

FCC 47 CFR PART 15 SUBPART C ISED CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

TETRA RADIO HANDSET

HVIN: SC2024 PMN: SC2024

FCC ID: XX6SC2024 IC: 8739A-SC2024

REPORT NUMBER: R11228006-E2

ISSUE DATE: 2016-08-31

Prepared for SEPURA PLC 9000 CAMBRIDGE RESEARCH PARK BEACH DRIVE WATERBEACH CAMBRIDGE CB25 9TL United Kingdom

Prepared by UL LLC 12 LABORATORY DR. RESEARCH TRIANGLE PARK, NC 27709 USA TEL: (919) 549-1400

R M

NVLAP Lab code: 200246-0

Revision History

1	2016-08-31	Initial Issue	Brian Kiewra
Ver.	Issue Date	Revisions	Revised By

Page 2 of 121

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. CA	LIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	7
5. EG	UIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.4.	SOFTWARE AND FIRMWARE	8
5.5.	WORST-CASE CONFIGURATION AND MODE	9
5.6.	DESCRIPTION OF TEST SETUP	.10
6. TE	ST AND MEASUREMENT EQUIPMENT	.13
7. AN	TENNA PORT TEST RESULTS	.17
7. AN 7.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	. 17 . <i>17</i>
7. AN <i>7.1.</i> 7.1 7.1	ON TIME AND DUTY CYCLE .1. ON TIME AND DUTY CYCLE RESULTS .2. DUTY CYCLE PLOTS	. 17 . <i>17</i> .17 .18
7. AN 7.1. 7.1 7.1 7.2.	ON TIME AND DUTY CYCLE .1. ON TIME AND DUTY CYCLE RESULTS .2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION	.17 .17 .17 .18 .19
7. AN 7.1. 7.1 7.1 7.2 7.2	TENNA PORT TEST RESULTS. ON TIME AND DUTY CYCLE .1. ON TIME AND DUTY CYCLE RESULTS. .2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION. 2.1. 20 dB AND 99% BANDWIDTH	. <i>17</i> .17 .18 . <i>19</i> .19
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE .1. ON TIME AND DUTY CYCLE RESULTS. .2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION .1. 20 dB AND 99% BANDWIDTH .2. HOPPING FREQUENCY SEPARATION .3. NUMBER OF HOPPING CHANNELS	. <i>17</i> .17 .18 . <i>19</i> .19 .23 .25
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS. ON TIME AND DUTY CYCLE .1. ON TIME AND DUTY CYCLE RESULTS. .2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION. .1. 20 dB AND 99% BANDWIDTH .2. HOPPING FREQUENCY SEPARATION .3. NUMBER OF HOPPING CHANNELS	.17 .17 .18 .19 .19 .23 .25 .28
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE .1. ON TIME AND DUTY CYCLE RESULTS .2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION 2.1. 20 dB AND 99% BANDWIDTH 2.2. HOPPING FREQUENCY SEPARATION .3. NUMBER OF HOPPING CHANNELS .4. AVERAGE TIME OF OCCUPANCY .5. OUTPUT POWER 6. AVERAGE POWER	.17 .17 .18 .19 .23 .25 .28 .33 .34
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	ON TIME AND DUTY CYCLE .1. ON TIME AND DUTY CYCLE RESULTS. .2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION. .1. 20 dB AND 99% BANDWIDTH .2. HOPPING FREQUENCY SEPARATION .3. NUMBER OF HOPPING CHANNELS .4. AVERAGE TIME OF OCCUPANCY .5. OUTPUT POWER .6. AVERAGE POWER .7. CONDUCTED SPURIOUS EMISSIONS	.17 .17 .18 .19 .23 .25 .28 .33 .34 .35
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 1. ON TIME AND DUTY CYCLE RESULTS. 2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION. 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS. 4. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER. 6. AVERAGE POWER 7. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE QPSK MODULATION.	.17 .17 .17 .18 .19 .23 .25 .28 .33 .34 .35 .40
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 1. ON TIME AND DUTY CYCLE RESULTS 2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION 2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION 2.1 20 dB AND 99% BANDWIDTH 2.2 HOPPING FREQUENCY SEPARATION 2.1 20 dB AND 99% BANDWIDTH 2.2 HOPPING FREQUENCY SEPARATION 3.1 NUMBER OF HOPPING CHANNELS 4. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 6. AVERAGE POWER 7. CONDUCTED SPURIOUS EMISSIONS ENHANCED DATA RATE QPSK MODULATION 3.1 20 dB AND 99% BANDWIDTH 3.2 HOPPING FREQUENCY SEPARATION	.17 .17 .18 .19 .23 .25 .28 .33 .34 .35 .40 .40 .40
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 1. ON TIME AND DUTY CYCLE RESULTS 2. DUTY CYCLE PLOTS 2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION 1. 20 dB AND 99% BANDWIDTH 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS 4. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 6. AVERAGE POWER 2. CONDUCTED SPURIOUS EMISSIONS ENHANCED DATA RATE QPSK MODULATION 3. NUMBER OF HOPPING CHANNELS 4 HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS 4 HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS	.17 .17 .18 .19 .23 .25 .28 .33 .34 .35 .40 .40 .44
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS. ON TIME AND DUTY CYCLE RESULTS. 1. ON TIME AND DUTY CYCLE RESULTS. 2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION. 2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION. 2.1 20 dB AND 99% BANDWIDTH 2.2 HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS. 4. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER. 6. AVERAGE POWER. 2. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE QPSK MODULATION. 3. NUMBER OF HOPPING CHANNELS. 4. AVERAGE POWER. 3. NUMBER OF HOPPING CHANNELS. 3. OUTPUT POWER.	.17 .17 .18 .19 .23 .25 .28 .33 .34 .40 .40 .44 .46 .53
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS. ON TIME AND DUTY CYCLE 1. ON TIME AND DUTY CYCLE RESULTS. 2. DUTY CYCLE PLOTS. BASIC DATA RATE GFSK MODULATION. 2. DUTY CYCLE PLOTS. BASIC DATA RATE GFSK MODULATION. 2. DUTY CYCLE PLOTS. BASIC DATA RATE GFSK MODULATION. 2. DUTY CYCLE PLOTS. BASIC DATA RATE GFSK MODULATION. 2. HOPPING FREQUENCY SEPARATION 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS. 4. AVERAGE POWER. 6. AVERAGE POWER. 7. CONDUCTED SPURIOUS EMISSIONS. ENHANCED DATA RATE QPSK MODULATION. 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS. 3. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER. 4.	.17 .17 .18 .19 .23 .25 .28 .33 .25 .28 .33 .35 .40 .40 .44 .46 .53 .54
7. AN 7.1. 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 1. ON TIME AND DUTY CYCLE RESULTS 2. DUTY CYCLE PLOTS BASIC DATA RATE GFSK MODULATION 1. 20 dB AND 99% BANDWIDTH 2. HOPPING FREQUENCY SEPARATION 3. NUMBER OF HOPPING CHANNELS 4. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 6. AVERAGE POWER 7. CONDUCTED SPURIOUS EMISSIONS ENHANCED DATA RATE QPSK MODULATION 3. NUMBER OF HOPPING CHANNELS 4. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 6. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 3. NUMBER OF HOPPING CHANNELS 3. NUMBER OF HOPPING CHANNELS 4. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 6. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 6. AVERAGE TIME OF OCCUPANCY 5. OUTPUT POWER 6. AVERAGE POWER ENHANCED DATA RATE 8PSK MODULATION	.17 .17 .18 .19 .23 .25 .28 .33 .25 .23 .34 .40 .44 .46 .53 .55

