RF Test Report

*

Industry Canada Industrie Kanada

268.460

DESKO GmbH

RFID Module RFID 500 13,56 MHz

Customer:

DESKO GmbH Gottlieb-Keim-Straße 56 95448 Bayreuth Germany

Phone: +49 921 79279-0 Fax.: +49 921 79279-14

The test result refers exclusively to the model tested.

This report must not be copied without the written authorization by the lab.

Revision: 2.0

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Tel.: +49 9421 56868-0

Fax: +49 9421 56868-100 Email: company@emv-testhaus.com

Accreditation:

Registration number: DAT-P-224/95-02 Valid until 08.06.2011

CAB (EMC) registration number: BNetzA-CAB-02/21-02/1 Valid until 27.11.2008

> FCC facility registration number: 221458 Valid until 04.09.2011

Industry Canada registration number: 3472A-1 Valid until 17.07.2010

Place of Inspection:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

The technical accuracy is guaranteed through the quality management of the EMV **TESTHAUS** GmbH

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 2 of 54

Table of contents

1	Test regulations	4
2	Summery of test results separated by FCC and Industry Canada	5
3	Equipment under Test (EUT)	7
4	Modifications	.11
5	Spectrum Mask	.12
6	Conducted emission test	.16
7	Measurement of radiated emission	.23
8	Occupied Bandwidth (99%)	.37
9	Occupied Bandwidth (20dB)	.40
10	Occupied Bandwidth (99%)	.44
11	Carrier frequency stability	.47
12	Designation of Emissions	.50
13	Exposure of Humans to RF Fields	.51
14	Equipment Calibration Status	.53
15	Summary	.54

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

1 Test regulations

CFR 47 Part 2: 10-2007 Code of Federal Regulations Part 2 (Frequency

allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission

(FCC)

CFR 47 Part 15: 09-2007 Code of Federal Regulations Part 15 (Radio Frequency

Devices) of the Federal Communication Commission

(FCC)

ANSI C63.4: American National Standard for Methods of

December 2003 Measurement of Radio-Noise Emissions from Low-

Voltage Electrical and Electronic Equipment in the

Range of 9 kHz to 40 GHz

RSS-Gen Issue 2 Radio Standards Specification RSS-Gen Issue 2

June 2007 containing General Requirements and Information for

the Certification of Radiocommunication Equimpment,

published by Industry Canada

RSS-102: Issue 2 Radio Standards Specification RSS-102 Issue 2

November 2005 Radio Frequency Exposure Compliance of

Radiocommunications Apperatus

RSS-210: Issue 7 Radio Standards Specification RSS-210 Issue 7 for

Low Power Licence-Exempt Radiocommunication

Devices (All Frequency Bands): Category I Equipment,

published by Industry Canada

June 2007

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

2 Summery of test results separated by FCC and Industry Canada

FCC	CFR 4	/ Part	2 and	d Part	15

Section	Test	Page	Result
2.1046(a) Conducted output power			Not applicable
2.202(a)	Occupied bandwidth	37	Recorded
15.215(c)	Occupied bandwidth	40	Passed
2.201, 2.202	Class of emission	50	Calculated
15.35(c)	Pulse train measurement		Not applicable
15.205(a)	Restricted bands of operation		Passed
15.205(d)(7)			
15.207	Conducted emission at AC power line	16	Passed
	0,150MHz to 30MHz		
15.225(a)-(d)	Spectrum mask	12	Passed
15.205(b)	Radiated emission	23	Passed
15.215(b)	0,009MHz to 30MHz		
15.225(a)(d)			
15.205(b)	Radiated emission	30	Passed
15.225(d)	30MHz to 1000MHz		
15.225(e)	Carrier frequency stability	47	Passed

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 5 of 54

Industry Canada RSS Gen Issue 2

Section	Test	Page	Result
4.8	Transmitter output power		Not applicable
4.6.1	Occupied bandwidth	44	Recorded
3.2(h) Emission designator		50	Calculated
4.5	Pulsed operation		Not applicable
7.2.2	Transmitter AC conducted emission	16	Passed
5.5	Exposure of humans to RF fields	51	Exempted form SAR and RF evaluation

Industry Canada RSS 210 Issue 7

madelly canada rice 210 leeds r				
Section	Test	Page	Result	
2.2(a)	Restricted bands and unwanted emission frequencies		Passed	
A2.6	Spectrum mask	12	Passed	
2.2(b)(c), 2.6, A2.6	Unwanted emission	23	Passed	
2.0, A2.0	0,009MHz to 30MHz			
2.2(b)(c),	Unwanted emission	30	Passed	
2.6, A2.6	30MHz to 1000MHz			
A2.6	Carrier frequency stability	47	Passed	

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 6 of 54

3 Equipment under Test (EUT)

Device name: RFID Module RFID 500

Manufacturer: DESKO GmbH

Serial number: Engineering Sample

FCC ID: WTMRFID500

Canada IC: 7998A-RFID500

Application freq. band: 13.110MHz – 14.010MHz

Frequency range: 13,5596 MHz – 13,5698 MHz

Operating frequency: 13,5597 MHz

Class of emission: 10K0A1D

Type of modulation: ASK

Channel spacing: N/A

Number of RF-channels: 1

Pulse train: none

Pulse width: none

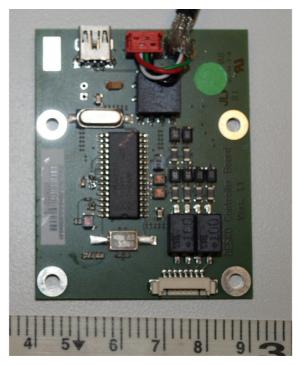
Antenna type: Integrated PCB antenna

* unique antenna connector

Power supply: USB powered

nominal: 5.0 V minimum: 4.25 V maximum: 5.75 V

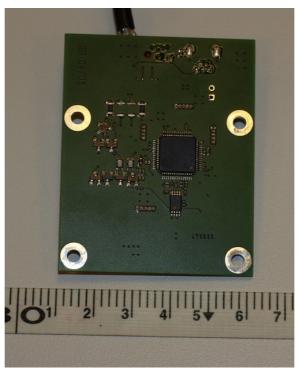
Temperature range: -20 °C to +50 °C


Interfaces: N/A

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460 Page 7 of 54

3.1 Photo documentation


Picture 3.1: EUT front side

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 8 of 54

Picture 3.2:EUT back side

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 9 of 54

3.2 Short description of the EUT

The EUT is a RFID Reader with the operating frequency of 13,56 MHz

3.3 Operation Mode

The EUT was tested in the following operation modes:

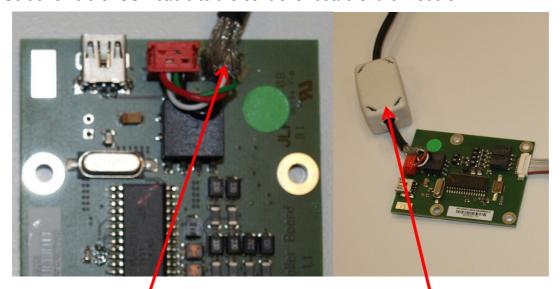
- Reading tags continuously. For this mode a software form DESKO was used.

