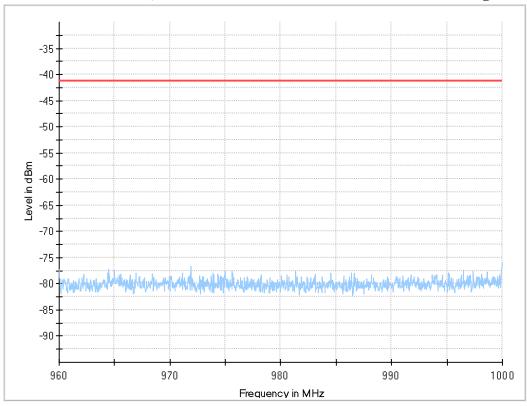
4.3. RMS Detector, high edge, SigID USB + LSB


No emissions above 77 GHz respectively 81 GHz. See diagrams in from section 5.36. 77 GHz – 78.5 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW to 5.38. 79.5 GHz – 81 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW. * Limit is 0 dBm.

5. Field strength of emissions (radiated spurious) 5.1. 9 kHz – 30 MHz, laying, valid for f_CW_low + f_CW_center + f_CW_high

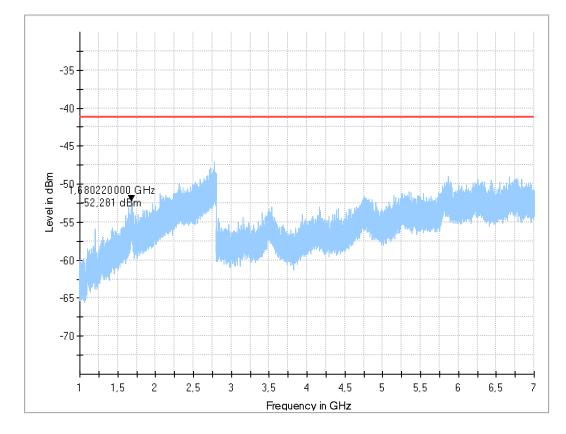
5.2. 9 kHz – 30 MHz, standing, valid for f_CW_low + f_CW_center + f_CW_high Full Spectrum

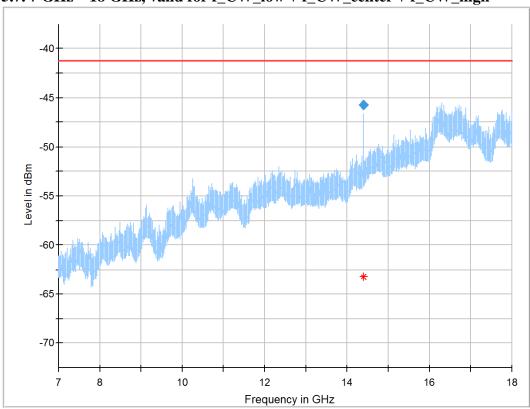




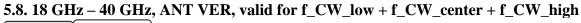
5.3. 30 MHz – 1 GHz, laying, valid for f_CW_low + f_CW_center + f_CW_high Full Spectrum

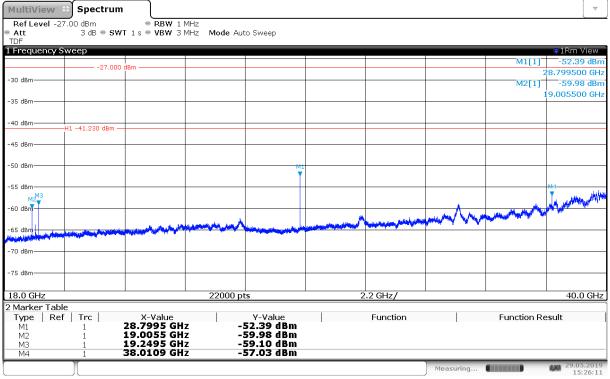
5.4. 30 MHz – 1 GHz, standing, valid for f_CW_low + f_CW_center + f_CW_high Full Spectrum



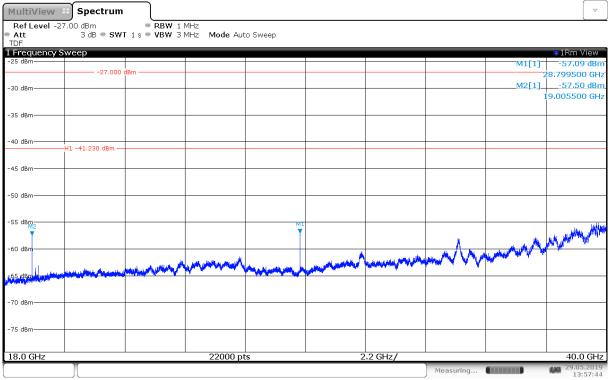


5.5. 960 MHz – 1 GHz, valid for f_CW_low + f_CW_center + f_CW_high


5.6. 1 GHz – 7 GHz, valid for f_CW_low + f_CW_center + f_CW_high

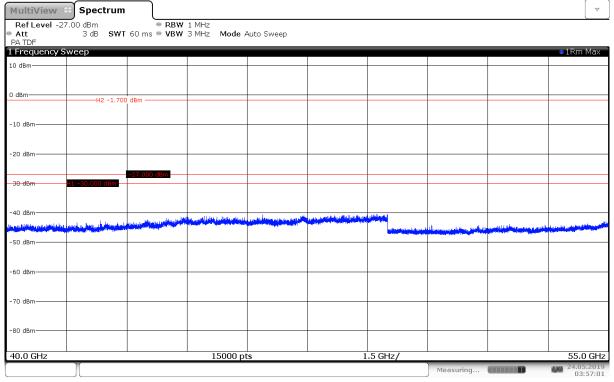


5.7. 7 GHz – 18 GHz, valid for f_CW_low + f_CW_center + f_CW_high



15:26:11 29.05.2019

* -27 dBm is only a reference line from the FSW67. Limit is -41.23 dBm.


5.9. 18 GHz – 40 GHz, ANT HOR, valid for f_CW_low + f_CW_center + f_CW_high

13:57:44 29.05.2019

* -27 dBm is only a reference line from the FSW67. Limit is -41.23 dBm.

5.10. 40 GHz – 55 GHz, ANT HOR + VER, all positions, f_CW_low

03:57:02 24.05.2019

* -27 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

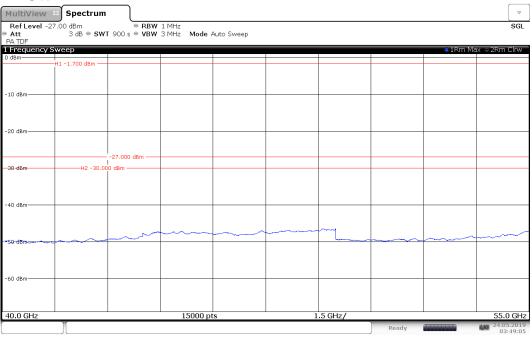
5.11. 40 GHz – 55 GHz, ANT HOR + VER, all positions, f_CW_center

MultiView	Spectrum								
Ref Level -27 Att PA TDF		● RBW 60 ms ● VBW	1 MHz 3 MHz Mode A	Auto Sweep					
1 Frequency S	weep								1Rm Max
10 dBm									
10 UBM									
0 dBm	H2 -1.700	dDee							
	H2 -1.700								
-10 dBm									
-20 dBm									
		-27.000 dBm							
- 30 dBm	H1 -30.000 dBm —								
-40 dBm		يترابر ا	ومقالعهم والحمان ويطالعون المرواريان	and the second	المربانية في المربسان المراجع	a antice and			
ر المحمد بين المنظلين من	والمارية الأفسرين والتركي وتقرب		The second s	And a second	the state of the s	to an in statistic cost	and a strange in the state	ويأسرون ويتعارز فالمتعاور والمعاور	فتعاسما والعراق فأتريق والمتعالية ومسا
-50 dBm	an Ballan Jarihan Sama Manaharan	and the second second					and which does not starting the second starting and the starting starting to the starting s	Property and a second property of	And the second
-60 dBm									
70 40									
-70 dBm									
00.10									
-80 dBm									
40.0 GHz	1	1	15000 pt	-e	1			1	55.0 GHz
			13000 pi	.3	1			A	04.05.0040
L							Measuring		04:00:25