Page 3 of 121

	7.4.1. 7.4.2. 7.4.3. 7.4.4. 7.4.5. 7.4.6. 7.4.7	20 dB AND 99% BANDWIDTH	
	7.4.7.		70
8.	RADIAT	ED TEST RESULTS	75
8	8.1. LIM	ITS AND PROCEDURE	75
8	8.2. TRA 8.2.1. 8.2.2. 8.2.3.	ANSMITTER ABOVE 1 GHz BASIC DATA RATE GFSK MODULATION ENHANCED DATA RATE 8PSK MODULATION WORSE-CASE 18-26GHz	<i>76</i> 76 90 104
8	8.3. WO	PRST-CASE BELOW 1 GHz	106
9.	POWER		110
10.	SETUP	PHOTOS	112

Page 4 of 121

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SEPURA PLC 9000 CAMBRIDGE RESEARCH PA BEACH DRIVE WATERBEACH CAMBRIDGE CB25 9TL United King	SEPURA PLC 9000 CAMBRIDGE RESEARCH PARK BEACH DRIVE WATERBEACH CAMBRIDGE CB25 9TL United Kingdom			
EUT DESCRIPTION: TETRA RADIO HANDSET					
HVIN: SC2024 PMN: SC2024					
SERIAL NUMBER:	Radiated: 1PR0003Z2A5 Conducted: 1PR0003Z2AQ				
DATE TESTED:	2016-05-09 to 2016-05-11				
	APPLICABLE STANDARDS				
	STANDARD	TEST RESULTS			
CFR 4	7 Part 15 Subpart C	Pass			

 ISED CANADA RSS-247 Issue 1
 Pass

 ISED CANADA RSS-GEN Issue 4
 Pass

 UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into

interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC By:

Prepared By:

Mores

Jeff Moser EMC Program Manager UL – Consumer Technology Division

Brian Kiewra WISE Engineer UL – Consumer Technology Division

Page 5 of 121

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Suite B, Perimeter Park Drive, Morrisville, NC 27560.