3.4 Configuration

The following peripheral devices and interface cables were connected during the tests:

Device	Model:	S/N
RFID Module (EUT)	RFID 500	Engineering Sample
USB Cable	Standard cable form DESKO	Engineering Sample
Test PC	Test notebook Pro 600 IW	
Keyboard	Integrated in notebook	
Mouse	Integrated in notebook	

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500


268.460

Page 10 of 54

4 Modifications

To keep the limit the following modifications need to be done:

- Add a ferrite core to the USB cable
- Solder shield of USB cable to the controller board of the module.

USB shield

Ferrite core e.g. Würth 742 711 12 See data sheet

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 11 of 54

5 Spectrum Mask

according to CFR 47 Part 15, section 15.225 (a)-(d), RSS-210 Issue 7, section 2.6 and section A2.6

5.1 Test location

☐ CISPR measurement with quasi peak detector on 10m open area test site.

☑ Measurement with peak detector on 3m open area test site

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	100089
Open area test site	EMV TESTHAUS GmbH	200017

5.2 Test Instruments

	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	100072
$\overline{\checkmark}$	ESCI (CDC)	Rohde & Schwarz	100132
	HFH2-Z2	Rohde & Schwarz	100005
	VULB 9163 (CDC)	Schwarzbeck	100077
	VULB 9160 (FF)	Schwarzbeck	100064

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460 Page 12 of 54

5.3 Limits

Frequency [MHz]	Field strength Fs [μV/m]	Field strength [dBµV/m]	Measurement distance d [m]
1.705 – 13.110	30	29.5	30
13.110 -13.410	106	40.5	30
13.410 – 13.553	334	50.5	30
13.553 – 13.567	15848	84.0	30
13.567 – 13.710	334	50.5	30
13.710 – 14.010	106	40.5	30
14.010 - 30.000	30	29.5	30

To calculate the limit for 3m measurement distance the following calculation was used.

$$L_{dm} = L_d + (-40 \frac{dB}{dec} * (\log(dm) - \log(d)) - 20 L_{dm} = \text{Limit at the new distance}$$

$$L_d = \text{Limit according ANSI 63.4}$$

$$dm = \text{Distance according to ANSI 63.4}$$

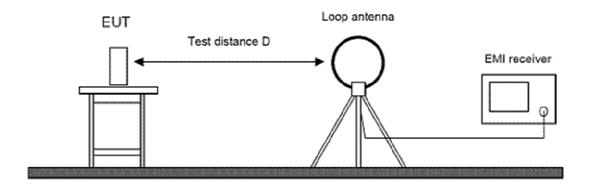
$$d = \text{New distance for limit}$$

$$\begin{split} L_{dm} &= 29.5 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 49.5 dB \\ L_{dm} &= 40.5 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 60.5 dB \\ L_{dm} &= 50.5 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 70.5 dB \\ L_{dm} &= 84 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) - 20 = 104 dB \end{split}$$

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 13 of 54

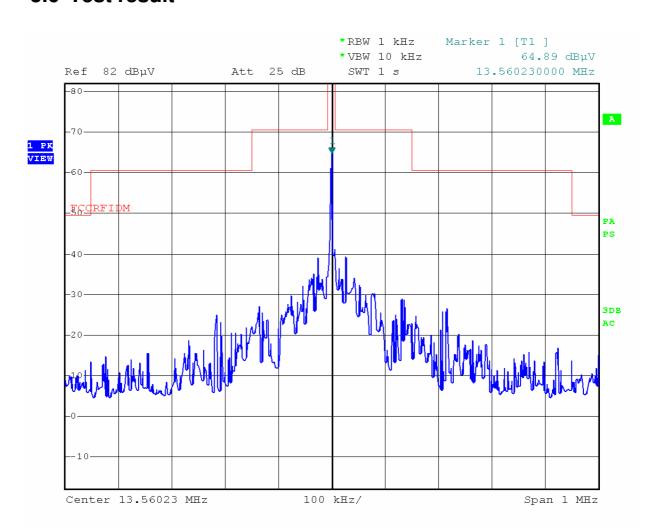

5.4 Test method to demonstrate compliance

A spectrum analyzer was used and set to a center frequency equal to transmitter frequency. The resolution bandwidth was adjusted to 1 kHz and the video bandwidth at least 3 times higher than the resolution bandwidth. Span was set to 1MHz to cover the whole spectrum mask. The detector was set to maxpeak with hold function.

The spectrum analyzer was connected to a loop antenna with vertical polarization at a measurement distance of 3m on an open area test site. This loop antenna has a correction factor of 20dB. Due to better visibility in the printing the actual spectrum mask limit was reduced by this 20dB. Therefore the picture 3-1: shows the correct distance to the limit, to get the correct field strength 20dB has to be added to the marker value T1.

The EUT was placed on a turntable and rotate 360° to find maximum value. To find the maximum in horizontal polarization the EUT was rotated by 90°.

5.5 Test setup



EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 14 of 54

5.6 Test result

Picture 5.1:Result of spectrum mask measurement (SM-FCC)

The actual field strength of the carrier is:

$$F_S = T1 + 20dB = 64,89dB\mu V/m + 20dB = 84,89dB\mu V/m$$

Expanded uncertainty (0,009 to 30MHz):

 $E_{(y)} = (y \pm 4,25) dB\mu A/m; k=2.00$

y = Indicated value

Comments:

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 15 of 54

6 Conducted emission test

according to CFR 47 Part 15, section 15.207 RSS-Gen Issue 2, section 7.2.2

6.1 Test Location

Description	Manufacturer	Inventory No.
Shielded chamber	Siemens - Matsushita	200016

6.2 Test Instruments

	Description	Manufacturer	Inventory No.
$\overline{\checkmark}$	ESH 3	Rohde & Schwarz	100002
	ESCS 30	Rohde & Schwarz	100072
	ESCI	Rohde & Schwarz	100132
$\overline{\checkmark}$	ESH3 Z2	Rohde & Schwarz	200051
$\overline{\checkmark}$	ESH 2-Z5	Rohde & Schwarz	100040

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 16 of 54

6.3 Limits

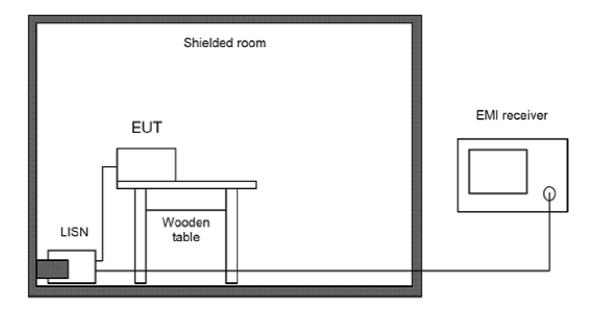
Frequency [MHz]	Quasi-peak [dBμV]	Avarage [dBμV]
0.15 – 0.5	66 - 56	56 – 46
0.5 - 5.0	56	46
5 – 30	60	50

6.4 Test method to demonstrate compliance

The tests of conducted emission were carried out in a shielded room using a line impedance stabilization network (LISN) 50µH/50ohms and a EMI test receiver. The EMI test receiver was connected to the LISN and set to a measurement bandwidth of 9kHz in the frequency range form 0.15MHz to 30MHz. The EUT was placed on a wooden table and connected to the LISN. To accelerate the measurement the detector of the EMI test receiver was set to peak and the whole frequency range form 0.15MHz to 30MHz were scanned. After that all peaks values with fewer margins than 10dB to quasi-peak limit or exceeding the limit were marked and re-measured with quasi-peak detector. If after that all values are under the average limit no addition measurement is necessary. In case there are still values between quasi-peak and average limit than these values were re-measured again with an average detector.

