

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-6583/18-01-03

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: Fax. + 49 681 5 98 - 9075 http://www.ctcadvanced.com Internet: mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Datto, Inc.

101 Meritt 7, Norwalk

06851 Connecticut / UNITED STATES

Contact: Michael Fass mfass@datto.com e-mail: Phone: +1 20 38 22 77 22

Manufacturer

Datto, Inc.

101 Meritt 7, Norwalk

06851 Connecticut / UNITED STATES

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: WLAN Access Point IEEE 802.11 a/b/g/n/ac (80 MHz)

Model name: A42, AP42 FCC ID: WT8OMA42 IC: 10103A-OMA42 RLAN bands:

Frequency: 5150 MHz to 5350 MHz, 5470MHz to 5600MHz &

5650MHz to 5725MHz

Technology tested: WLAN (DFS only)

Two integrated PIFA antennas Antenna: Power supply: PoE Input 48-54V/0,5A; 24V/1A

Temperature range: 0°C to +40°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

cn=Marco Bertolino, o=CTC advanced GmbH, ou=BTL-161128, email=Marco.Bertolino@ctcadvanced.co m. c=DE 2018.08.06 14:39:20 +02'00'

René Oelmann Lab Manager

Radio Communications & EMC

Test performed:

Digital unterschrieben von David Lang DN: cn=David Lang, o=CTC advanced GmbH, ou=LNG-161129, email=david.lang@ctcadvanced.com, c=DE Datum: 2018.08.06 14:02:55 +02'00'

David Lang Lab Manager Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1	Notes and disclaimer	٠
	2.1	Application details	
	2.3	Test laboratories sub-contracted	5
3	_	standard/s and references	
4	Test e	environment	5
5	Test i	tem	5
	5.1	General description	5
	5.2	Additional information	
6	Meas	urement uncertainty	6
7		nary of measurement results	
8		onal comments	
9		easurements	
9			
	9.1	Description of test setup	
	9.1.1	Conducted measurements	
	9.2	Parameters of DFS test signals	10
	9.2.1	DFS Detection Thresholds for Master Devices as well as Client Devices With Radar Detection .	
	9.2.2	DFS Response Requirement Values	
	9.2.3	Radar Test Waveforms	
	9.3 9.3.1	Test preparation	
	9.3.1	Channel loading	14
	9.3.2	Radar burst timing signal	
	9.3.3	Test results (prior to use of a channel)	
	9.4.1	Channel Availability Check Time	
	9.5	Test results (during normal operation)	
	9.5.1	U-NII Detection Bandwidth	
	9.5.2	Channel move time / channel closing transmission time	
	9.5.3	Non-Occupancy Period	
	9.5.4	In-Service Monitoring / Statistical Performance Check	
10	0	bservations	26
Anr	nex A	Glossary	26
	nex B	Document history	
	nex C	Accreditation Certificate	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2018-06-27
Date of receipt of test item: 2018-07-04
Start of test: 2018-07-05
End of test: 2018-07-13

Person(s) present during the test: Mr. Simon Wunderlich

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 27

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

Guidance	Version	Description
UNII: KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices
KDB 662911 D01	v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
UNII: KDB 905462 D02	v02	Compliance measurement procedures for unlicensed - national information infrastructure devices operating in the 5250 - 5350 MHz and 5470 - 5725 MHz bands incorporating dynamic frequency selection
UNII: KDB 905462 D03 UNII: KDB 905462 D04	v01r02 v01	Client Without DFS New Rules Operational Modes for DFS Testing New Rules

© CTC advanced GmbH Page 4 of 27

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No testing required under extreme conditions. No testing required under extreme conditions.
Relative humidity content	:		45 %
Barometric pressure	:		not relevant for this kind of testing
Power supply	:	V_{max}	PoE Input 48-54V/0,5A; 24V/1A No testing required under extreme conditions. No testing required under extreme conditions.

5 Test item

5.1 General description

:	WLAN Access Point IEEE 802.11 a/b/g/n/ac (80 MHz)
	A42, AP42
	-/-
	A42 for OM, AP42 for Datto
	A42 for OM, AP42 for Datto
	6.5
	177251115
	A42 final/1
	6.5 (0389b6)
••	RLAN bands; 5150 MHz to 5350 MHz, 5470MHz to 5600MHz & 5650MHz to 5725MHz
:	BPSK, QPSK, 16 – QAM, 64 – QAM,
	20MHz, 40MHz & 80MHz
•	Two integrated PIFA antennas; ANT-0: 6525A0046300 (max. Gain 4.7 dBi), ANT-1: 6525A0045300 (max Gain 4.7 dBi)
:	PoE Input 48-54V/0,5A ; 24V/1A
:	0°C to +40°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-6583/18-01-01_AnnexA

1-6583/18-01-01_AnnexB 1-6583/18-01-01_AnnexH 1-6583/18-01-01_AnnexI

© CTC advanced GmbH Page 5 of 27

6 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Frequency accuracy (radar burst)	0.1 Hz					
Level accuracy (radar burst)	± 0.8 dB					

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
DFS-Testing	CFR Part 15, FCC 06-96	Pass	2018-08-06	DFS only!