12 Laboratory Dr., RTP, NC 27709
Chamber A
Chamber C

2800 Suite B Perimeter Park Dr.,				
Morrisville, NC 27560				
Chamber NORTH				
🛛 Chamber SOUTH				

The onsite chambers are covered under ISED Canada company address code 2180C with site numbers 2180C -1 through 2180C-4, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at <u>http://www.nist.gov/nvlap/.</u>

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 121

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER		UNCERTAINTY
Total RF power, conducted	+/-	0.45
RF power density, conducted	+/-	1.50
Spurious emissions, conducted	+/-	2.94
All emissions, radiated up to 26 GHz	+/-	5.36
Temperature	+/-	0.07
Humidity	+/-	2.26
DC and low frequency voltages	+/-	1.27
Conducted Emissions (0.150-30MHz)	+/-	2.37

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 121

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a portable communication device (walkie talkie) that can be configured as a standalone device or operate within a charging cradle. The device comes with an optional lapel speaker accessory. The EUT contains 802.11 b/g and Bluetooth radios. The radio module is manufactured by Texas Instruments.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	8.16	6.55
2402 - 2480	DQPSK	5.10	3.24
2402 - 2480	Enhanced 8PSK	5.58	3.61

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an inverted-f antenna, with a maximum gain of 2.5 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Tetra USB Serial Driver x86. The test utility software used during testing was BT/WiFi Test Script ver 0.5.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation. For charger/cradle mode, the EUT can only be mounted in one orientation (Z-Axis).

Based on the conducted measurements, the worst-case data rates were:

802.11b mode: 11 Mbps 802.11g mode: 54 Mbps

EUT was tested in standalone mode and mounted in the charger. The EUT was also tested with the lapel speaker accessory attached.

For Enhanced Data rate modes, 8DPSK is considered worst-case and only select tests were performed for the DQPSK mode. Additionally, unless noted in the test report, all tests were performed with the DH5 packet size as this was considered worst-case.

Page 9 of 121

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description	FCC ID						
Laptop	Compaq	CQ56-115DX	CNF1134NRP	NA			
Laptop	Lenovo	T450	RTP0116PC0A2UQU	NA			
AC Adaptor	Click	CPS024100240	1541B	NA			
Charging Cradle	Sepura	STP8000	7PP311551F7005Q	NA			

I/O CABLES (CONDUCTED SETUP)

I/O Cable List							
Cable No	Port	# of Identical ports	Connector Type	Cable Length (m)	Remarks		
1	Antenna Port	1	EUT	0.1m	NA		

CABLES (Radiated Setup)

I/O Cable List							
Cable No	Port	# of Identical ports	Connector Type	Cable Length (m)	Remarks		
1	AC Charger	1	AC Adaptor	1.85	NA		
2	Accessory Lapel Speaker	1	RF/Serial	>1m	NA		

TEST SETUP

Test software exercised the radio card.

Page 10 of 121

SETUP DIAGRAM FOR TESTS

Conducted Setup

Page 11 of 121

Radiated Setup

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	0.009-30MHz	(Loop Ant.)			
AT0079	Active Loop Antenna	ETS-Lindgren	6502	2015-12-08	2016-12-31
	30-1000 MHz				
AT0074	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2015-06-10	2016-06-30
	1-18 GHz				
AT0069	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2016-03-07	2017-03-31
	18-40 GHz				
AT0076	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2015-08-27	2016-08-31
AT0077	Horn Antenna, 26-40GHz	ARA	MWH-2640/B	2015-08-27	2016-08-31
	Gain-Loss Chains				
S-SAC01	Gain-loss string: 0.009- 30MHz	Various	Various	2015-10-07	2016-10-31
S-SAC02	Gain-loss string: 30- 1000MHz	Various	Various	2015-06-09	2016-06-30
S-SAC03	Gain-loss string: 1- 18GHz	Various	Various	2015-08-22	2016-08-31
S-SAC04	Gain-loss string: 18- 40GHz	Various	Various	2016-02-29	2017-02-28
	Receiver & Software				
SA0025	Spectrum Analyzer	Agilent	N9030A	2016-03-17	2017-03-31
SA0026 (18- 40GHz RSE)	Spectrum Analyzer	Agilent	N9030A	2016-02-24	2017-02-28
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
HI0050	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2015-07-01	2016-07-31

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - South Chamber)