These measurements were done on all current carrying conductors.

According to ANSI C63.4, section 13.1.3.1 testing of intentional radiators with detachable antennas shall be done with a dummy load otherwise the tests should be done with connected antenna and if adjustable fully extended.



EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 17 of 54

6.5 Test setup

Expanded Uncertainty (9kHz to 150kHz):

 $U_{(y)} = (y \pm 4.024) dB\mu V; k=2.00$

y = Indicated value

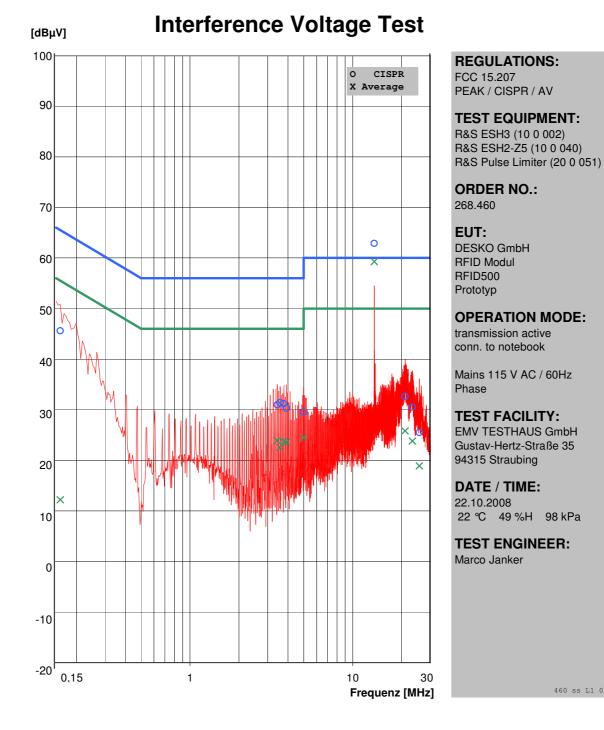
Expanded Uncertainty (150kHz to 30MHz):

 $U_{(y)} = (y \pm 3.604) dB\mu V; k=2.00$

y = Indicated value

Comments: The 13,56MHz disturbance belongs to the carrier frequency, which is exempted for this test. Due to fixed internal antenna a test with 50ohm dummy was not possible.

All peripheral devices were additionally decoupled by means of a line stabilization network.



EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 18 of 54

6.6 Test result

Picture 6.1 Conducted emission on mains, phase 1

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0

DESKO GmbH RFID Module RFID 500

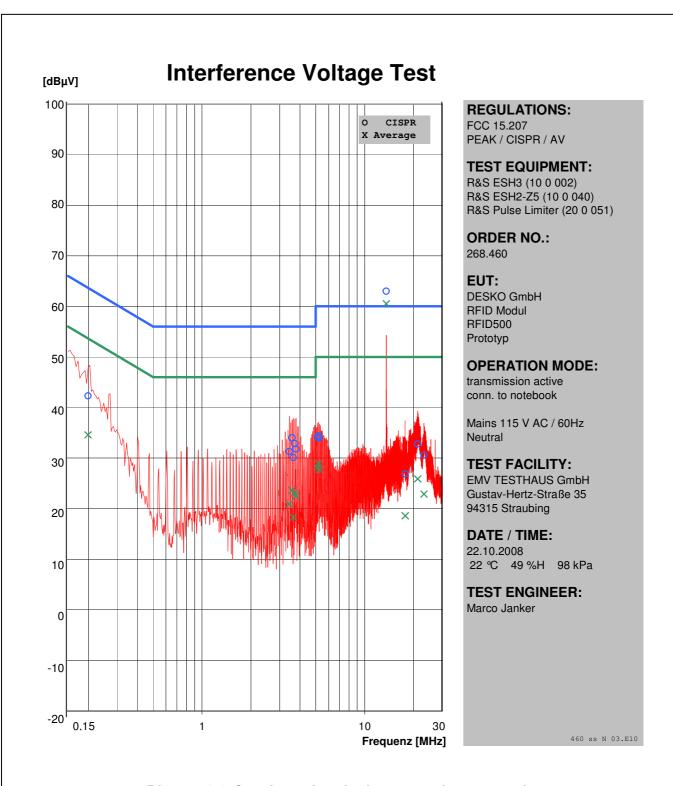
268.460

Page 19 of 54

460 ss L1 03.E10

Interference Voltage Test

 Freq.	U_CISPR	Limit	delta_U	U_AV	Limit	delta_U	Corr.	Remark	460 ss L1 03.E10
[MHz]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]	[dB]		
0,16	45,6	65,5	19,9	12,2	55,5	43,3	0,0		
3,43	31,0	56,0	25,0	23,9	46,0	22,1	0,0		
3,57	31,4	56,0	24,6	22,5	46,0	23,5	0,0		
3,78	31,2	56,0	24,8	23,7	46,0	22,3	0,0		
3,91	30,3	56,0	25,7	23,6	46,0	22,4	0,0		
4,99	29,5	56,0	26,5	24,5	46,0	21,5	0,0		
13,56	62,9	60,0	-2,9	59,3	50,0	-9,3	0,0		
21,01	32,6	60,0	27,4	25,8	50,0	24,2	0,0		
23,30	30,5	60,0	29,5	23,8	50,0	26,2	0,0		
25,69	25,5	60,0	34,5	18,9	50,0	31,1	0,0		


Table 1: Conducted emission on mains, phase 1

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 20 of 54

Picture 6.2 Conducted emission on mains, neutral

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 **DESKO GmbH** RFID Module

RFID 500

268.460

Page 21 of 54

Interference Voltage Test

 Freq.	U_CISPR	Limit	delta_U	U_AV	Limit	delta_U	Corr.	Remark	460 ss N 03.E10
[MHz]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]	[dB]		
0,20	42,3	63,4	21,1	34,6	53,4	18,8	0,0		
3,43	31,3	56,0	24,7	20,9	46,0	25,1	0,0		
3,57	34,0	56,0	22,0	23,6	46,0	22,4	0,0		
3,64	30,1	56,0	25,9	18,3	46,0	27,7	0,0		
3,71	32,9	56,0	23,1	23,1	46,0	22,9	0,0		
3,78	31,8	56,0	24,2	22,5	46,0	23,5	0,0		
5,13	34,1	60,0	25,9	28,1	50,0	21,9	0,0		
5,19	34,4	60,0	25,6	28,9	50,0	21,1	0,0		
5,27	34,0	60,0	26,0	27,7	50,0	22,3	0,0		
13,56	63,0	60,0	-3,0	60,5	50,0	-10,5	0,0		
17,73	26,9	60,0	33,1	18,6	50,0	31,4	0,0		
21,18	32,8	60,0	27,2	25,9	50,0	24,1	0,0		
23,17	30,6	60,0	29,4	22,9	50,0	27,1	0,0		

Table 2 Conducted emission on mains, neutral

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 22 of 54

7 Measurement of radiated emission

according to CFR 47 Part 15, section 15.205(d7), 15.209 RSS-210 Issue 7, section 2.6

7.1 Radiated emission measurement from 9kHz to 30MHz:

7.1.1 Location of measurement

- ☑ Scan with peak detector in 3 m CDC
- ☑ Final CISPR measurement with quasi peak detector on 3m open site area.