Test Standard Clause	Test Case	Bandwidth	С	NC	NA	NP	Remark
7.8.1	U-NII Detection Bandwidth	20 MHz 40 MHz 80 MHz	\boxtimes				*1
§15.407 (h)(2)	DFS Detection Threshold	20 MHz	\boxtimes				*1
§15.407 (h)(2) (ii) & 7.8.2	Channel Availability Check Time	20 MHz	\boxtimes				*1
§15.407 (h)(2) (iv) & 7.8.3	Non-Occupancy Period	20 MHz	\boxtimes				*2
§15.407 (h)(2) (iii) & 7.8.2	Channel Move Time / Channel Closing Transmission Time	80 MHz	\boxtimes				*2
7.8.3 & 7.8.4	In-Service Monitoring / Statistical Performance Check	20 MHz 40 MHz 80 MHz	\boxtimes				*2

Abbreviations/References:

C Compliant NC Not compliant NA Not applicable NP Not performed

Prior to use of a channelDuring normal operation

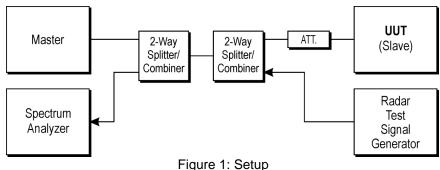
© CTC advanced GmbH Page 6 of 27

8 Additional comments

Reference documents:	None
Special test descriptions:	All tests except the In-Service Monitoring are conducted with Pulse Type 0. In addition to the stated antenna gain of 4.7dBi a 2dB correction factor was added to the reference level threshold to compensate for the measurement cable (Murata) and increase.
Configuration descriptions:	Iperf was used to generate the required channel load (duty cycle greater 17 percent).
DFS functionality:	☑ Master device☐ Client with radar detection☐ Client without radar detection

© CTC advanced GmbH Page 7 of 27

9 RF measurements


9.1 Description of test setup

9.1.1 Conducted measurements

Setup

Figure 1 shows a setup whereby the UUT is a RLAN device operating in slave mode, without Radar Interference Detection function. This setup also contains a RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device.

Figure 1 shows an example

RPP = SG - CA

(RPP-radar pulse power; SG-signal generator power; CA-loss signal path)

Example calculation:

RPP [dBm] = -30.0 [dBm] - 33.0 [dB] = -63.0 [dBm]

Equipment table:

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rfgenerating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

© CTC advanced GmbH Page 8 of 27

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Vector Signal Generator	SMU200A	R&S	101633	300003496	vIKI!	24.01.2017	23.01.2020
2	А	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	vIKI!	24.01.2017	23.01.2019
3	А	DFS-test site	div. Splitter, Cables, Attenuators	Mini-Circuits	na	300004557	ev	-/-	-/-
4	А	Notebook	Latitude 15 6000 Series	Dell		300004737	ne	-/-	-/-
5	Α	PC	ExOne	F+W	2890296v001	300005102	ne	-/-	-/-
6	А	RF-Cable DFS- Tester Receiver	ST18/SMAm/SMAm/ 24	Huber & Suhner	Batch no. 1308650	400001252	ev	-/-	-/-
7	А	RF-Cable DFS- Tester No. 1	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001257	ev	-/-	-/-
8	А	RF-Cable DFS- Tester No. 2	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001258	ev	-/-	-/-
9	А	RF-Cable DFS- Tester No. 6	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001262	ev	-/-	-/-

Agenda: Kind of Calibration

k calibration / calibrated EK limited calibration
not required (k, ev, izw, zw not required) zw cyclical maintenance (external cyclical maintenance)
ev periodic self verification izw internal cyclical maintenance

Ve long-term stability recognized g blocked for accredited testing vlkl! Attention: extended calibration interval

NK! Attention: not calibrated *) next calibration ordered / currently in progress

© CTC advanced GmbH Page 9 of 27

9.2 Parameters of DFS test signals

9.2.1 DFS Detection Thresholds for Master Devices as well as Client Devices With Radar Detection

Maximum Transmit Power EIRP	Value (see note)
≥ 200 mW	-64 dBm*
< 200 mW and power spectral density < 10 dBm/MHz	-62 dBm
< 200 mW and That do not meet the power spectral density < 10 dBm/MHz	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

9.2.2 DFS Response Requirement Values

Parameter	Value	
Non-occupancy period	minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds See Note 1.	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	

- Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

© CTC advanced GmbH Page 10 of 27

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

^{*} See section 8 for value of reference level correction.