04:00:26 24.05.2019

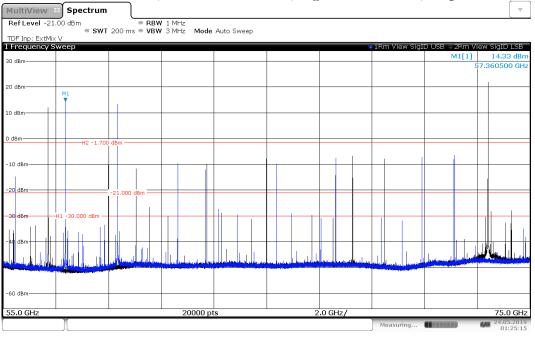
* -27 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.12. 40 GHz – 55 GHz, ANT HOR + VER, all positions, f_CW_high


MultiView	😑 Spectrum								▼
Ref Level -2 Att		• RBW 60 ms • VBW		Auto Sweep					
PA TDF 1 Frequency	Sween								• 1Rm Max
10 dBm	Змеер								
10 0011									
0 dBm									
o ubin	H2 -1.700) dBm							
-10 dBm									
-10 uBm									
-20 dBm									
		-27.000 dBm							
- 30 dBm	—H1 -30.000 dBm —								
-40 dBm	an de sector des des titles a traces	مقبلهن ويقدون والراجان والا	and the state of the second state	والمتلافين ويقتدون ويتحاطه التواعد	a. a. and the standard and the basis	NICEAL AND			
a second train any partition of a solution			r kung perseli ka pairi di sasa na interneti di di ka di		and the second	interesting the start	adadan Laadda ay ddibliaan araadiilaan a	وأحدومها أفلت فللمعاط ومتاركته	
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm	+								
10.0.011			15000						
40.0 GHz	T		15000 pt	ts	1	.5 GHz/			55.0 GHz
							Measuring		04:03:12

04:03:12 24.05.2019

* -27 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

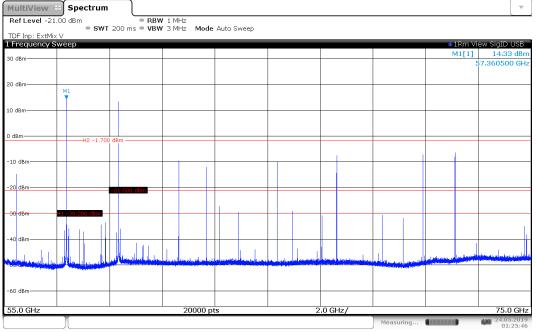

5.13. 40 GHz – 55 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

03:49:06 24.05.2019

* -27 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.14. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

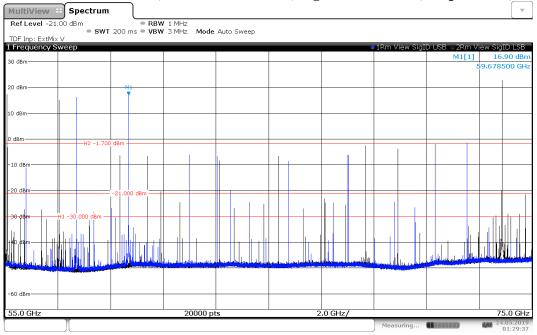
01:25:15 24.05.2019


5.15. 55 GHz – 75 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_low

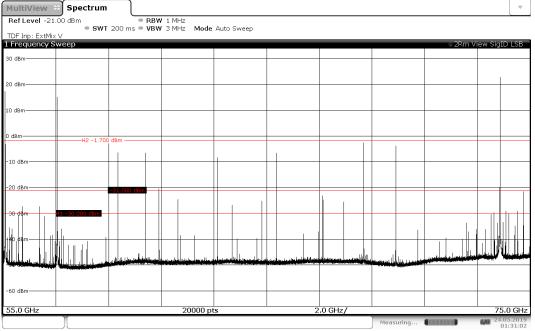
• SWT 200 ms • VBW 3 MHz Mode Auto Sweep Frequency Sweep • 2Pm View SigID LSE 0 dBm 0 0 dBm <th>MultiView 🗄 Spectr</th> <th>um</th> <th></th> <th></th> <th></th> <th></th> <th>∇</th>	MultiView 🗄 Spectr	um					∇
The Tup: ExtMix V Frequency Sweep 0 2Pm View Siglt LSE 0 dBm 0 10 dBm 0 20 dBm 0 10 dBm 0	Ref Level -21.00 dBm	RBW	1 MHz				
0 dBm 0 dBm dBm H2 -1.700 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 d	TDF Inp: ExtMix V	5W/1 200 ms - VBW	3 MHZ Mode Auto Swee	p			
0 dBm	1 Frequency Sweep						⊙2Rm View SigID LSB
0 dBm dBm +12 -1.700 dBm 10 dBm 20 dBm 30 dBm 30 dBm 30 dBm 55.0 GHz 2000 pts 2.0 GHz/ 2.0 GHz/	30 dBm						
0 dBm dBm +12 -1.700 dBm 10 dBm 20 dBm 30 dBm 30 dBm 30 dBm 55.0 GHz 2000 pts 2.0 GHz/ 2.0 GHz/							
dBm H2 -1.700 dBm 10 dBm 20 dBm 30 dBm 4 dBm 4 dBm 55.0 GHz 2000 pts 2.0 GHz/ 2.0 GHz/	20 dBm						
dBm H2 -1.700 dBm 10 dBm 20 dBm 30 dBm 4 dBm 4 dBm 55.0 GHz 2000 pts 2.0 GHz/ 2.0 GHz/							
H2 - 1.700 dbm 10 dbm 20 dbm 10 dbm 11 dbm 12 dbm 14 dbm 14 dbm 15.0 GHz 20000 pts 2.0 GHz/ 2.0	10 dBm						
H2 - 1.700 dbm 10 dbm 20 dbm 10 dbm 11 dbm 12 dbm 14 dbm 14 dbm 15.0 GHz 20000 pts 2.0 GHz/ 2.0							
10 dBm 20 dBm 30 dBm 11 2000 TM 12 2000 TM 14 dBm 14 dBm 15 50 GHz 2000 pts 2000 pts 2.0 GHz/ 2.0 GHz/ 2	0 dBm						
20 dBm 30 dBm 41 dBm 42 dBm 45 0 GHz 2000 pts 2.0 GHz/ 75.0 GHz 21052019	H2 -	1.700 dBm					
20 dBm 30 dBm 41 dBm 42 dBm 45 0 GHz 2000 pts 2.0 GHz/ 75.0 GHz 21052019	-10 dBm					_	
30- d6m B=00000 E8m Image: Constraint of the second s							
30-d6m B=00000 Em -	-20 dBm						
hd dBm dBm <t< td=""><td>20 0011</td><td>-21.000 dBm</td><td></td><td></td><td></td><td></td><td></td></t<>	20 0011	-21.000 dBm					
hd dBm dBm <t< td=""><td>20 40</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	20 40						
60 dBm 20000 pts 2.0 GHz/ 75.0 GHz							
60 dBm 20000 pts 2.0 GHz/ 75.0 GHz							
60 dBm 55.0 GHz 20000 pts 2.0 GHz/ 75.0 GHz 24.05/2019	-+U dBm-						
55.0 GHz 20000 pts 2.0 GHz/ 75.0 GHz 24.05.2019	ملام الأربية	La contra la successione de la contra de la	المستقطية والمستحد والمستقلين والمرا	معادية والمعربين المعادية والمعاد	والانتخاذ فالعراب والمعاد والمعاد		مصفيا الملاقة فالمستجمع المتعا والمسالية الملعان
55.0 GHz 20000 pts 2.0 GHz/ 75.0 GHz 24.05.2019							
55.0 GHz 20000 pts 2.0 GHz/ 75.0 GHz 24.05.2019							
24.05.2019	-60 dBm						
24.05.2019	55.0 GHz		20000 pts		2.0 GHz/		 75.0 GHz
	T T		20000 pta			Measuring	

01:26:05 24.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

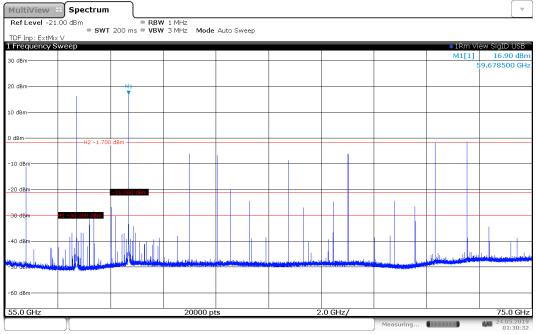

5.16. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_low

01:25:47 24.05.2019

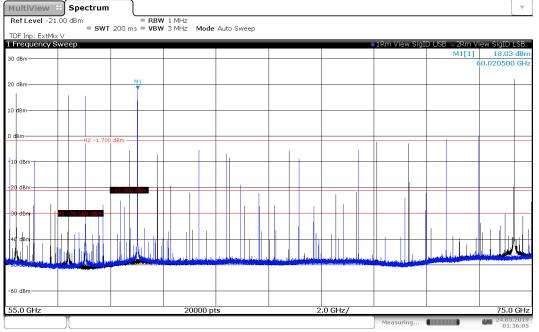

5.17. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

^{01:29:37 24.05.2019}

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).