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	100089
Open site area	EMV TESTHAUS GmbH	200017

7.1.2Measurement equipment

	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	100072
$\overline{\checkmark}$	ESCI (CDC and FF)	Rohde & Schwarz	100132
	ESVP (FF)	Rohde & Schwarz	100001
	VULB 9163 (CDC)	Schwarzbeck	100077
	VULB 9160 (FF)	Schwarzbeck	100064
$\overline{\checkmark}$	Feedline OATS	Huber & Suhner	200024
$\overline{\mathbf{V}}$	HFH2-Z2 (CDC and FF)	Rohde & Schwarz	100005

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460 Page 23 of 54

7.1.3 Limits

Frequency [MHz]	Field strength Fs [μV/m]	Field strength [dBμV/m]	Measurement distance d [m]
0.009 - 0.490	266.7 – 4.9	48.5 – 13.8	300
0.490 - 1.705	49.0 – 14.1	33.8 – 23.0	30
1.705 - 30	30	29.5	30

To calculate the limit for 3m measurement distance the following calculation was used.

$$L_{dm} = L_d + (-40 \frac{dB}{dec} * (\log(dm) - \log(d))$$
 $L_{dm} = \text{Limit at the new distance}$ $L_d = \text{Limit according ANSI 63.4}$ $dm = \text{Distance according to ANSI 63.4}$ $d = \text{New distance for limit}$

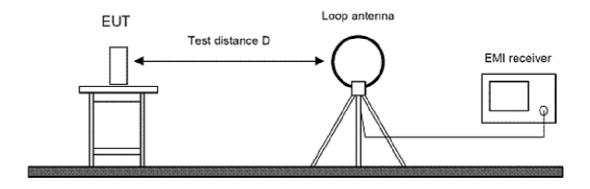
$$\begin{split} L_{dm} &= 48.5 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(300m)) = 128,5 dB & \text{for } 0.009 \text{MHz} \\ L_{dm} &= 13.8 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(300m)) = 93.8 dB & \text{for } 0.490 \text{MHz (high)} \\ L_{dm} &= 33.8 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) = 73.8 dB & \text{for } 0.490 \text{MHz (low)} \\ L_{dm} &= 23 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) = 63 dB & \text{for } 1.705 \text{MHz (high)} \\ L_{dm} &= 29.5 \frac{dB\mu V}{m} + (-40 \frac{dB}{dec} * (\log(3m) - \log(30m)) = 69.5 dB & \text{for } 1.705 \text{MHz (low)} \end{split}$$

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 24 of 54

7.1.4Test method to demonstrate compliance

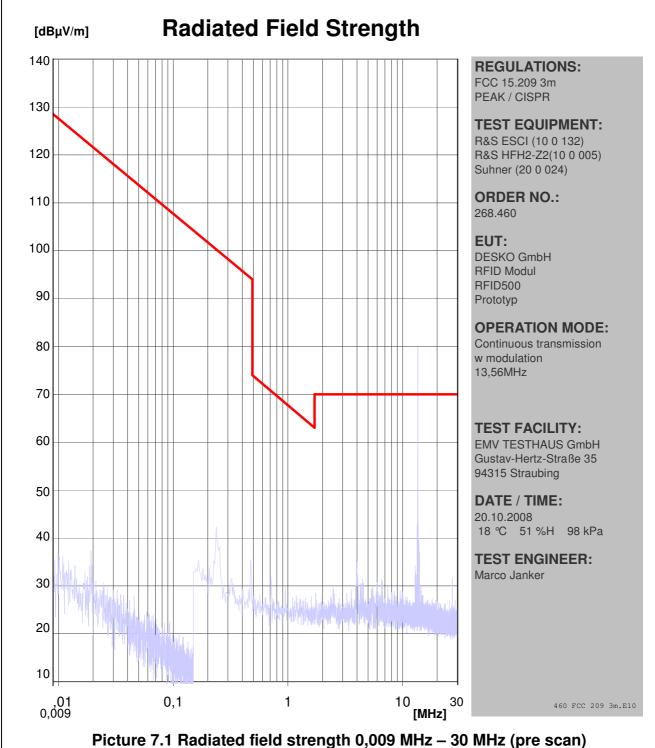

An EMI test receiver was used and connected to the loop antenna. The EUT was placed on a wooden table in a distance of 3m inside a compact diagnostic chamber.. The loop antenna was placed in vertical polarization at an angle of 0° and the EMI receiver performed a scan form 0.009MHz to 30MHz with the detector set to peak and the measurement bandwidth to 200Hz. At .150kHz the measurement bandwidth was changed to 9kHz.

This procedure was repeated at 6 different positions of the EUT by rotating turn table. All peak values over the limit or with less distance to limit then 6dB were marked and re-measured with a quasi-peak detector with the following method on a 3m open area test site.

The turn table was turned 360° to find the position of maximum field strength. After reaching this position the loop antenna was rotated 360° to find the maxima. The measured value was recorded. This measurement was done for all marked frequencies with respect to the appropriate bandwidth for the frequency ranges.

To check the horizontal polarization the EUT was rotated by 90° instead of the loop antenna and the procedure was repeated. Both results are combined inside on graphic.

7.1.5 Test setup

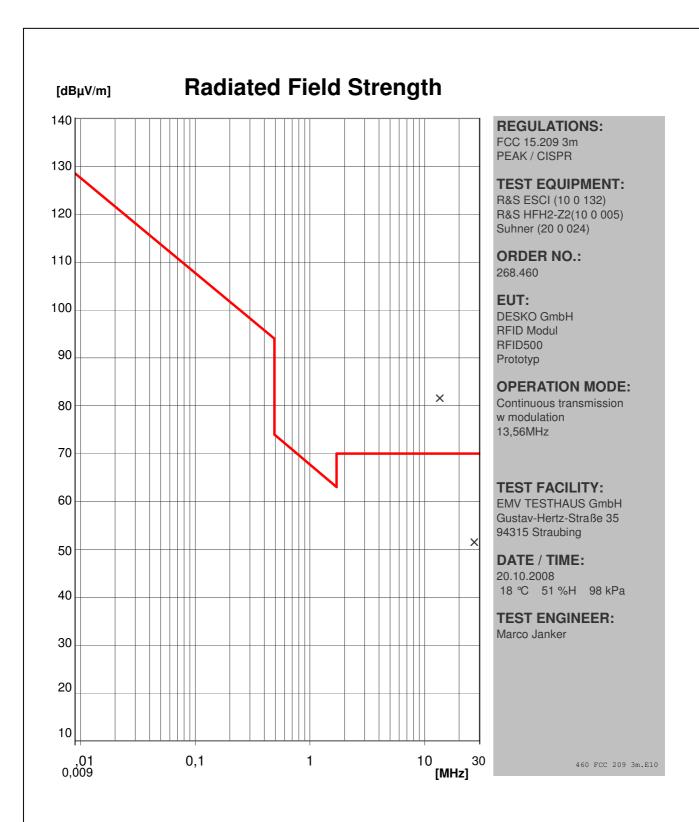


EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 25 of 54

7.1.6Test result



EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 26 of 54

Picture 7.2 Radiated field strength 0,009 MHz – 30 MHz (final)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 27 of 54