9.2.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518- 3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \begin{cases} \left(\frac{1}{360}\right). \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}}\right) \end{cases} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Rada			lata da ala al	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4.

© CTC advanced GmbH Page 11 of 27

Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trails
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms.

© CTC advanced GmbH Page 12 of 27

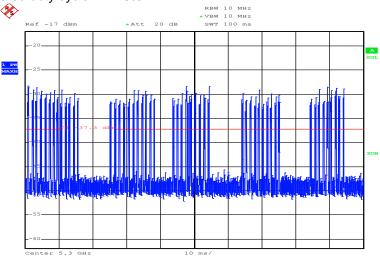
Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trails
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined.

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set.

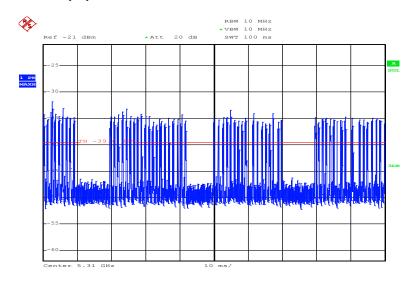
© CTC advanced GmbH Page 13 of 27



9.3 Test preparation

9.3.1 Channel loading

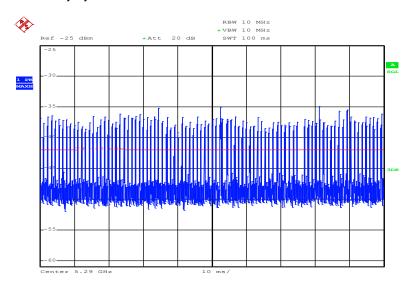
Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time). This can be done with any appropriate channel BW and modulation type.


HT20-Mode: Calculated duty cycle = 17.6%

Date: 5.JUL.2018 18:02:27

Plot 1

HT40-Mode: Calculated duty cycle = 19.6%

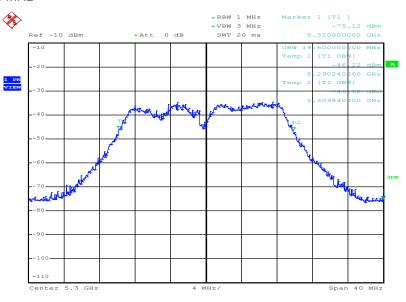

Date: 5.JUL.2018 16:18:40

Plot 2

© CTC advanced GmbH Page 14 of 27

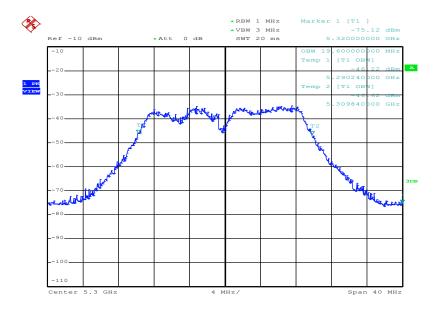
HT80-Mode: Calculated duty cycle = 17.7%

Date: 5.JUL.2018 20:08:49


Plot 3

© CTC advanced GmbH Page 15 of 27

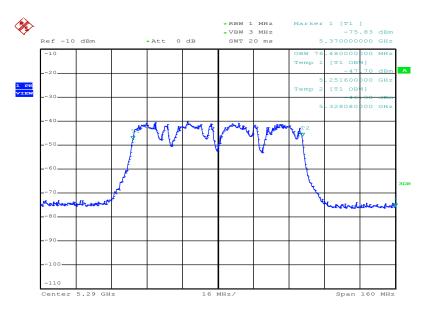
9.3.2 99% Bandwidth to determine the U-NII-bandwidth