5.18. 55 GHz – 75 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_center

01:31:02 24.05.2019

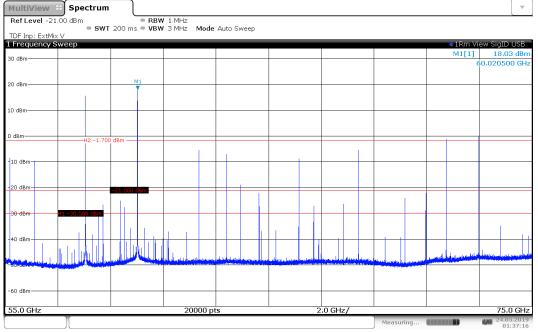

5.19. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_center

01:30:32 24.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.20. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

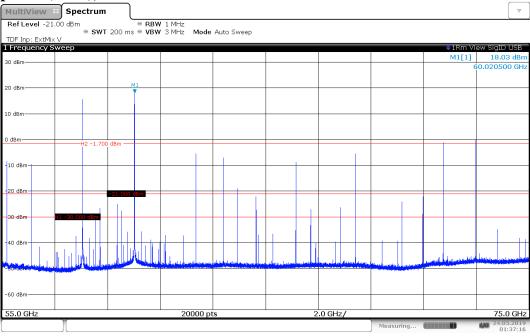
01:36:05 24.05.2019


5.21. 55 GHz – 75 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_high

MultiView 🕀 Spectrum	1				\bigtriangledown
Ref Level -21.00 dBm	● RBW 1 MHz 200 ms ● VBW 3 MHz	Mada Anto Course			
TDF Inp: ExtMix V		Mode Auto Sweep			
1 Frequency Sweep				© 2R	m View SigID LSB
30 dBm					
20 dBm					
10 dBm					
0 dBm H2 -1.700	dBm				
-10 dBm					
-20 dBm	-21.000 dBm				
- 30 dBm					
44 dBm					
	والمتحرفين وفر والماطة ومتعمل والمتحر ورو	undal de meditorie ha demaile d	a		
-60 dBm					
55.0 GHz	20	000 pts	2.0 GHz/		75.0 GHz
				Measuring	24.05.2019 01:37:40

01:37:41 24.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).


5.22. 55 GHz – 75 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_high

01:37:16 24.05.2019

5.23. 55 GHz – 73.5 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

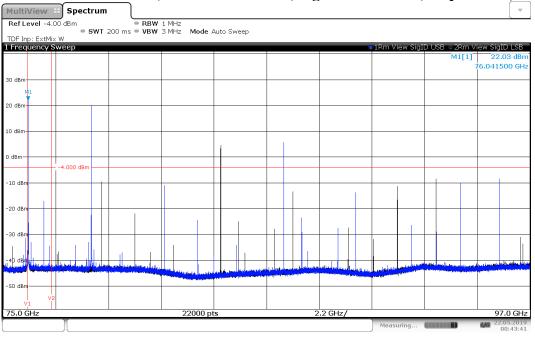
01:37:16 24.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.24. 73.5 GHz – 74.5 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

MultiView	🗉 Spectrum	l							∇
RefLevel -2		RBW 1							SGL
TDF Inp: E×tM		60 s ● VBW 3	8 MHz Mode Au	to Sweep					
Frequency							●1Rm Max Sig	ID USB ⊜2Rm I	4ax SigID LSB
dBm	-H1 0.000 dBm								
	H2 -1.700	dBm —							
10 dBm									
20 dBm		-21.000 dBm							
30 dBm									
40 dBm									
10 dbiii									
	+		+				· · · · ·		
50 dBm			1						
73.5 GHz			1000 pt	5	10	0.0 MHz/		1	74.5 GH
)(1000 pc			/	Ready		24.05.201

01:01:37 24.05.2019


5.25. 74.5 GHz – 75 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

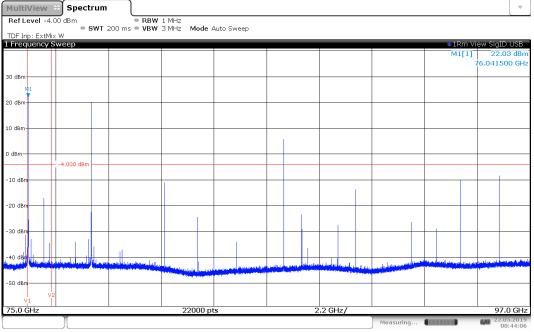
MultiView									~
Ref Level -21.		RBW 30 s = VBW	1 MHz 3 MHz Mode Au	ito Sween					SG
TDF Inp: ExtMix	V	000 - 100	o nine iniode na	aco onteep					
Frequency Sy	weep							●1Rm N	√lax ©2Rm Clrw
) dBm									
	H2 -1.700) dBm							
5 dBm									
10 dBm									_
-15 dBm									-
20 dBm		-21.000 dBm							
-25 dBm									+
-30 dBm									
35 dBm									
40 dBm									-
45 dBm						+		~	+
74.5 GHz			500 pt	S		50.0 MHz/	· · · · · ·		75.0 GH
Spectrogram	●1Rm Max	- 46dBm -4	OdBm -35dBm	1 -30dBm	-25dBm	-20dBm -15	IBm -10dBm	-5dBm	OdBm 4dB
74.5 GHz			500 pt:	5		75.0 GHz			Frame #
	Y						Ready		24.05.201 01:05:3

01:05:32 24.05.2019

* -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and 0 dBm (ISED).

5.26. 75 GHz – 97 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

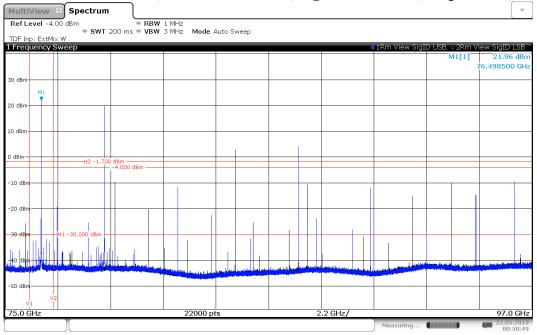
00:43:41 22.05.2019


5.27. 75 GHz – 97 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_low

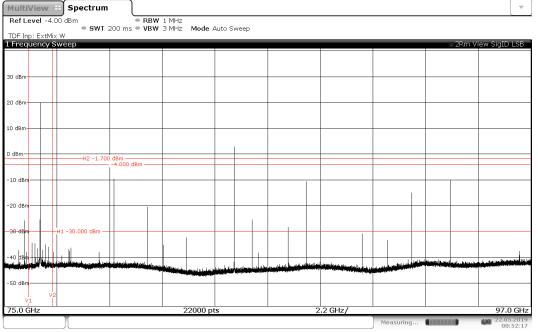
MultiView	Spectrum								∇
Ref Level -4.00	dBm	RBW							
TDF Inp: ExtMix	● SWT 200 m: W	s 🖷 ARM	3 MHz Mode /	Auto Sweep					
1 Frequency Sv			2				1	⊙2Rm Viev	/ SigID LSB
30 dBm									
20 dBm									
10 dBm									
0 dBm									
;	-4.000 dBm								
-10 dBm									
-20 dBm									
-20 UBI		1							
						1			
-30 dBm									
-4D dBm	ومراجع والانتقار والمحقوم ومرقع والمقاطع				L. J		فقنا عدودا ورار	ومعارفه ومروعي ومعاوله فالمعا	ويدانهم المعربين
A CONTRACT OF A	and the second							and the second	Manager
-50 dBm									
V1 V2									
75.0 GHz			22000 pt	ts	2	2.2 GHz/	1		97.0 GHz
	T						Measuring		a 22.05.2019
							J		00:43:14

00:43:15 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).