Radiated Field Strength

 Freq.	U_Rec	Limit	Corr.	U_Ant.	delta_U	Turn-	Antenna	Pol.	Remark	
 [MHz]		[dBµV/m]	[dB]	_ dBμV/m]	[dB]	table				460 FCC 209 3m.E10
13,56	81,6	70,0	51,5	30,1	-11,6	79°	100 cm	V		
27,12	51,5	70,0	51,5	0,0	18,5	330°	100 cm	V		

Table 3 Radiated field strength 0,009 MHz – 30 MHz (final)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 28 of 54

Expanded Uncertainty (9kHz to 150kHz): $U_{(y)} = (y \pm 4.024) dB\mu V; k=2.00$ y = Indicated value Expanded Uncertainty (150kHz to 30MHz): $U_{(y)} = (y \pm 3.604) dB\mu V; k=2.00$ y = Indicated value The 13,56MHz disturbance belongs to the carrier frequency, which is Comments: exempted for this test.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 29 of 54

7.2 Radiated emission measurement from 30 MHz to 1000MHz

7.2.1 Location of measurement

- ☑ Scan with peak detector in 3 m CDC witch is correlated to the 10m open site area.
- ☑ Final CISPR measurement with quasi peak detector on 10m open site area.

Description	Manufacturer	Inventory No.		
CDC	Albatross Projects	100089		
Open site area	EMV TESTHAUS GmbH	200017		

7.2.2 Measurement equipment

	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	100072
$\overline{\checkmark}$	ESCI (CDC)	Rohde & Schwarz	100132
$\overline{\checkmark}$	ESVP (FF)	Rohde & Schwarz	100001
$\overline{\mathbf{A}}$	VULB 9163 (CDC)	Schwarzbeck	100077
$\overline{\mathbf{A}}$	VULB 9160 (FF)	Schwarzbeck	100064
	HFH2-Z2	Rohde & Schwarz	100005
$\overline{\checkmark}$	Feedline OATS	Huber & Suhner	200024

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 30 of 54

7.2.3 Limits

Frequency [MHz]	Field strength Fs [μV/m]	Field strength [dΒμV/m]	Measurement distance d [m]
30 – 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

To calculate the limit for 10m measurement distance the following calculation was used.

$$L_{dm} = L_d + (-20\frac{dB}{dec} * (\log(dm) - \log(d))$$
 $L_{dm} = \text{Limit at the new distance}$

 L_d = Limit according ANSI 63.4 d = Distance according to ANSI 63.4 dm = New distance for limit

$$L_{dm} = 40 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 30dB$$
 for 30MHz to 88MHz

$$L_{dm} = 43.5 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 33.5dB$$
 for 88MHz to 216MHz

$$L_{dm} = 46 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 36dB$$
 for 216MHz to 960MHz

$$L_{dm} = 54 \frac{dB\mu V}{m} + (-20 \frac{dB}{dec} * (\log(10m) - \log(3m)) = 44dB$$
 above 960MHz

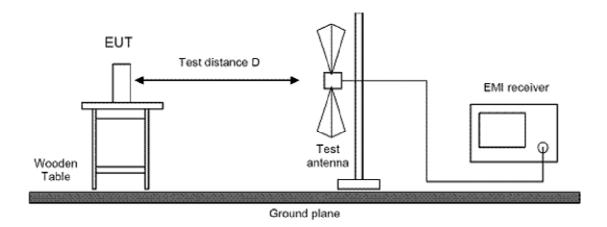
EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0

DESKO GmbH RFID Module RFID 500

268.460

Page 31 of 54

7.2.4Test method to demonstrate compliance


An EMI test receiver was used and connected to a broadband antenna. The EUT was placed on a wooden table in a distance of 3m inside a compact diagnostic chamber. This chamber is a fully anechoic chamber and correlated to our 10m open site. Therefore the 10m limit was applicable for the pre-scan inside this chamber. The broadband antenna was placed in vertical polarization and the EMI receiver performed a scan from 30MHz to 1000MHz with the detector set to peak and the measurement bandwidth to 120kHz.

This procedure was repeated at 6 different positions of the EUT by rotating turn table. After that die polarization switched to horizontal and repeated this procedure. After all 12 scans the results of the two polarizations were combined.

All peak values over or with less distance to limit then 6dB were marked and remeasured with a quasi-peak detector with the following method on a 10m open area test site.

The turn table was turned 360° to find the position of maximum field strength. After reaching this position the antenna was moved form 1m to 4m height to find the maximum value. This value was recorded.

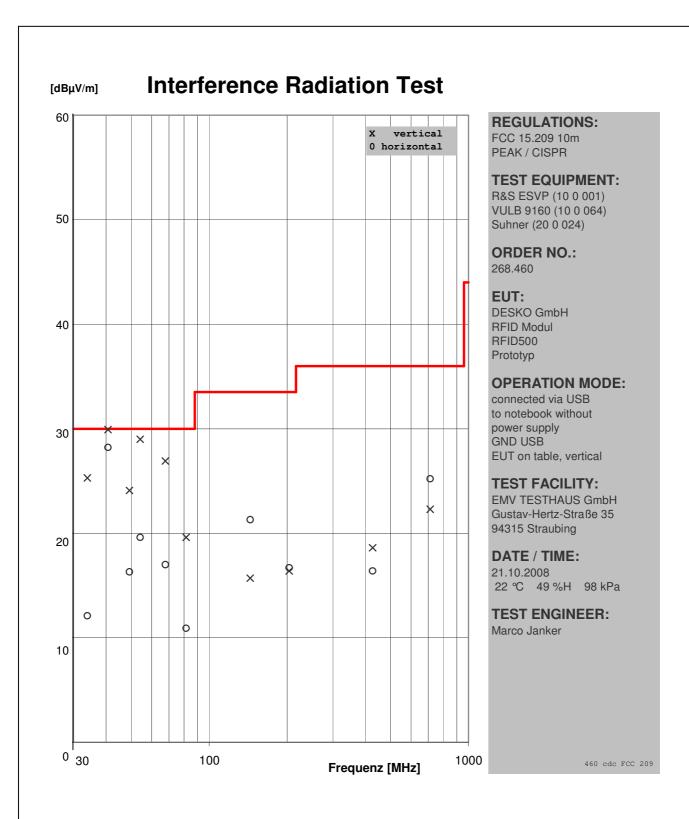
7.2.5Test setup

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 32 of 54

7.2.6Test result **Interference Radiation Test** $[dB\mu V/m]$ 60 **REGULATIONS:** vertical FCC 15.209 10m 0 horizontal PEAK / CISPR **TEST EQUIPMENT:** R&S ESVP (10 0 001) VULB 9160 (10 0 064) 50 Suhner (20 0 024) **ORDER NO.:** 268.460 EUT: **DESKO GmbH** 40 RFID Modul RFID500 Prototyp **OPERATION MODE:** connected via USB to notebook without power supply 30 **GND USB** EUT on table, vertical **TEST FACILITY: EMV TESTHAUS GmbH** Gustav-Hertz-Straße 35 94315 Straubing 20 DATE / TIME: 21.10.2008 22 °C 49 %H 98 kPa **TEST ENGINEER:** Marco Janker 10 0 30 100 1000 460 cdc FCC 209 Frequenz [MHz]