Page 13 of 121

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 1				
SA0019	Spectrum Analyzer	Agilent Technologies	E4446A	2015-09-02	2016-09-30
PWM004	RF Power Meter	Keysight Technologies	N1911A	2015-06-08	2017-06-08
PWS004	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2015-06-05	2016-06-05
HI0079	Temp/Humid/Pressure Meter	Springfield	PreciseTemp	2015-07-1	2016-07-31
MM0167	True RMS Multimeter	Agilent	U1232A	2015-08-17	2016-08-31
76022	DC Regulated Power Supply	CircuitSpecialist s.Com	CSI3005X5	N/A	N/A
T1023	T1023 EMPower USB RF Power Sensor, 10MHz to 6GHz		7002-006	2015-10-01	2016-10-01
	Conducted Room 2				
T146	Spectrum Analyzer	Agilent Technologies	E4446A	2015-06-17	2016-06-17
HI0080 Temp/Humid/Pressure Meter		Springfield	HI0080	2015-07-01	2016-07-31
MM0168	True RMS Multimeter	Agilent	U1232A	2015-08-17	2016-08-31
76021	DC Regulated Power Supply	CircuitSpecialist s.Com	CSI3005X5	N/A	N/A

Page 14 of 121

Test Fauinment	Llead - Line-Conducter	d Emissions - Voltago	(Morrisville – Conducted 1)
		a Emissions Voltage	

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
CBL077	Coax cable, RG223, N-male to BNC-male, 20-ft.	Pasternack	PE3476-240	2015-10-29	2016-10-31
HI0079	Temp/Humid/Pressure Meter	Springfield Precision	PreciseTemp	2015-07-01	2016-07-31
LISN003	LISN, 50-ohm/50-uH, 2- conductor, 25A	Fischer Custom Com.	FCC-LISN-50-25-2- 01-550V	2015-08-24	2016-08-31
LISN008	LISN, 50-ohm/50-uH, 2- conductor, 25A (For support gear only.)	Solar Electronics	8012-50-R-24-BNC	2015-09-03	2016-09-30
MM0167	Multi-meter	Agilent	U1232A	2015-08-17	2016-08-31
PRE0101521 (75141)	EMI Test Receiver 9kHz-7GHz	Rohde & Schwarz	ESCI 7	2015-08-26	2016-08-31
TL001	Transient Limiter, 0.009-30MHz	Com-Power	LIT-930A	2015-05-22	2016-05-31
PS214	AC Power Source	Elgar	CW2501M (s/n 1523A02396)	NA	NA
PS215	AC Power Source	Elgar	CW2501M (s/n 1523A02397)	NA	NA
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA

Page 15 of 121

7. MEASUREMENT METHODS

Duty Cycle: KDB 558074 Section 6.0 (b)

20 dB BW: ANSI C63.10 Section 6.9.2.

99% Occupied Bandwidth: ANSI C63.10-2013, Section 6.9.3

Hopping Frequency Separation: ANSI C63.10 Section 7.8.2

Number of Hopping Channels: ANSI C63.10 Section 7.8.3

Average Time of Occupancy: ANSI C63.10 Section 7.8.4

Output Power: ANSI C63.10 Section 7.8.5

Out-of-band emissions in non-restricted bands: ANSI C63.10 Section 7.8.6 & 7.8.8

Out-of-band emissions in restricted bands: ANSI C63.10:2013 Sections 6.3-6.6

Line Conducted Emissions: ANSI C63.10:2013 Sections 6.2

Page 16 of 121

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 558074 Section 6.0 (b)

Test Information

Date: 2016-05-10 Tester: Mark Learner

8.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time Perio		e Period Duty Cycle		Duty Cycle	1/B	
	В		x	Cycle	Correction Factor	Minimum VBW	
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)	
2.4 GHz band (Hopping	OFF)						
Bluetooth GFSK	2.910	3.753	0.775	77.54%	1.10	0.344	
Bluetooth 8PSK	2.910	3.753	0.775	77.54%	1.10	0.344	

8.1.2. DUTY CYCLE PLOTS

HOPPING OFF

UL LLC

Page 18 of 121

FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

8.2. BASIC DATA RATE GFSK MODULATION

8.2.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 5.1 (1)

IC RSS-Gen clause 6.6

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	926	855.9652
Middle	2441	938	866.322
High	2480	844	878.7051

Page 19 of 121

20 dB AND 99% BANDWIDTH

Page 20 of 121

Page 21 of 121

Page 22 of 121

8.2.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

ANSI C63.10 Section 7.8.2

FCC §15.247 (a) (1)

IC RSS-247 5.1 (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 3x RBW. The sweep time is coupled.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Channel 1 (MHz)	Channel 2 (MHz)	Channel Separation (MHz)	2/3 of 20dB BW (MHz)	Margin (MHz)
2441	2442	1	0.625	-0.375

Page 23 of 121

HOPPING FREQUENCY SEPARATION

Page 24 of 121

8.2.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

ANSI C63.10 Section 7.8.3

FCC §15.247 (a) (1) (iii)

IC RSS-210 5.1 (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300 kHz). The analyzer is set to Max Hold.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: min of 20 Channels declared.