5.28. 75 GHz – 97 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_low

00:44:06 22.05.2019

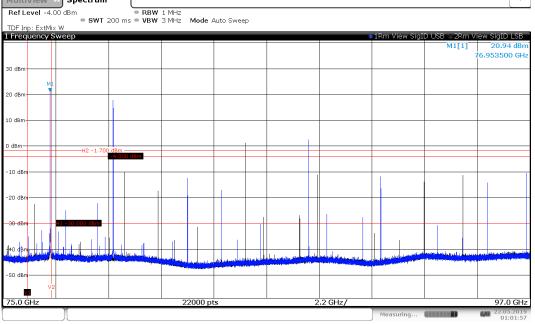

5.29. 75 GHz – 97 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

00:50:50 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.30. 75 GHz – 97 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_center

00:52:18 22.05.2019


MultiView B Spectrum Ref Level -4.00 dBm RBW 1 MHz SWT 200 ms VBW 3 MHz Mode Auto Sweep TDF Inp: ExtMix W 1 Frequency Sweep 1Rm Vie w SigID USB 21.96 dBr 5.498500 GH M1[1] 30 dBn 20 dBr 10 dB) dBn 10 dB -20 dBr 40 HBr -50 dB 22000 nt 97.0 GHz 75.0 GH GHz

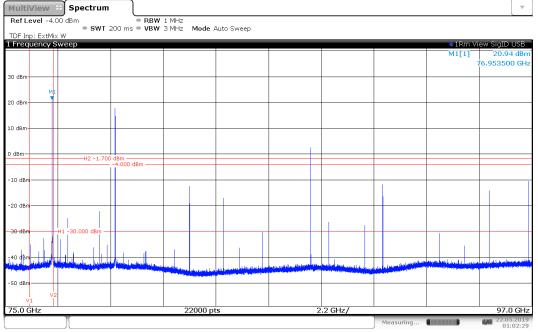
5.31. 75 GHz – 97 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_center

00:51:52 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.32. 75 GHz – 97 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

01:01:57 22.05.2019


5.33. 75 GHz – 97 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_high

MultiView	Spectrum	l													\bigtriangledown
Ref Level -4.0		RBW													
TDF Inp: ExtMix	● SWT 200 m W	s 🖷 VBW	3 MHz M	lode ∌	Auto Sweej	р									
Frequency S												⊖ 2F	km V	iew SigID	LSB
IO dBm															
0 dBm															
0 dBm										-					
dBm															
	H2 -1.700 dBm - -4.000	dBm													
10 dBm															
10 0.0.1															
20 dBm		1													
20 aBm															
30 dBm	H1 -30.000 dBm			1											
			1								1				
40 dBm	والمعادية ومنهج والمرور ومراجع والعرار	Harabeen be 14					1.1		والمتعاطية المتعاطية المتعادية		فعريبار ر	and the stand of the state			u, it,
					والمعالم والمعالية	فطيغنية	d, hade out on the start				and a street	a succession of the second	î		No. of Street
50 dBm										-					
V1 V2															
75.0 GHz			220	00 pt	l IS			2	.2 GHz/					97.0	0 GH
0.0 0.12	T		220							Manag	uring			AM 22.05	5.201

01:02:56 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.34. 75 GHz – 97 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_high

01:02:29 22.05.2019

5.35. 75 GHz – 76 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

MultiView	= Spectrum							~
Ref Level -4	4.00 dBm SWT 60 s VBW	1 MHz 3 MHz Mode Auto	Sween					SG
DF Inp: ExtN	4i× W	onne modernad	oneep					
Frequency							●1Rm M	ax ⊜2Rm Clrw
dBm	H1 0.000 dBm							
	H2 -1.700 dBm							
5 dBm	-4.000 dBm							
10 dBm								
15 dBm								
20 dBm								
25 dBm								
30 dBm								
55 abiii								
35 dBm								
+0 dBm								<u> </u>
45 dBm								
5.0 GHz		1000 pt	<u> </u>	10	0.0 MHz/	1		76.0 GH
	Т					Ready		21.05.201

22:27:22 21.05.2019

*-4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and 0 dBm (ISED).

5.36. 77 GHz – 78.5 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

* -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.37. 78.5 GHz – 79.5 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

MultiView	Spectrum								▽
Ref Level -4.0		BBW 1N							SGL
TDF Inp: ExtMix	= SWI 6	90 S = ARM 3 M	1Hz Mode Auto	o Sweep					
1 Frequency S	weep						1Rm Max Sig	ID USB © 2Rm N	Иах SigID LSB
10 dBm									
0 dBm									
	H2 -1.700	-4.000 dBm							
-10 dBm									
-10 0Bm									
-20 dBm				~~~~~				~~	
00 HP									
- 30 dBm	H1 -30.000 dBm								
UDIII									
-50 dBm									
78.5 GHz			1000 pt:		10	0.0 MHz/			79.5 GHz
7 010 012	Y		1000 pt		10	010 111127	Deedu		21.05.2019
L							Ready		22:44:11

22:44:12 21.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.38. 79.5 GHz – 81 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

MultiView	😑 Spectrum	1								∇
RefLevel -4		= RBW 11								SGL
TDF Inp: ExtM		90 s 🖷 VBW 3 f	MHz Mode Auto	o Sweep						
1 Frequency	Sweep						●1Rm Max Sig	ID USB ⊜2Rm N	lax SigID	LSB
0 dBm										
	-H1 -1.700 dBm									
-5 dBm-		-4.000 dBm								
-10 dBm										
-15 dBm										
-20 dBm										
-25 dBm										
- 30 dBm	H2 -30.00	l0 d0m								
30 dbm	H2 -30.00									
-35 dBm										
-40°dBm										
-45 dBm										
-50 dBm										
-55 dBm										
79.5 GHz			1500 pt		15	0.0 MHz/			81.0) GHz
1 210 0112	T.		1500 pt	3	15	010 141127	Ready		AM 21.05	.2019
L							Ready		22:	55:33

22:55:33 21.05.2019

5.39. 81 GHz – 90 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

MultiView 😁	Spectrum								♥
Ref Level -4.00	dBm	■ RB	W 1 MHz	_					SGL
TDF Inp: ExtMix V	● SWT : v	540 s ● VB	W 3 MHz Mode A	uto Sweep					
1 Frequency Sw	reep						• 1Rm Max Sig	ID USB ⊜2Rm N	Иах SigID LSB
0 dBm									
	H2 -1.700	1							
-5 dBm		-4.000 dBm -							
-10 dBm									
-15 dBm									
-15 UBM									
-20 dBm									
-25 dBm									
30 dBm H 1	1 -30.000 dBm —					k			
-35 dBm				m			ha		
00 00			- $ -$	$1 \setminus A$		$ \vee$	$ \nabla $		
-40 dBm				$+ \vee +$			And		
-45 dBm									
-50 dBm									
-55 dBm									
81.0 GHz	T		9000 p	ts	90	0.0 MHz/			90.0 GHz
l							Ready		21.05.2019 23:28:14

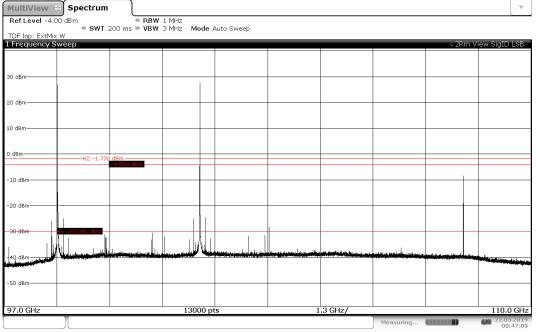
23:28:15 21.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.40. 90 GHz – 98 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

MultiView	🗉 Spectrum	1								∇
Ref Level -4.0									`	SGL
TDF Inp: ExtMix		480 s = VBW 3	MHz Mode Au	to Sweep						
1 Frequency S	Sweep						1Rm Max Sig	ID USB ⊜2Rm N	/lax SigID I	LSB
0 dBm										
	H2 -1.700									
-5 dBm		-4.000 dBm								
-10 dBm										
-15 dBm										
-20 dBm										
-25 dBm										
- 30 dBm	-H1 -30.000 dBm —									
-35 dBm										
							_			
-40 dBm										
	1									
-45 dBm										
-50 dBm										
-55 dBm										
90.0 GHz		1	8000 pt	5	80	0.0 MHz/	1		98.0	GHz
STOLE STILL	Υ Π		5000 pt		00		Ready		AM 21.05.	.2019
L							Ready		23:4	46:42