Picture 7.3 Radiated emission 30 MHz – 1000MHz (pre scan)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 33 of 54

Picture 7.4 Radiated emission 30 MHz – 1000MHz (final)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 34 of 54

Interference Radiation Test

F	Freq.	U_Rec	Limit	Corr.	U_Ant.	delta_U	Turn-	Antenna	Pol.	Remark	460 cdc FCC 209
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV]	[dB]	table				
3	33,90	12,1	30,0	12,2	-0,1	17,9	324°	250 cm	Н		
3	33,90	25,3	30,0	12,2	13,1	4,7	1°	100 cm	٧		
4	40,70	28,2	30,0	13,2	15,0	1,8	202°	250 cm	Н		
4	40,70	29,9	30,0	8,3	21,6	0,1	286°	100 cm	V		
4	49,30	16,3	30,0	13,0	3,3	13,7	321°	250 cm	Н		
4	49,30	24,1	30,0	13,0	11,1	5,9	252°	100 cm	V		
5	54,20	19,6	30,0	12,9	6,7	10,4	359°	250 cm	Н		
5	54,20	29,0	30,0	12,9	16,1	1,0	107°	100 cm	V		
6	67,80	17,0	30,0	11,3	5,7	13,0	158°	250 cm	Н		
6	67,80	26,9	30,0	11,3	15,6	3,1	252°	100 cm	V		
8	81,50	10,9	30,0	9,4	1,5	19,1	359°	250 cm	Н		
8	81,50	19,6	30,0	9,4	10,2	10,4	35°	100 cm	V		
14	44,00	21,3	33,5	14,6	6,7	12,2	272°	250 cm	Н		
14	44,00	15,7	33,5	14,6	1,1	17,8	239°	100 cm	V		
20	03,40	16,7	33,5	11,7	5,0	16,8	54°	250 cm	Н		
20	03,40	16,4	33,5	11,7	4,7	17,1	24°	100 cm	٧		
42	27,10	18,6	36,0	18,9	-0,3	17,4	346°	100 cm	٧		
42	27,10	16,4	36,0	18,9	-2,5	19,6	138°	250 cm	Н		
7 1	11,50	22,3	36,0	24,9	-2,6	13,7	270°	100 cm	٧		
71	11,50	25,2	36,0	24,9	0,3	10,8	186°	250 cm	Н		

Table 4 Radiated emission 30 MHz - 1000MHz (final)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 35 of 54

Expanded uncertainty (30MHz to 300MHz):

 $E_{(y)} = (y \pm 4.994) dB\mu V/m; k=2.00$

y = Indicated value

Expanded uncertainty (300MHz to 1000MHz):

 $E_{(y)} = (y \pm 5.276) dB\mu V/m; k=2.00$

y = Indicated value

Comments: To keep the limit the following modifications need to be done, see also chapter 4 modifications:

- Add a ferrite core to the USB cable
- Solder shield of USB cable to the controller board of the module.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 36 of 54

8 Occupied Bandwidth (99%)

according to CFR 47 Part 2 section 2.202

8.1 Test location

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	100089

8.2 Test Instruments

	Description	Manufacturer	Inventory No.
$\overline{\checkmark}$	ESCS 30 (FF)	Rohde & Schwarz	100072
$\overline{\checkmark}$	ESCI (CDC)	Rohde & Schwarz	100132
V	HFH2-Z2	Rohde & Schwarz	100005
	VULB 9163 (CDC)	Schwarzbeck	100077
	VULB 9160 (FF)	Schwarzbeck	100064

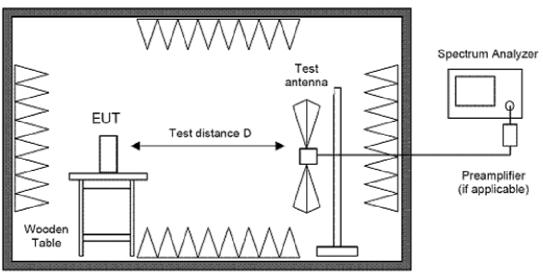
8.3 Test method to demonstrate compliance

The EUT has no detachable antenna therefore the radiated method was used

The occupied bandwidth is measured as the 99% bandwidth. For this measurement the occupied bandwidth function of the spectrum analyzer was used.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460 Page 37 of 54


The resolution bandwidth of the spectrum analyzer shall be set to a greater value than 5% of the allowed bandwidth.

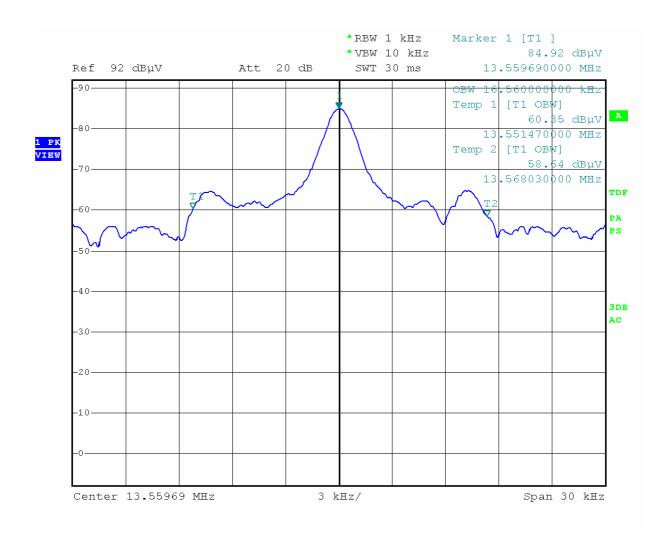
Because no resolution bandwidth was given the following guideline from ANSI C63.4 annex H6 was consulted.

Fundamental frequency	Minimum resolution bandwidth
0.009MHz to 30MHz	1kHz
30MHz to 1000MHz	10kHz
1000MHz to 40000MHz	100kHz

The video bandwidth was adjusted at least 3 times wider than the resolution bandwidth

8.4 Test setup

Fully or semi anechoic room


EMVTESTHAUS

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 38 of 54

8.5 Test results

Picture 8.1: Occupied bandwidth 99% (BW99-FCC)

Frequency lower value: 13,5514MHz Limit: 13,110MHz Frequency upper value: 13,5680MHz Limit: 14,010MHz

Occupied Bandwidth: 16,56kHz

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460 P

Page 39 of 54

9 Occupied Bandwidth (20dB)

according to FCC Part 15, section 15.215(c)

9.1 Test location

Description	Manufacturer	Inventory No.	
CDC	Albatross Projects	100089	

9.2 Test Instruments

	Description	Manufacturer	Inventory No.
$\overline{\checkmark}$	ESCS 30 (FF)	Rohde & Schwarz	100072
	ESCI (CDC)	Rohde & Schwarz	100132
	HFH2-Z2	Rohde & Schwarz	100005
	VULB 9163 (CDC)	Schwarzbeck	100077
	VULB 9160 (FF)	Schwarzbeck	100064

9.3 Test method to demonstrate compliance

The EUT has no detachable antenna therefore the radiated method was used

The 20 dB bandwidth of the emission is measured as the frequency range defined by the points that are 20 dB down relative to the maximum level of the modulated carrier.