Page 25 of 121

NUMBER OF HOPPING CHANNELS

Page 26 of 121

🗧 Agi	ilent 1	4:0	/:4	6	Mag	y 1	0, 7	201	.6														_	•	ļ	Measure
Pv4.6	(0413 dBm	316)),49	949	7, I Att	Con en	duc 10	te dB	d F	(M)	1															Meas Of
Peak .og	VN	١ħ	'nΓ	٧t	M	M	١ſ,	n	Λ	Ň	Ŵ	W	V	V	V	M	h	n.	M	W	Y	V	V	۱۸	/I!	
0 IB/	11	ĬĮĬ	Ĭ	T	1	T	V	V	h	I	I	I	Ĭ	Ĭ	I	Ţ	1		1	ľ	Ĭ	I	Ĭ	T		Channel Powe
lffst 0.1																									ľ	
B		T																		T						Occupied Bl
.2 Bm		+		1													t			t					li	
PAvg		+		1													T			t						ACI
1 S2				+					+								╈			t					lİ	Multi Carrie
3 FC AA		+		+													+			\vdash		_			╢	Powe
(f): Tun									-					_			+					_				Power Sta CCDI
wр		1		1													Ť			T					╢	
 enter	2.44	5 0	0 G	Hz							-	<u> </u>						-		S	pai	13	30	MHz		More

Page 27 of 121

8.2.4. AVERAGE TIME OF OCCUPANCY

LIMIT

ANSI C63.10 Section 7.8.4

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Page 28 of 121

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
GFSK Norma	l Mode				
DH1	0.4	32	0.128	0.4	-0.272
DH3	1.654	17	0.281	0.4	-0.119
DH5	2.904	12	0.348	0.4	-0.052
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	(msec)	0.8	(sec)	(sec)	(sec)
		seconds			
GFSK AFH M	lode		·		
DH1	0.4	8	0.032	0.4	-0.368
DH3	1.654	4.25	0.070	0.4	-0.330
DH5	2.904	3	0.087	0.4	-0.313

Page 29 of 121

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

Page 30 of 121

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3

Page 31 of 121

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

PULSE WIDTH – DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 32 of 121

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.

8.2.5. OUTPUT POWER

<u>LIMIT</u>

ANSI C63.10 Section 7.8.5

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 Clause 5.4 (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output was connected to a power meter equipped with a power sensor capable of measuring peak power. The cable assembly insertion loss of 10.1dB (including 10 dB pad and 0.1dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

The following is peak power:

Channel	Frequency	Output Power	Directional	Limit	Margin
	(MHz)	(dBm)	Gain (dBi)	(dBm)	(dB)
Low	2402	8.16	2.50	30	-21.84
Middle	2441	7.02	2.50	30	-22.98
High	2480	6.65	2.50	30	-23.35

Page 33 of 121

8.2.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

The cable assembly insertion loss of 10.1 dB (including 10 dB pad and 0.1 dB cable) was entered as an offset in the power meter to allow for direct reading of power. The below is an gated average measurement.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	8.13
Middle	2441	6.98
High	2480	6.62

Page 34 of 121

8.2.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

ANSI C63.10 Section 7.8.6 and 7.8.8

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Test Information

Date: 2016-05-10 Tester: Mark Learner

Page 35 of 121

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 This report shall not be reproduced except in full, without the written approval of UL LLC.
SPURIOUS EMISSIONS, MID CHANNEL

Page 37 of 121

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 38 of 121

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 39 of 121

8.3. ENHANCED DATA RATE QPSK MODULATION

8.3.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 5.1 (1)

IC RSS-Gen clause 6.6

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

Test Information

Date: 2016-05-10 Tester: Mark Learner

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1332	1211.9
Middle	2441	1338	1228.1
High	2480	1326	1212.7

RESULTS

Page 40 of 121

20 dB AND 99% BANDWIDTH

Page 41 of 121

Page 42 of 121

Page 43 of 121

8.3.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

ANSI C63.10 Section 7.8.2

FCC §15.247 (a) (1)

IC RSS-247 5.1 (2

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 3x RBW. The sweep time is coupled.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Channel 1 (MHz)	Channel 2 (MHz)	Channel Separation (MHz)	2/3 of 20dB BW (MHz)	Margin (MHz)
2441	2442	1	0.892	-0.108

Page 44 of 121

HOPPING FREQUENCY SEPARATION

Note – The channel hopping separation of 1MHz is less than the 20 dB bandwidth (approx. 1.3 MHz). However, the output power is less than 125 mW and the channel separation is greater than 2/3 the 20 dB bandwidth (approx. 875 kHz).

Page 45 of 121

8.3.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

ANSI C63.10 Section 7.8.3

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (4

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300 kHz). The analyzer is set to Max Hold.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: min of 20 Channels declared.

Page 46 of 121

NUMBER OF HOPPING CHANNELS

Page 47 of 121

Page 48 of 121

8.3.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

ANSI C63.10 Section 7.8.4

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

DQPSK Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.407	31	0.126	0.4	-0.274
DH3	1.658	18	0.298	0.4	-0.102
DH5	2.904	9	0.261	0.4	-0.139

Note: for AFH (DQPSK) mode, please refer to the results of AFH (GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate on page 27 demonstrates compliance with channel occupancy when AFH is employed.