23:46:43 21.05.2019


5.41. 97 GHz – 110 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

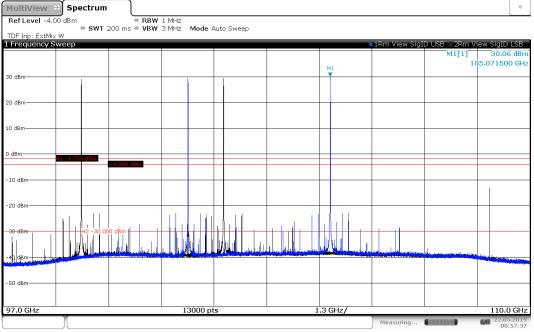
Frequency S	weep						1Rm View Sigl		
								M1[1]	28.76 dB 00.949500 Gł
) dBm			M1	1					
) dBm									
dBm									
dBm	H2 -1.700) dBm							
l0 dBm		4.000 000							
0 dBm									
0 dBm	H1 -30.000 dBm					1			
Q dBm	Hursenward with				and the second second second				
0 dBm									
U UBIII									
50 dBm									

00:45:15 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.42. 97 GHz – 110 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_low

00:47:09 22.05.2019


5.43. 97 GHz – 110 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_low

TDF Inp: ExtM				Auto Sweep					
Frequency	Sweep								iew SigID USB
								M1[1]	28.76 dB
			И1					1	00.949500 GI
0 dBm			Y						-
) dBm									
) dBm									
dBm	H2 -1.700	d9m							
	112 1.100	-4.000 dBm							+
10 dBm									
to abiii									
20 dBm						-		-	
30 dBm	-H1 -30.000 dBm								
			Milt I		ի լին				
10 10 1	I	- classica and	Management	والمتعقق ومقاربها ومعاديه	A A A A A A A A A A A A A A A A A A A	to the transmission of the	and the set of the set of the set	A HALL MARK LINEAR COMPANY	
40 dBm									
50 dBm									+
7.0 GHz			13000 pt			1.3 GHz/			110.0 GF

00:46:42 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.44. 97 GHz – 110 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

00:57:38 22.05.2019

5.45. 97 GHz – 110 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_center

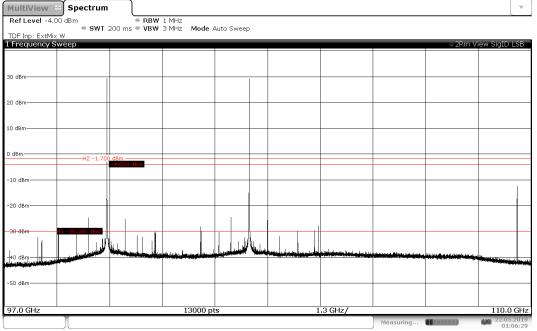
requency S	Sweep						⊜2Rm V	iew SigID LS
dBm				1				
dBm								
iBm								
Bm	-H1 -1.700 dBm	4.000 dBm						
dBm								
dBm								
	H2 -30,1		والغربية والغراب والمربعة	ساسا ساسا الم	ومعتمرون والملاف ووالم	ludadatı və minəti ili diriyin ayı	andre dendering og skillet blir og skillet og	
dBm								Anniel die State of the State of the
ubm								

00:56:43 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.46. 97 GHz – 110 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_center

00:57:05 22.05.2019


5.47. 97 GHz – 110 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

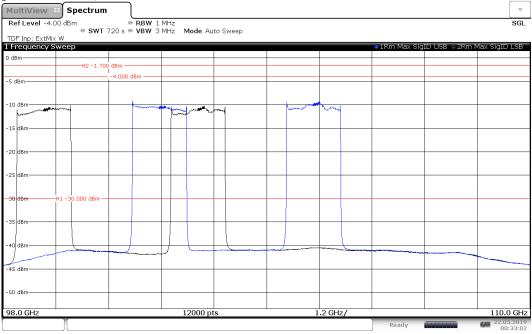
Frequency	Sweep						1Rm View Sig	ID USB ⊜2Rm V	iew SigID LSB
						M1		M1[1]	29.35 dBr 35.678500 GH
) dBm									
) dBm									
dBm									
dBm	H2 -1.700) dBm							
.0 dBm									
:0 dBm									
0 dBm	-H1 -30.000 dBm -								
	المحمد ومساورا		a sector site . Second and have been	Uli de de la desta de la de	باروا بير الجار الي		the last of the	and a construct of the steps of the steps	Marine Marine Local Social
O dBm									
i0 dBm									
7.0 GHz			13000 pt		1	.3 GHz/			110.0 Gł

01:05:44 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.48. 97 GHz – 110 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_high

01:06:29 22.05.2019


5.49. 97 GHz – 110 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_high

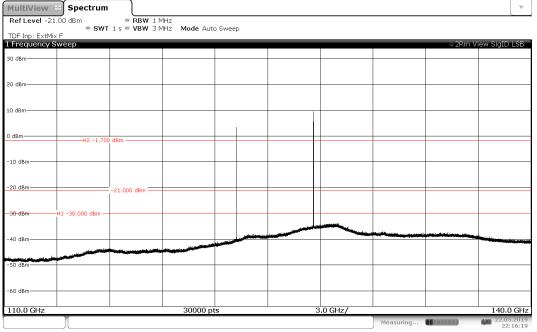
Frequency S	× W Sweep							• 1Rm \	'iew SigID USB
					м			M1[1]	29.35 dB 05.678500 GF
O dBm						1			
) dBm									
dBm									
dBm	H2 -1.700) dBm							
0 dBm									
0 dBm									
IO dBm	-H1 -30.000 dBm								
0 dBm		en her et die	- Andrew Contraction	and the design of the second second	a a a a a a a a a a a a a a a a a a a	Verber	tidelet exercise from a transm	in a state of the	
0 dBm									
7.0 GHz			13000 p		.3 GHz/				110.0 G

01:06:05 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -4 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.50. 98 GHz – 110 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

00:33:02 22.05.2019


5.51. 110 GHz – 140 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

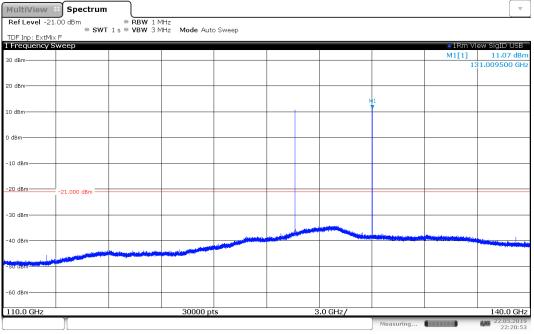
TDF Inp: ExtM Frequency										■1Rm Max	SigID USE	3 ⊜ 2Rm I	Max SigID	LSB
0 dBm												M1[1]	7.21	
												1:	30.248500) GF
0 dBm														
) dBm								M	1					
dBm														
ubiii	H2 -1.700	0 dBm												
.0 dBm														
20 dBm		-21.000 dBm					-							
00 dBm	—H1 -30.000 dBm —													
					الم معالمه	 		the second s		and the state of the state	Substance And	demotes bills		
IO dBm	والمرسيين			-										
0 dBm									_					
0 dBm														
10.0 GHz			30000 p				3.0 GH						140.0	

22:13:48 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.52. 110 GHz – 140 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_low

22:16:19 22.05.2019


MultiView B Spectrum Ref Level -21.00 dBm RBW 1 MHz SWT 1 s • VBW 3 MHz Mode Auto Sweep TDF Inp: ExtMix F 1 Frequency Sweep 1Rm Ma M1[1] 7.21 dBr 0.248500 GH 30 dBm 20 dBm 10 dBr 0 dBm -10 dBr -20 dBm 21.000 dBm an dhr 1 -30.000 dBm 40 dBm -60 dBm 30000 n 140.0 GHz 110.0 GHz .0 GHz

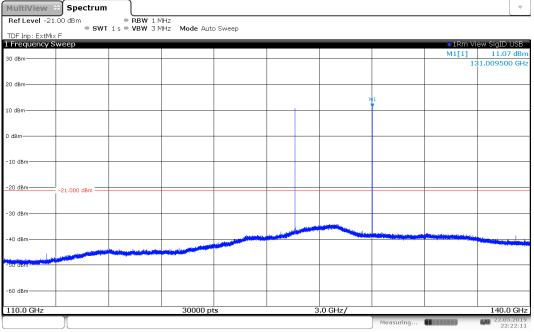
5.53. 110 GHz – 140 GHz, ANT HOR + VER, SigID USB, all positions, f_CW_low