HT20-Mode: 19.6 MHz

Date: 5.JUL.2018 18:05:40

Plot 4

HT40-Mode: 36.6 MHz

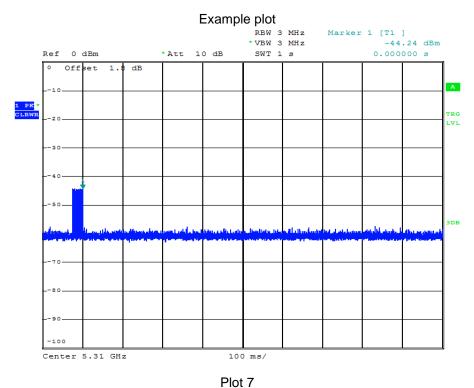

Date: 5.JUL.2018 18:05:40

Plot 5

© CTC advanced GmbH Page 16 of 27

HT80-Mode: 76.5 MHz

Date: 5.JUL.2018 08:06:17


Plot 6

© CTC advanced GmbH Page 17 of 27

9.3.3 Radar burst timing signal

To accurately determine the channel closing time and channel closing transmission time the spectrum analyser is triggered at the end of the radar burst (see marker at t = 0ms).

riot 1

© CTC advanced GmbH Page 18 of 27

9.4 Test results (prior to use of a channel)

9.4.1 Channel Availability Check Time

Initial Channel Availability Check Time

The Initial Channel Availability Check Time tests that the UUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms and only needs to be performed one time.

- a) The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- b) The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle
- c) Confirm that the UUT initiates transmission on the channel

Note:

The DUT performs the *Channel Availability Check* sequentially starting on the lowest DFS frequency at 5260MHz and continuous scanning for radars while increasing the centre frequency in 20 MHz steps after each 60 seconds period.

The system log of the DUT indicates the status of each channel while the scan is performed. As soon a scan is completed the channel status changes to "available" or "unavailable" whether a radar was detected or not. A timer indicates for how long the DUT is performing the *Channel Availability Check* respectively, for how long the Channel is "available" or "unavailable".

Tests with radar bursts were performed using the above mentioned timer function indicating the 2s window at the beginning respectively the end of the *CAC*. The immediate change in status to "unavailable" when a radar was injected was proof that the *CAC* is performed and the radar detected.

The following system logs show the *CAC* process without radar injection (all channels available after scan), and after injection on channel 64 and 100 (channel 64 and 100 unavailable).

© CTC advanced GmbH Page 19 of 27

Figure 2: No radar detection during CAC:

```
File Edit Setup Control Window Help

*5180 HHz [36]

*5200 HHz [40]

*5200 HHz [41]

*5200 HHz [42]

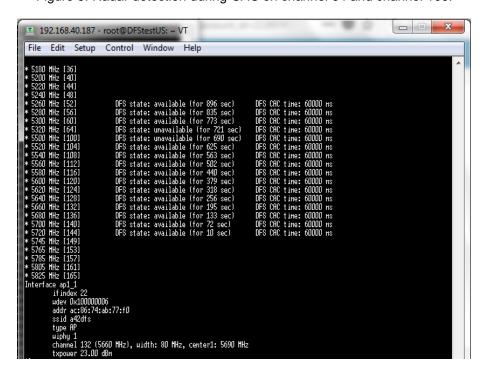
*5200 HHz [56]

DFS state: available (for 983 sec)

*5300 HHz [56]

DFS state: available (for 983 sec)

DFS CRC time: 60000 ns


*5300 HHz [60]

DFS state: available (for 983 sec)

DFS CRC time: 60000 ns

DFS CRC time:
```

Figure 5: Radar detection during CAC on channel 64 and channel 100:

© CTC advanced GmbH Page 20 of 27

9.5 Test results (during normal operation)

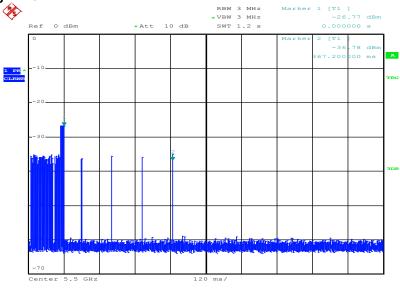
9.5.1 U-NII Detection Bandwidth

The U-NII Detection Bandwidth was determined according the procedure as described in the correspondent KDB as referenced in section 3 of this test report for any supported bandwidth.

The U-NII Detection Bandwidth must meet the U-NII Detection Bandwidth criterion referenced in section 9.2.2. Otherwise, the UUT does not comply with DFS requirements. This is essential to ensure that the UUT is capable of detecting Radar Waveforms across the same frequency spectrum that contains the significant energy from the system. In the case that the U-NII Detection Bandwidth is greater than or equal to the 99 percent power bandwidth for the measured F_H and F_L , the test can be truncated and the U-NII Detection Bandwidth can be reported as the measured F_H and F_L .