Page 49 of 121

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

Page 50 of 121

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3

Page 51 of 121

PULSE WIDTH – DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 52 of 121

8.3.5. OUTPUT POWER

<u>LIMIT</u>

ANSI C63.10 Section 7.8.5

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 Clause 5.4 (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output was connected to a power meter equipped with a power sensor capable of measuring peak power. The cable assembly insertion loss of 10.1 dB (including 10 dB pad and 0.1dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Note: For DQPSK mode, the channel separation was limited to 2/3 the 20 dB bandwidth. Therefore, the output power was limited to 125 mW.

Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dBm)	Margin (dB)
Low	2402	5.10	2.50	21	-15.90
Middle	2441	3.52	2.50	21	-17.48
High	2480	2.89	2.50	21	-18.11

The following is peak power:

Page 53 of 121

8.3.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

The cable assembly insertion loss of 10.1 dB (including 10 dB pad and 0.1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	2.75
Middle	2441	0.99
High	2480	0.16

Page 54 of 121

8.4. ENHANCED DATA RATE 8PSK MODULATION

8.4.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 5.1 (1)

IC RSS-Gen clause 6.6

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 20 dB bandwidth and 99% Occupied Bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1254	1210.5
Middle	2441	1260	1209.5
High	2480	1248	1199.8

Page 55 of 121

20 dB AND 99% BANDWIDTH

Page 56 of 121

Page 57 of 121

Page 58 of 121

8.4.2. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

ANSI C63.10 Section 7.8.2

FCC §15.247 (a) (1)

IC RSS-247 5.1 (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 3x RBW. The sweep time is coupled.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Channel 1 (MHz)	Channel 2 (MHz)	Channel Separation (MHz)	2/3 of 20dB BW (MHz)	Margin (MHz)
2441	2442	1	0.84	-0.16

HOPPING FREQUENCY SEPARATION

Note – The channel hopping separation of 1MHz is less than the 20 dB bandwidth (approx. 1.3 MHz). However, the output power is less than 125 mW and the channel separation is greater than 2/3 the 20 dB bandwidth (approx. 875 kHz).

Page 60 of 121

8.4.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

ANSI C63.10 Section 7.8.3

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps for visibility of the entire span. Then, smaller spans are set to more clearly identify the channels. The RBW is set to 30% of the channel spacing (approx. 300 kHz). The analyzer is set to Max Hold.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Normal Mode: 79 Channels observed. AFH Mode: min of 20 Channels declared

Page 61 of 121

NUMBER OF HOPPING CHANNELS

Page 62 of 121

Page 63 of 121

8.4.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

ANSI C63.10 Section 7.8.4

FCC §15.247 (a) (1) (iii)

IC RSS-247 5.1 (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

Test Information

Date: 2016-05-10 and 2016-05-11 Tester: Mark Learner

RESULTS

8PSK (EDR) Mode

DH Packet	Pulse	Number of	Average	Limit	Margin
	Width	Pulses in	Time of		-
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
DH1	0.406	31	0.126	0.4	-0.274
DH3	1.656	17	0.282	0.4	-0.118
DH5	2.9	13	0.377	0.4	-0.023

Page 64 of 121

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

Page 65 of 121

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3

Page 66 of 121

PULSE WIDTH – DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 67 of 121

8.4.5. OUTPUT POWER

<u>LIMIT</u>

ANSI C63.10 Section 7.8.5

§15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

RSS-247 Clause 5.4 (2)

For frequency hopping systems operating in the band 2400-2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

TEST PROCEDURE

The transmitter output was connected to a power meter equipped with a power sensor capable of measuring peak power. The cable assembly insertion loss of 10.1 dB (including 10 dB pad and 0.1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

Note: For 8PSK mode, the channel separation was limited to 2/3 the 20 dB bandwidth. Therefore, the output power was limited to 125 mW.

Channel	Frequency (MHz)	Output Power (dBm)	Directional Gain (dBi)	Limit (dBm)	Margin (dB)
Low	2402	5.58	2.50	21	-15.42
Middle	2441	4.07	2.50	21	-16.93
High	2480	3.48	2.50	21	-17.52

The following is peak power.

Page 68 of 121

8.4.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

Test Information

Date: 2016-05-10 Tester: Mark Learner

RESULTS

The cable assembly insertion loss of 10.1dB (including 10 dB pad and 0.1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	2.75
Middle	2441	1.00
High	2480	0.16

Page 69 of 121

8.4.7. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

ANSI C63.10 Section 7.8.6 and 7.8.8

FCC §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Test Information

Date: 2016-05-10 Tester: Mark Learner

Page 70 of 121

RESULTS SPURIOUS EMISSIONS, LOW CHANNEL

Page 71 of 121

UL LLC 12 Laboratory Dr., RTP, NC 27709

FORM NO: 03-EM-F00858 TEL: (919) 549-1400

This report shall not be reproduced except in full, without the written approval of UL LLC.

