4 FCC §2.1091 - RF Exposure Information

4.1 Applicable Standards

FCC §2.1091, (a) Requirements of this section are a consequence of Commission responsibilities under the National Environmental Policy Act to evaluate the environmental significance of its actions. See subpart I of part 1 of this chapter, in particular §1.1307(b).

According to \$1.1310 and \$2.1091 RF exposure is calculated.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)	
(A) Limits for Occupational/Controlled Exposures					
0.3-3.0	614	1.63	*(100)	6	
3.0-30	1842/f	4.89/f	*(900/f ²)	6	
30-300	61.4	0.163	1.0	6	
300-1500	/	/	f/300	6	
1500-100,000	/	/	5	6	

Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz, * = Plane-wave equivalent power density

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = *power density*

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

25 kHz Channel Spacing, 22 kHz Bandwidth

Maximum peak output power at antenna input terminal (mW):74990Prediction distance (cm):200Prediction frequency (MHz):868.975Maximum Antenna Gain, typical (dBi):20Coax cable loss taken (dB):2.0Duty Cycle:25%Maximum Antenna Net Gain (numeric):63.1Power density of prediction frequency at 200 cm (mW/cm²):2.35MPE limit for Controlled exposure at prediction frequency (mW/cm²):2.897	Maximum peak output power at antenna input terminal (dBm):	<u>48.75</u>		
Prediction distance (cm):200Prediction frequency (MHz):868.975Maximum Antenna Gain, typical (dBi):20Coax cable loss taken (dB):2.0Duty Cycle:25%Maximum Antenna Net Gain (numeric):63.1Power density of prediction frequency at 200 cm (mW/cm²):2.35MPE limit for Controlled exposure at prediction frequency (mW/cm²):2.897	Maximum peak output power at antenna input terminal (mW):			
Prediction frequency (MHz): 868.975 Maximum Antenna Gain, typical (dBi): 20 Coax cable loss taken (dB): 2.0 Duty Cycle: 25% Maximum Antenna Net Gain (numeric): 63.1 Power density of prediction frequency at 200 cm (mW/cm ²): 2.35 MPE limit for Controlled exposure at prediction frequency (mW/cm ²): 2.897	Prediction distance (cm):	<u>200</u>		
Maximum Antenna Gain, typical (dBi):20Coax cable loss taken (dB):2.0Duty Cycle:25%Maximum Antenna Net Gain (numeric):63.1Power density of prediction frequency at 200 cm (mW/cm²):2.35MPE limit for Controlled exposure at prediction frequency (mW/cm²):2.897	Prediction frequency (MHz):	<u>868.975</u>		
Coax cable loss taken (dB):2.0Duty Cycle:25%Maximum Antenna Net Gain (numeric):63.1Power density of prediction frequency at 200 cm (mW/cm²):2.35MPE limit for Controlled exposure at prediction frequency (mW/cm²):2.897	Maximum Antenna Gain, typical (dBi):	<u>20</u>		
Duty Cycle:25%Maximum Antenna Net Gain (numeric):63.1Power density of prediction frequency at 200 cm (mW/cm²):2.35MPE limit for Controlled exposure at prediction frequency (mW/cm²):2.897	Coax cable loss taken (dB):	<u>2.0</u>		
Maximum Antenna Net Gain (numeric):63.1Power density of prediction frequency at 200 cm (mW/cm²):2.35MPE limit for Controlled exposure at prediction frequency (mW/cm²):2.897	Duty Cycle:	25%		
Power density of prediction frequency at 200 cm (mW/cm²):2.35MPE limit for Controlled exposure at prediction frequency (mW/cm²):2.897	Maximum Antenna Net Gain (numeric):	<u>63.1</u>		
<u>MPE limit for Controlled exposure at prediction frequency (mW/cm²): 2.897</u>	Power density of prediction frequency at 200 cm (mW/cm ²):	2.35		
	<u>MPE limit for Controlled exposure at prediction frequency (mW/cm²):</u>			

4.3 Conclusion

The device complies with the MPE requirements by providing a safe separation distance of at least 2 m between the antenna with maximum 20 dBi gain, including any radiating structure, and any persons when normally operated.

Report Number: R1204244-90