22:15:37 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.54. 110 GHz – 140 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

22:20:54 22.05.2019


5.55. 110 GHz – 140 GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_center

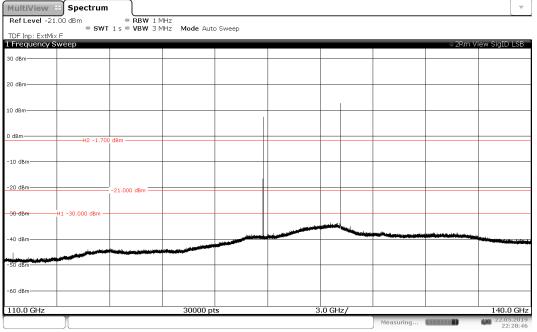
MultiView 🕀	Spectrum											▽
Ref Level -21.00) dBm 🗧	RBW 1 MHz										
DF Inp: ExtMix F	SWI1s	VBW 3 MHz	Mode Auto	Sweep								
Frequency Swe	еер									⊝2Rm \	iew SigIl	D LSE
0 dBm												
0 dBm												
0.49												
0 dBm					1		Π					
dBm							H			-		
10 dBm							\mathbb{H}					
20 dBm2	1.000 dBm						\square					
-30 dBm												
								ورسلته				
40 dBm						and the second		Statistics.	al a state de seconda de sete	www.energenergenergenergenergenergenergener		
40 UBII		والقد مشد مشده										
الانبوالياري ومتاريب والدرومسياة												
SU dam												
60 dBm							\vdash				-	
10.0 CU			20000					CU-			140	0.01
10.0 GHz			30000 pt	s		3	.0	GHz/	Measuring			.0 GH

22:20:32 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.56. 110 <u>GHz – 140</u> GHz, ANT HOR + VER, SigID USB, all positions, f_CW_center

22:22:11 22.05.2019


5.57. 110 GHz – 140 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

TDF Inp: ExtMix Frequency S							• 1	Rm Max Si	gID USB ⊜2Rn	n Max SigID	LSB
) dBm									M1[1]		
										127.37750	0 GI
) dBm											
) dBm				M		1					
ubm											
dBm											
asm	H2 -1.70	0 dBm									
.0 dBm											
20 dBm		-21.000 dBm			-						_
0 0 dBm	H1 -30.000 dBm -										
				and the second second		and the second se			and the first state of the stat		
40 dBm			مسلحين ا								
o dBm											
50 dBm					_		+				
						Hz/) Gł

22:23:54 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.58. 110 <u>GHz – 140</u> GHz, ANT HOR + VER, SigID LSB, all positions, f_CW_high

22:28:46 22.05.2019


5.59. 110 GHz – 122 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

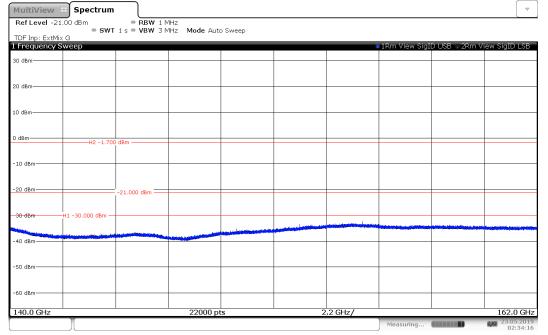
	Spectrum								2
Ref Level -2 DF Inp: ExtM	● SWT	● RBW 720 s ● VBW	1 MHz 3 MHz Mode /	Auto Sweep					SG
Frequency							1 Rm May Sic	ID USB ⊜2Rm I	May SigID LSE
dBm-	oweep								Hax orgib Lot
doni	H2 -1.700	dBm							
5 dBm									
10 dBm									
L5 dBm									
20 dBm		-21.000 dBm							
		-21.000 dBiii							
an da c									
25 dBm									
30 dBm	-H1 -30.000 dBm								
35 dBm									
40 dBm									
ro ubili					and the second s				
			a second the second sec						
15 dBm									
50 dBm			-	1	-				1
10.0 GHz	1	1	12000 p	l ts		1.2 GHz/	1	1	122.0 G
2010 0112			12000 p			2.2 01127			23.05.20

01:36:51 23.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.60. 122 GHz – 138 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

23:09:02 22.05.2019


5.61. 138 GHz – 140 GHz, ANT HOR + VER, SigID USB+LSB, position with the highest power (RMS), FMCW

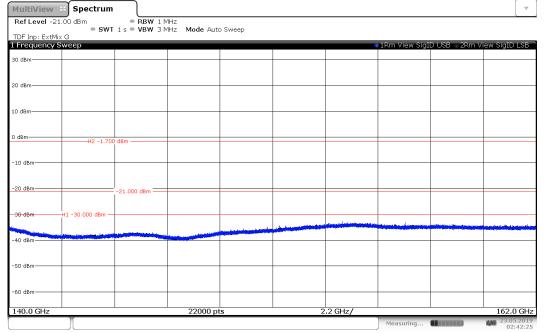
MultiView	🗊 Spectrum								∇
Ref Level -21		RBW							SG
TDF Inp: ExtMi:		120 s 🖷 VBW	3 MHz Mode	Auto Sweep					
Frequency S							IRm Max Sig	ID USB ⊚2Rm I	Max SigID LSE
) dBm									
	H2 -1.700) dBm							
5 dBm									
10 dBm									
TO UBM									
15 dBm									
20 dBm		-21.000 dBm							
		21.000 000							
25 dBm									
30 dBm	 -H1 -30.000 dBm								
50 ubm	-H1 -30.000 UBM								
35 dBm									
40 dBm									
45 dBm									
50 dBm									
SU GBM									
000000			00000						1 40 0 5
138.0 GHz			2000 p	ts	20	0.0 MHz/			140.0 GH

01:44:35 23.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.62. 140 GHz – 162 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

02:34:16 23.05.2019


5.63. 140 GHz – 162 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

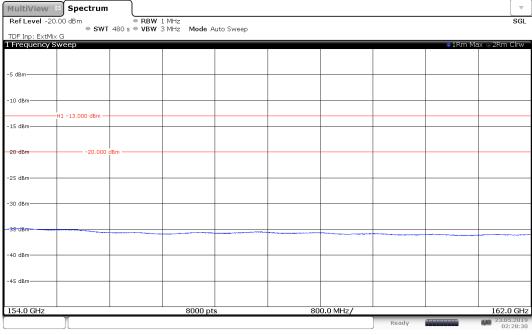
MultiView									V
Ref Level -21	1.00 dBm SWT	RBW 11 1 s = VBW 31	/Hz /Hz Mode Auto	o Sweep					
DF Inp: ExtMi	×G								
Frequency S	Sweep						IRM VIEW SIGI	D USB ⊜2Rm V	IEW SIGID LSE
) dBm									
) dBm									
dBm									
dBm									
	H2 -1.700) dBm							
.0 dBm									
TO OBII									
20 dBm		-21.000 dBm							
30 dBm	-H1 -30.000 dBm								
		L		and the second s					
IO dBm									
50 dBm									
50 dBm									<u> </u>
40.0 GHz			22000 pt	ts	2	2.2 GHz/			162.0 GH
	Л						Measuring		23.05.201 02:38:2

02:38:26 23.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.64. 140 GHz – 162 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

02:42:26 23.05.2019


5.65. 140 GHz – 154 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

MultiView	B Spectrum								∇
Ref Level -2	0.00 dBm		1 MHz 3 MHz Mode A	uto Swoon					SGL
TDF Inp: ExtM	ix G	040 S = VBW	STAILS Mode F	uto sweep					
1 Frequency								●1Rm Ma	ax ⊜2Rm Clrw
	-H1 -1.700 dBm								
-5 dBm									
-10 dBm									
-15 dBm									
20 dBm		-20.000 dBm							
-25 dBm									
30 dBm	H2 -30.00	00 dBm							
-35 dBm									
-40 dBm									
-45 dBm									
1 40 0 011			1.4000			1.011.(1510.00
140.0 GHz	Т		14000 p	LS	1	.4 GHz/			154.0 GHz
							Ready		02:15:3

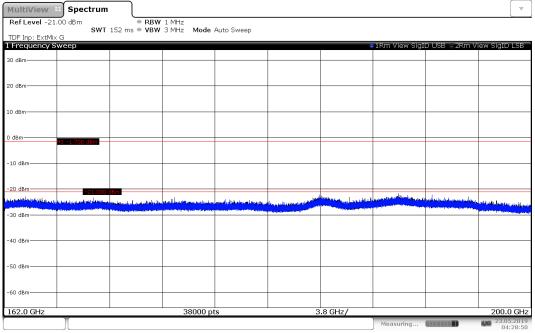
02:15:31 23.05.2019

* -20 dB is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).