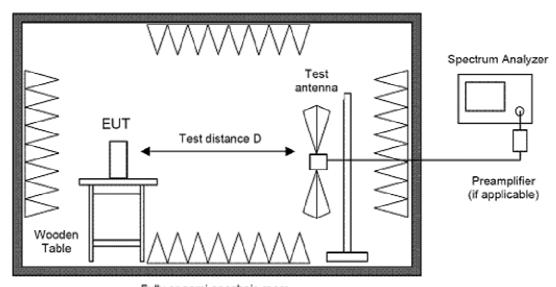
For intentional radiators operating under the alternative provisions to the general emission limits the requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 40 of 54

and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation


The resolution bandwidth of the spectrum analyzer shall be set to a greater value than 5% of the allowed bandwidth.

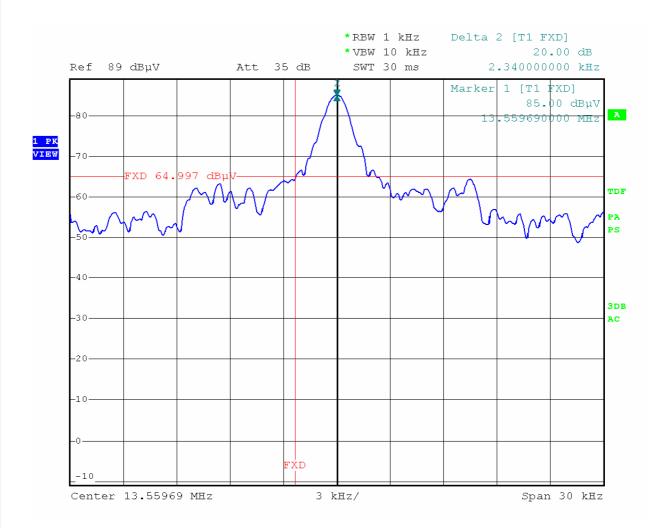
Because no resolution bandwidth was given the following guideline from ANSI C63.4 annex H6 was consulted.

Fundamental frequency	Minimum resolution bandwidth
0.009MHz to 30MHz	1kHz
30MHz to 1000MHz	10kHz
1000MHz to 40000MHz	100kHz

The video bandwidth was adjusted at least 3 times wider than the resolution bandwidth

9.4 Test setup

Fully or semi anechoic room

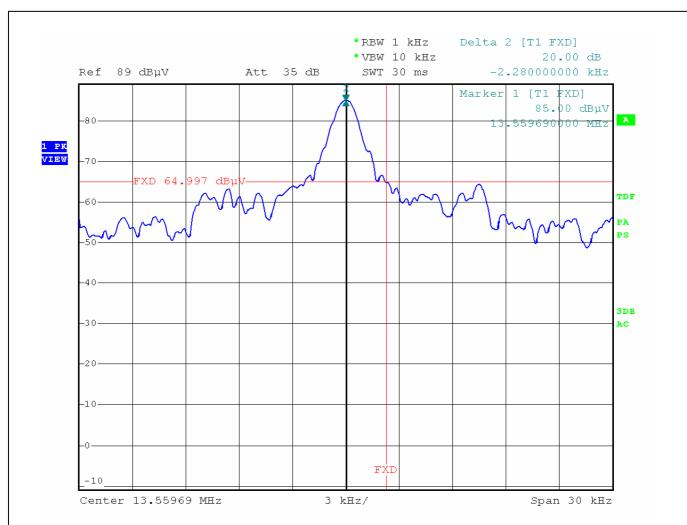


EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 41 of 54

9.5 Test results


Picture 9.1: Occupied bandwidth lower value (BWLL-FCC)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 42 of 54

Picture 9.2: Occupied bandwidth upper value (BWUL-FCC)

Frequency lower value: 13,55735MHz Limit: 13,110MHz Frequency upper value: 13,56188MHz Limit: 14,010MHz

Occupied Bandwidth: 4,53kHz

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 43 of 54

10 Occupied Bandwidth (99%)

according to RSS Gen Issue 2, section 4.6.1

10.1 Test location

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	100089

10.2 Test Instruments

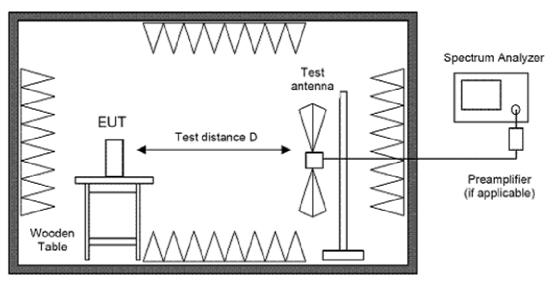
	Description	Manufacturer	Inventory No.
	ESCS 30 (FF)	Rohde & Schwarz	100072
$\overline{\mathbf{A}}$	ESCI (CDC)	Rohde & Schwarz	100132
$\overline{\mathbf{A}}$	HFH2-Z2	Rohde & Schwarz	100005
	VULB 9163 (CDC)	Schwarzbeck	100077
	VULB 9160 (FF)	Schwarzbeck	100064

10.3 Test method to demonstrate compliance

The EUT has no detachable antenna therefore the radiated method was used

If not specified in the applicable RSS the occupied bandwidth is measured as the 99% emission bandwidth.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

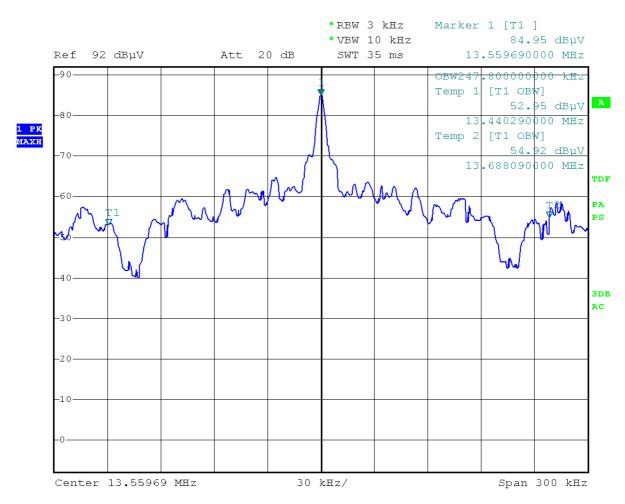

The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is also recorded. The span between the two recorded frequencies is the occupied bandwidth.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460 Page 44 of 54

10.4 Test setup

Fully or semi anechoic room



EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 45 of 54

10.5 Test results

Picture 10.1: Occupied bandwidth 99% (BW99-IC)

Frequency lower value: 13,4403MHz Limit: 13,110MHz Frequency upper value: 13,6881MHz Limit: 14,010MHz

Occupied Bandwidth: 247,8kHz

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 46 of 54

11 Carrier frequency stability

according to CFR 47 Part 15, section 15.225(e) RSS-Gen Issue 2, section 7.2.4 and 4.7(b)

11.1 Test location

	Description	Manufacturer	Inventory No.
Ø	Climatic Chamber VC4100	Vötsch	110023
	Climatic Chamber VC ³ 4043	Vötsch	110040