SPURIOUS EMISSIONS, MID CHANNEL

Page 72 of 121
SPURIOUS EMISSIONS, HIGH CHANNEL

Page 73 of 121

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 74 of 121

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209 IC RSS-GEN Clause 8.9 (Transmitter) IC RSS-GEN Clause 7.1.2 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz measurements and 1.5 m above the ground plane for above 1GHz measurements. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 120 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For peak measurements above 1 GHz, the resolution bandwidth is set to 1 MHz and the video bandwidth is set to 3 MHz. For average measurements above 1GHz, the resolution bandwidth and video bandwidth are set as described in ANSI C63.10:2013 for the applicable measurement. The particular averaging method used for this test program was by measuring using a Peak detector with the resolution bandwidth set to 1MHz and a reduced video bandwidth, based on $1/T_{on}$ where T_{on} is the transmit on time.

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 75 of 121

9.2. TRANSMITTER ABOVE 1 GHz

9.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, STANDALONE)

LOW CHANNEL RESTRICTED, HORIZ

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	38.64	Pk	32.2	-24.2	46.64	-	-	74	-27.36	124	187	Н
2	* 2.377	50.18	Pk	32.1	-24.1	58.18	-	-	74	-15.82	124	187	Н
3	* 2.39	28.06	V1TR	32.2	-24.2	36.06	54	-17.94	-	-	124	187	Н
4	* 2.39	28.97	V1TR	32.2	-24.1	37.07	54	-16.93	-	-	124	187	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector V1TR: VB=1/Ton, Ton is packet duration

Page 76 of 121

LOW CHANNEL RESTRICTED, VERT

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.39	37.06	Pk	32.2	-24.2	45.06	-	-	74	-28.94	319	134	V
2	* 2.377	47.65	Pk	32.1	-24.1	55.65	-	-	74	-18.35	319	134	V
3	* 2.39	27.05	V1TR	32.2	-24.2	35.05	54	-18.95	-	-	319	134	V
4	* 2.389	29.36	V1TR	32.2	-24.1	37.46	54	-16.54	-	-	319	134	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector V1TR: VB=1/Ton, where: Ton is packet duration

Page 77 of 121

RESTRICTED BANDEDGE (LOW CHANNEL, CHARGER) LOW CHANNEL RESTRICTED, HORIZ

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	36.39	Pk	32.2	-24.2	44.39	-	-	74	-29.61	59	111	н
2	* 2.377	47.9	Pk	32.1	-24.1	55.9	-	-	74	-18.1	59	111	Н
3	* 2.39	27.09	V1TR	32.2	-24.2	35.09	54	-18.91	-	-	59	111	Н
4	* 2.389	29.75	V1TR	32.2	-24.1	37.85	54	-16.15	-	-	59	111	Н

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 78 of 121

LOW CHANNEL RESTRICTED, VERT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	35.21	Pk	32.2	-24.2	43.21	-	-	74	-30.79	133	113	V
2	* 2.377	42.04	Pk	32.1	-24.1	50.04	-	-	74	-23.96	133	113	V
3	* 2.39	25.96	V1TR	32.2	-24.2	33.96	54	-20.04	-	-	133	113	V
4	* 2.389	27.83	V1TR	32.2	-24.1	35.93	54	-18.07	-	-	133	113	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 79 of 121

RESTRICTED BANDEDGE (HIGH CHANNEL, STANDALONE) HIGH CHANNEL RESTRICTED, HORIZ

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.71	Pk	32.4	-24.7	48.41	-	-	74	-25.59	132	106	Н
3	* 2.484	31.93	V1TR	32.4	-24.7	39.63	54	-14.37	-	-	132	106	Н
4	* 2.484	32.02	V1TR	32.4	-24.7	39.72	54	-14.28	-	-	132	106	Н
2	2.506	45.44	Pk	32.5	-24.8	53.14	-	-	74	-20.86	132	106	Н

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 80 of 121

HIGH CHANNEL RESTRICTED, VERT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	39.11	Pk	32.4	-24.7	46.81	-	-	74	-27.19	38	108	V
3	* 2.484	29.84	V1TR	32.4	-24.7	37.54	54	-16.46	-	-	38	108	V
4	* 2.487	30.55	V1TR	32.4	-24.7	38.25	54	-15.75	-	-	38	108	V
2	2.506	41.96	Pk	32.5	-24.8	49.66	-	-	74	-24.34	38	108	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 81 of 121