5.66. 154 GHz – 162 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

02:28:30 23.05.2019

* -20 dB is only a reference line from the FSW67. Limit is -1.7 dBm (FCC) and -30 dBm (ISED).


5.67. 162 GHz – 200 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

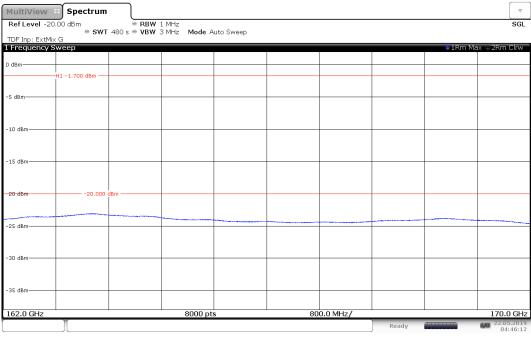
Frequency Sweep						1Rm View Sigī	D USB ⊚2Rm V	iew SiaTD I Si
						INTER SIGI		lew olgib Loi
) dBm								
dBm								
dBm								
dBm	10 dBm							
l0 dBm								
20 dBm	-21.000 dBm							
whether the state of the state	والمراجع والمتعار والمستر والمحالة المحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحال	المعالية فالمستحد والمستحد والمستحد والمحاور	ويرجده ومحدقه الماقل والمعاقر والمراكل	استلقعه ويساعل هاريله	والمعطور والمعرفة والمعالية	وروقا والمتلا المتلافق والمرواد	and a market to the stand of the	-
0 dBm	and the second	and the second	The second second second second		and the second secon	and the second s		and the second second second second
10 dBm								
50 dBm								
i0 dBm								

04:25:07 23.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm.

5.68. 162 GHz – 200 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

04:28:50 23.05.2019


5.69. 162 GHz – 200 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

DF Inp: ExtMix	G								
Frequency S	weep					•	1Rm View SigI	DUSB⊜2RmV	iew SigID LSI
dBm									
dBm									
dBm									
dBm	H1 -1.700 dBm								
) dBm									
	-21.000	dBm				withold and an and a state	ىر. از بىدايىد ن ۇلغان ىي	and the second second second	
D dBm		a terressentiale anta a terressentiale a	ile nekol terifiya ata al dipik nekol Mana dipika	der felden der State all die der Gehande blieden die der sonsel. Die der State der Stat	licelon photos in Atlantia	A second s		and the second second sector second sector second	densitile for the second
0 dBm									
D dBm									
D dBm									
) dBm									
52.0 GHz			38000 pt			.8 GHz/			200.0 GI

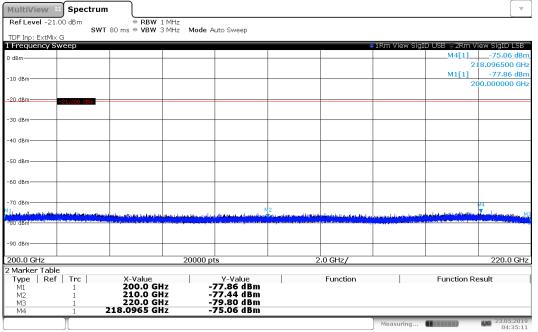
04:32:09 23.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is -1.7 dBm.

5.70. 162 GHz – 170 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

04:46:12 22.05.2019

* -20 dB is only a reference line from the FSW67. Limit is -1.7 dBm.


5.71. 170 GHz – 200 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

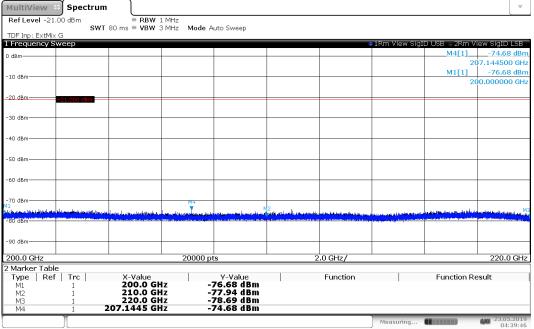
TDF Inp: ExtMix G Frequency Sweep dBm H1 -1.700 dBm 10 dBm 10 dBm 15 dBm	WT 1800 s ● VBV	W 1 MHz W 3 MHz Mode A	Auto Sweep			• 1Rm Ma	sqi
Frequency Sweep dBm H1 -1.700 dBm 5 dBm 15 dBm 15 dBm						• 1Rm Ma	ix ⊖2Rm Cliw
dBmH1 =1.700 dBm							
H1 -1.700 dBm							
5 dBm							
0 dBm							
.0 dBm							
15 dBm							
15 dBm							
15 dBm							
20 dBm - 20. (
-20.0							
20 dBm -20.0							
	000 dBm						
25 dBm							
30 dBm							
35 dBm		+					
70.0 GHz		30000 pt	s	. 3	3.0 GHz/		200.0 GH

05:18:20 22.05.2019

* -20 dB is only a reference line from the FSW67. Limit is -1.7 dBm.

5.72. 200 GHz – 220 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

04:35:11 23.05.2019


5.73. 200 GHz – 220 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

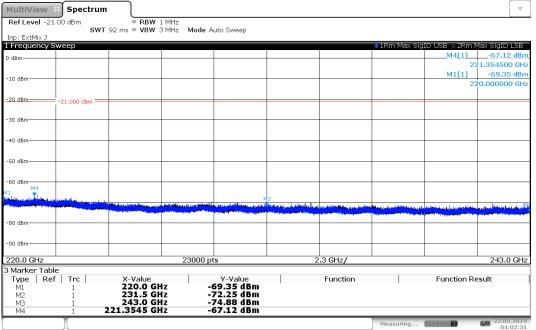
MultiView	Spectrum	ı)							▽	
Ref Level -21		RBW								
SWT 80 ms VBW 3 MHz Mode Auto Sweep TDF Inp: ExtMix G										
1 Frequency S							1Rm View SigI	DUSB⊚2Rm V	iew SigID LSB	
0 dBm								M4[1]	-74.98 dBm	
o dom								20	1.499500 GHz	
10 40.0								M1[1]	-77.30 dBm	
-10 dBm								20	0.000000 GHz	
-20 dBm	-21.000 dBm									
-30 dBm-										
-40 dBm										
-50 dBm-										
-60 dBm										
-60 uBm										
-70 dBm					0					
The same of a light of a light	والمتلقم المسانة مطاهمة والم	and the set of the set	and the design of the second	وجوار والمعادمة المستيا ستعمدتها	واسته استان والمسالية والمساحد والتست	Indexersely large decide	المنطقة مساليه مستقلسه والرا	polician and had all the	der flage and believe in MS	
-80 dBm	and the property of the second se	And the first of the state of the			a na an an an an an an an Anna an Anna an Anna an Anna an an Anna an Anna an Anna an Anna an Anna an Anna an An	inni main far an ann a tha bhailtean an a	1	and the second	and the second part and the second part of the seco	
-90 dBm										
200.0 GHz			20000 p	ts	2	.0 GHz/			220.0 GHz	
2 Marker Tabl										
Type Ref	Trc	X-Value	u	Y-Value		Function		Function Re	sult	
M1 M2	1	200.0 G		77.30 dBm 77.80 dBm						
M3	1	220.0 G		79.06 dBm						
M4	1	201.4995 G		74.98 dBm						
	Y						Measuring		23.05.2019	
L							measuring		04:16:15	

04:16:16 23.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is 0.5 dBm (see calculations in subsection 5.8.6).