11.2 Test Instruments

	Description	Manufacturer	Inventory No.
$\overline{\checkmark}$	ESCI	Rohde & Schwarz	100132
	Test Probe RFR400-1	Langer	200086
	Power Supply	Statron	300193
	Multimeter	Metra Hit 29S	100080
	USLP 9142	USLP 9142	100044

11.3 Test method to demonstrate compliance

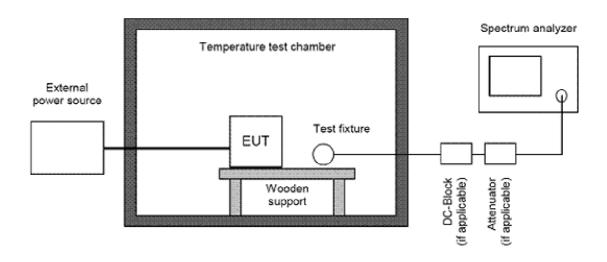
The frequency tolerance of the carrier signal is measured over a temperature variation of -20 $^{\circ}$ C to +50 $^{\circ}$ C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 $^{\circ}$ C.

If the EUT provides an antenna connector the spectrum analyzer is connected to this port. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). In cases where the EUT does not provide an antenna connector a test fixture is used.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268,460

Page 47 of 54


For battery operated equipment, the test is performed using a new battery. Alternatively, an external supply voltage can be used and is at least set to:

- the maximum battery voltage as delivered by a new battery or 115% of the battery nominal voltage
- the battery nominal voltage
- 85% of the battery nominal voltage
- the battery operating end point voltage which shall be specified by the equipment manufacturer

The EUT is operating providing an unmodulated carrier. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to the shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point on the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1% of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance allowed is larger than the uncertainty of the measured frequency tolerance

11.4 Test setup

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 48 of 54

11.5 Test result

11.5.1 Carrier vs. temperature

Supply Voltage 5V		Nominal frequency 13.55969 MHz	
Temperature	Carrier frequency	Δ Frequency	Deviation
℃	MHz	Hz	ppm
-20	13,55980	-110	-8,11
-10	13,55980	-110	-8,11
0	13,55974	-50	-3,69
+10	13,55971	-20	-1,47
+20	13,55969	0	0
+30	13,55967	+20	1,47
+40	13,55965	+40	2,95
+50	13,55963	+60	4,42
Limit ± 100ppm			

11.5.2 Carrier vs. input voltage

Temperature 20 ℃		Nominal frequency 13.55969 MHz		
Voltage	Carrier frequency	Δ Frequency	Deviation	
V	MHz	Hz	ppm	
4,25	13,55969	0	0	
5V	13,55969	0	0	
5,75	13,55975	+60	+4,42	
Limit ± 100ppm				

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 49 of 54

12 Designation of Emissions

according to CFR 47 Part 2, Sections 2.201 and 2.202 RSS-Gen Issue 2, Sections 3.2(h) and 8

12.1 Designation

Type of Modulation:	Amplitude Modulation
Necessary Bandwidth: Modulation Rate: Overall numerical Factor:	$B_n = 2 \cdot B \cdot K$ $B = 5kHz$ $K = 1$ $B_n = 2 \cdot 5kHz \cdot 1 = 10kHz$
Designation of Emissions according ITU-R:	10K0A1D

Remarks:

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 50 of 54

13 Exposure of Humans to RF Fields

according to RSS-Gen Issue 2, section 5.5 and RSS-102 Issue 2, section 2.5

13.1 Antenna type and power calculation

Antenna detachable

$$EIRP = G \cdot CP$$

numerical antenna gain conducted output power [W]

 $\overline{\mathbf{A}}$ Antenna not detachable

$$EIRP = \frac{(F_s \cdot D)^2}{30}$$

Fs: field strength [V/m]
D: distance between a

distance between antennas [m]

$$EIRP = \frac{(1.30 \cdot 3)^2}{30} = 507nW$$

13.2 Distance between user and transmitting device*

- Distance >20cm $\mathbf{\Lambda}$
- Distance < 20cm

*declared by applicant

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0

DESKO GmbH RFID Module RFID 500

268,460

Page 51 of 54

13.3 Exemption from SAR evaluation

SAR evaluation is required if separation distance between user and devices is less than, or equal to 20cm, except the device operates:

	from 3 kHz up to 1 GHz inclusively and its source based time-averaged output power is <= 200 mW for general public use and <= 1000 mW for controlled use.			
	above 1 GHz up to 2.2 GHz inclusively and its source-based time-averaged output power is <= 100 mW for general public use and <= 500 mW for controlled use.			
	above 2.2 GHz up to 3 GHz inclusively and its source-based time-averaged output power is <= 20 mW for general public use and <= 100 mW for controlled use.			
	above 3 GHz up to 6 GHz inclusively and its source-based time-averaged Output power is <= 10 mW for general public use and <= 50 mW for controlled use.			
See output power calculation 13.1				

13.4 Exemption from RF exposure evaluation

RF exposure evaluation is required if separation distance between user and devices is greater than 20cm, except the device operates:

$\overline{\checkmark}$	below	1,5GHz and	its e.i.r.p is	equal to,	or less than	2.5W.
-------------------------	-------	------------	----------------	-----------	--------------	-------

	above 1,5GHz	and the e.i.r.p of	the device is equal	to or less than 5W
--	--------------	--------------------	---------------------	--------------------

See output power calculation 13.1

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

14 Equipment Calibration Status

Inventory Number	Model Number	Manufacturer	Last calibration	Next calibration	Cycle of calibration
100132	ESCI	Rohde & Schwarz	June 07	June 09	2 Years
100005	HFH2-Z2	Rohde & Schwarz	July 07	July 09	2 Years
100002	ESH 3	Rohde & Schwarz	Oct. 08	Oct. 09	1 Year
200051	ESH3 Z2	Rohde & Schwarz	Oct. 08	Oct. 09	1 Year
100040	ESH 2-Z5	Rohde & Schwarz	Oct. 07	Oct. 09	2 Years
100041	ESH 2-Z5	Rohde & Schwarz	Aug. 08	Aug. 10	2 Years
100072	ESCS 30	Rohde & Schwarz	July 08	July 09	1 Year
100001	ESVP	Rohde & Schwarz	Oct. 08	Sep. 09	1 Year
100077	VULB 9163	Schwarzbeck	April 08	April 10	2 Years
100064	VULB 9160	Schwarzbeck	March 07	March 09	2 Years
110040	VC ³ 4034	Vötsch	June 08	June 10	2 Years
110023	VC4100	Vötsch	January 07	January 09	2 Years
100080	Multimeter	Metra Hit 29S	Mai 08	Mai 09	1 Year

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 53 of 54

15 Summary

The EMC Regulations according to the marked specifications are

☑ KEPT

The EUT does fulfill the general approval requirements mentioned.

□ <u>NOT</u> KEPT

The EUT does not fulfill the general approval requirements mentioned.

Place, Date: Straubing, September 12, 2008

Marco Janker

EMI / EMC Test Engineer

Dipl. Ing. (FH) Axel Penning

TM / EMV TESTHAUS GmbH

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 2.0 DESKO GmbH RFID Module RFID 500

268.460

Page 54 of 54