Operating mode	99% Bandwidth	F∟	Fн	U-NII Detection
	(MHz)	(MHz)	(MHz)	Bandwidth / F _H -F _L (MHz)
HT20	19.6	5290	5310	20
HT40	36.6	5290	5330	40
HT80	76.5	5250	5330	80

© CTC advanced GmbH Page 21 of 27



9.5.2 Channel move time / channel closing transmission time

After a radar's presence is detected, all transmissions shall cease on the operating channel within 10 seconds. Transmissions during this period shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal. In addition, intermittent management and control signals can be sent during the remaining time to facilitate vacating the operating channel not exceeding 60ms.

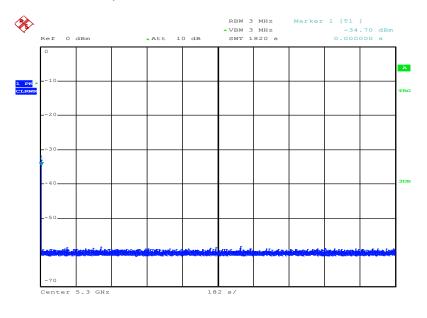
The test is performed during normal operation with the highest bandwidth supported by the DUT.

Date: 5.JUL.2018 15:50:54

Plot 8

Note: With Marker 1 at the end of the radar pulse (t = 0ms) the Channel Closing Time is determined by setting a Delta-Marker to the point where the last transmission occurred. The Channel Closing Time is **367.2ms**.

The accumulated transmission time is calculated by the number of bins occurring after t = 0ms multiplied with the Time-per-sweep point-factor resulting from the Sweep Time and number of Sweep Points of the Spectrum Analyser.


The Channel Closing Transmission Time is 1ms.

© CTC advanced GmbH Page 22 of 27

9.5.3 Non-Occupancy Period

A channel that has been flagged as containing a radar system, either by a channel availability check or inservice monitoring, is subject to a non-occupancy period of at least 30 minutes. The non occupancy period starts at the time when the radar system is detected.

Date: 9.JUL.2018 13:39:16

Plot 9

© CTC advanced GmbH Page 23 of 27

9.5.4 In-Service Monitoring / Statistical Performance Check

To determine the ability of the device to detect the radar test waveforms statistical data is gathered.

A detailed and pulse related evaluation of the test results can be found along with the sample parameter data sheets in the Test Report Annex I.

Short Pulse Radar Test Waveforms

According the table in section 9.2.39.2.2 the minimum percentage of successful detections for Short Pulse Radar Test Waveforms is 60% out of 30 trails. In addition an aggregate minimum percentage of successful detections across all Short Pulse Radar Types 1-4 is required and calculated as follows:

$$P_{sum} = \frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4}$$

where: P_d is the percentage of successful detections for each radar burst P_{sum} is the aggregate percentage of successful detections

The minimum percentage of successful aggregate detections across all Short Pulse Radar Types 1-4 is 80%.

Results HT20-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
1	30	30	100
2	30	30	100
3	30	30	100
4	30	30	100
Aggregate (Radar Types 1	100		

Results HT40-Mode:

Radar Type	Number of Trails	Number of Successful	Percentage of		
		Detections	Successful Detections		
1	30	30	100		
2	30	30	100		
3	30	30	100		
4	30	30	100		
Aggregate (Radar Types 1	Aggregate (Radar Types 1-4)				

Results HT80-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
1	30	30	100
2	30	30	100
3	30	30	100
4	30	30	100
Aggregate (Radar Types 1	-4)	•	100

© CTC advanced GmbH Page 24 of 27

Long Pulse Radar Test

Results HT20-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
5	30	30	100

Results HT40-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
5	30	30	100

Results HT80-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
5	30	30	100

Frequency Hopping Radar Test

Results HT20-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
6	30	30	100

Results HT40-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
6	30	30	100

Results HT80-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
6	30	30	100

© CTC advanced GmbH Page 25 of 27

10 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

© CTC advanced GmbH Page 26 of 27

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2018-08-06

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa Allee 52 Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DakSs). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DakSs.
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL1207-61 and is valid until 2.104.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following among with a total of 49 pages. Registration number of the certificate: D-PL-12076-01-03 Frankfurt, 02.06.2017 Digitys, (FH) half Sheet	The accreditation was granted pursuant to the Act on the Accreditation Body (A&KstelleG) of 31 July 2009 (Federal Law Gazette), 1,265) and the Regulation IC(S) to 765.0500 of the European Pallament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Indion 1,218 of 9 July 2008, p. 30). DA&Ks is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation formul (Ari) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.inac.org IAAC: www.inac.org IAAC: www.inac.org
Training to Account of United States of Children Sounder confect.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-03e.pdf

© CTC advanced GmbH Page 27 of 27