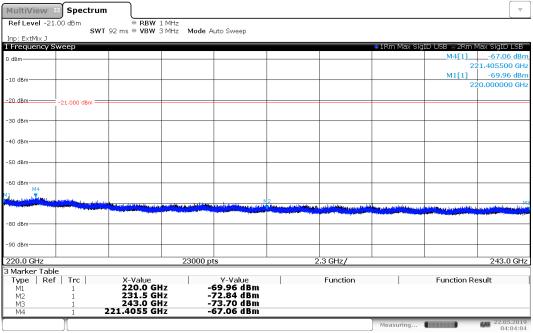

5.74. 200 GHz – 220 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

04:39:46 23.05.2019

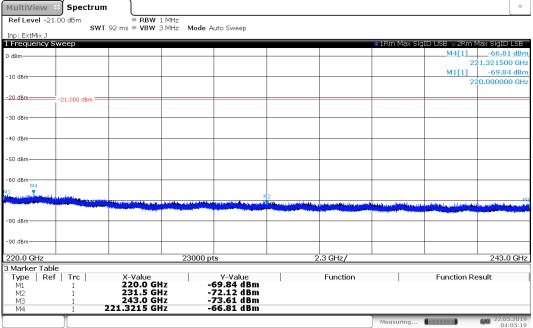

5.75. 200 GHz – 220 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW

05:43:26 22.05.2019

* -40 dBm is only a reference line from the FSW67. Limit is 0.5 dBm (see calculations in subsection 5.8.6).

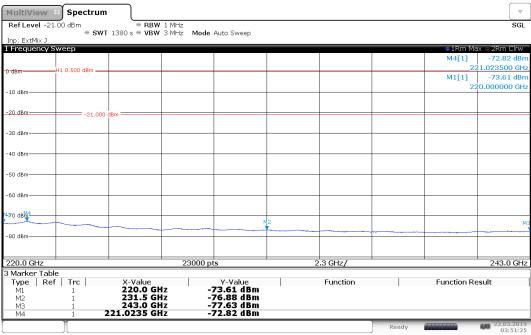

5.76. 220 GHz – 243 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_low

04:02:31 22.05.2019


5.77. 220 GHz – 243 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_center

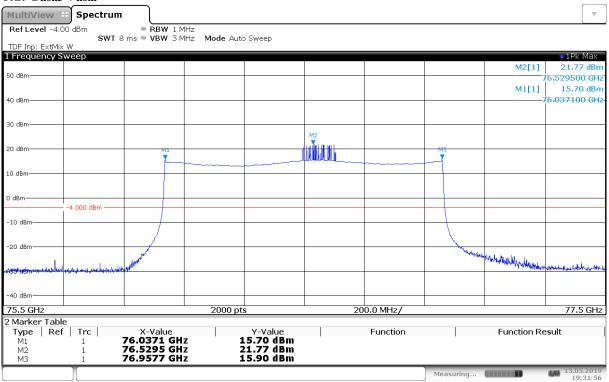
04:04:05 22.05.2019

* Signal ID function is used. The diagram shows image signals and mixer products. The real input signal is shown, only when USB and LSD traces have the same position on the frequency axis => Apart from the noise floor no real input signal was observed. See subsection 5.8.6. in the main report. -21 dBm is only a reference line from the FSW67. Limit is 0.5 dBm (see calculations in subsection 5.8.6).


5.78. 220 GHz – 243 GHz, ANT HOR + VER, SigID USB + LSB, all positions, f_CW_high

04:05:20 22.05.2019

5.79. 220 GHz – 243 GHz, ANT HOR + VER, position with the highest power (RMS), FMCW


03:51:26 22.05.2019

* -21 dBm is only a reference line from the FSW67. Limit is 0.5 dBm (see calculations in subsection 5.8.6).

6. Frequency stability

6.1. Tnom/Vnom

19:31:57 13.05.2019

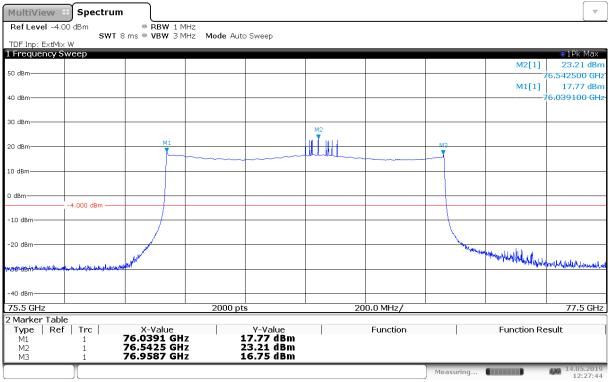
* -4 dBm is only a reference line from the FSW67.

6.2. Tmin/Vnom

MultiView	Spectrum								▽)		
Ref Level -4.0		● RBW 1 M		<u>_</u>							
SWT 8 ms WBW 3 MHz Mode Auto Sweep TDF Inp: ExtMix W											
1 Frequency Sv									●1Pk Max		
								M2[1]	22.66 dBm		
50 dBm									6.502500 GHz		
								M1[1]	16.44 dBm		
40 dBm									76.038100 GHz-		
30 dBm											
					2						
20 dBm		M1					M3				
10 dBm											
0 dBm											
o ubiii	-4.000 dBm										
-10 dBm											
-10 uBm											
-20 dBm							Non Acres	monthing by the barrier of the second			
		attern						morne My Maporthan	Such a data and a succession		
magailite hand remaining	وماريدين والمراجع كالطلاط المتعوية والمراجع	0.00°							a a shawaa a samada harkar karkar ka		
-40 dBm											
75.5 GHz			2000 pt	is is	20	0.0 MHz/			77.5 GHz		
2 Marker Table	3										
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult		
M1	1	76.0381 GH	z	16.44 dBm							
M2 M3	1	76.5025 GH 76.9597 GH	7	22.66 dBm 16.92 dBm							
CINI J	Υ Υ	. e.,	-						25.05.2019		
L							Measuring		22:39:48		

22:39:49 25.05.2019

* -4 dBm is only a reference line from the FSW67.


6.3. T_{max}/V_{nom}

MultiView 8	Spectrum								
Ref Level -4.00		● RBW 1 M		~					
TDF Inp: ExtMix W	/	sms ⊜VBW 3№	IHZ Mode Aut	o Sweep					
1 Frequency Swo	еер								⊙1Pk Max
50 dBm								M2[1]	25.16 dBm
SU UBM									6.525500 GHz
								M1[1]	14.40 dBm
40 dBm									6.037400 GHz
30 dBm					M2				
					THE DUC IN THE				
20 dBm		M1			htti till till till till till till till		M3		
		L 1							
10 dBm									
0 dBm									
-4	4.000 dBm ——								
-10 dBm									
							1		
-20 dBm							N.	lu a	
-20 0011		1 Keeling					and the second second	a. Illiniu	
	the second second	allow						With a she was a she was	Manankaman
w/8Grddityshullowadadays.ow	*****	142 C						1	
-40 dBm									
75.5 GHz			2000 pt	s	20	0.0 MHz/			77.5 GHz
2 Marker Table									
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult
M1 M2		76.0374 GH 76.5255 GH		L4.40 dBm 25.16 dBm					
M3		76.9598 GH		15.65 dBm					
	Υ Γ						Measuring		12.05.2019
L	Л						J		21:00:51

21:00:51 12.05.2019

* -4 dBm is only a reference line from the FSW67.

6.4. T_{nom}/V_{min}

12:27:44 14.05.2019

* -4 dBm is only a reference line from the FSW67.

6.5. Tnom/Vmax

	pectrum								▽
Ref Level -4.00 dBm	n	RBW 1 MH VBW 3 MH		ito Sweep					
TDF Inp: ExtMix W				F					
1 Frequency Sweep)	-			-				●1Pk Max
								M2[1]	22.29 dBm
50 dBm									6.509500 GHz
								M1[1]	16.04 dBm
40 dBm									76.039100 GHz
30 dBm									
00 0.5.11					M2				
					un au				
20 dBm		M1					- MO		
10 dBm									
0 dBm									
-4.000) dBm								
-10 dBm									
-20 dBm		(Y. Martin		
	- Aller						C. Handley	Martin hand a lar	namether them inder whether
mago wanter adata and a second	upper deneral a la marte							- many hard though as	man sharthan intervention
30 GBII									
-40 dBm									
75.5 GHz			2000	ots	20	0.0 MHz/			77.5 GHz
2 Marker Table						· · · ·			
Type Ref Tr	rc X-	Value		Y-Value		Function		Function Re	esult
M1 1	76.03	91 GHz		16.04 dBm					
M2 1		95 GHz		22.29 dBm					
M3 1	76.95	587 GHz	<u> </u>	16.11 dBm					
r r							Measuring		13.05.2019 19:15:17

19:15:18 13.05.2019

* -4 dBm is only a reference line from the FSW67.