RESTRICTED BANDEDGE (HIGH CHANNEL, CHARGER) HIGH CHANNEL RESTRICTED, HORIZ

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	41.45	Pk	32.4	-24.7	49.15	-	-	74	-24.85	59	111	Н
3	* 2.484	33.15	V1TR	32.4	-24.7	40.85	54	-13.15	-	-	59	111	Н
4	* 2.484	33.43	V1TR	32.4	-24.7	41.13	54	-12.87	-	-	59	111	Н
2	2.506	47.78	Pk	32.5	-24.8	55.48	-	-	74	-18.52	59	111	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 82 of 121

HIGH CHANNEL RESTRICTED, VERT

Marker	Frequency	Meter	Det	AF AT0069	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)	(dBuV/m)	(dBuV/m)						
1	* 2.484	38.77	Pk	32.4	-24.7	46.47	-	-	74	-27.53	33	109	V
3	* 2.484	28.11	V1TR	32.4	-24.7	35.81	54	-18.19	-	-	33	109	V
4	* 2.486	30.15	V1TR	32.4	-24.7	37.85	54	-16.15	-	-	33	109	V
2	2.506	41.91	Pk	32.5	-24.8	49.61	-	-	74	-24.39	33	109	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 83 of 121

HARMONICS AND SPURIOUS EMISSIONS

Standalone Low Channel

Marker	Frequency (GHz)	Meter Reading	Det	AF 4T0069	Amp/Cbl/ Fltr/Pad	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit	PK Margin	Azimuth (Degs)	Height (cm)	Polarity
	(0.1.2)	(dBuV)		(dB/m)	(dB)	(dBuV/m)	(4247))	(02)	(0.5007),	(dB)	(2080)	(e,	
1	* 2.352	43.24	PK-U	31.8	-24	51.04	-	-	74	-22.96	73	173	Н
	* 2.352	25.98	V1TR	31.8	-24	33.78	54	-20.22	-	-	73	173	Н
3	* 4.804	44.81	PK-U	34	-31.7	47.11	-	-	74	-26.89	241	141	Н
	* 4.804	38.94	V1TR	34	-31.7	41.24	54	-12.76	-	-	241	141	Н
7	* 4.804	46.67	PK-U	34	-31.7	48.97	-	-	74	-25.03	237	272	V
	* 4.804	41.99	V1TR	34	-31.7	44.29	54	-9.71	-	-	237	272	V
2	3.202	40.65	Pk	33.4	-33.4	40.65	-	-	-	-	0-360	102	Н
4	7.206	35.58	Pk	35.6	-28.7	42.48	-	-	-	-	0-360	199	Н
5	9.608	37.27	Pk	36.6	-27.1	46.77	-	-	-	-	0-360	199	Н
6	3.202	36.96	Pk	33.4	-33.4	36.96	-	-	-	-	0-360	102	V
8	7.206	40.78	Pk	35.6	-28.7	47.68	-	-	-	-	0-360	199	V
9	9.608	42.63	Pk	36.6	-27.1	52.13	-	-	-	-	0-360	102	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 84 of 121

Standalone Mid Channel

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)							
2	* 4.882	43.24	PK-U	34.1	-31.5	45.84	-	-	74	-28.16	251	137	Н
	* 4.882	37.03	V1TR	34.1	-31.5	39.63	54	-14.37	-	-	251	137	Н
3	* 7.323	41.51	PK-U	35.5	-28.4	48.61	-	-	74	-25.39	169	386	Н
	* 7.323	34.46	V1TR	35.5	-28.4	41.56	54	-12.44	-	-	169	386	Н
6	* 4.882	46.61	PK-U	34.1	-31.5	49.21	-	-	74	-24.79	243	295	V
	* 4.882	41.92	V1TR	34.1	-31.5	44.52	54	-9.48	-	-	243	295	V
7	* 7.323	43.12	PK-U	35.5	-28.4	50.22	-	-	74	-23.78	238	115	V
	* 7.323	36.37	V1TR	35.5	-28.4	43.47	54	-10.53	-	-	238	115	V
1	3.254	38.94	Pk	33.1	-33.7	38.34	-	-	-	-	0-360	102	Н
4	9.765	36.13	Pk	36.8	-26.4	46.53	-	-	-	-	0-360	102	Н
5	3.255	42.72	Pk	33.1	-33.7	42.12	-	-	-	-	0-360	101	V
8	9.763	38.86	Pk	36.8	-26.4	49.26	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 85 of 121

Standalone High Channel

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)							
2	* 4.96	43.9	PK-U	34.1	-31.6	46.4	-	-	74	-27.6	343	222	Н
	* 4.96	36.51	V1TR	34.1	-31.6	39.01	54	-14.99	-	-	343	222	Н
3	* 7.44	41.25	PK-U	35.5	-28.7	48.05	-	-	74	-25.95	168	221	Н
	* 7.44	34.04	V1TR	35.5	-28.7	40.84	54	-13.16	-	-	168	221	Н
6	* 4.96	44.64	PK-U	34.1	-31.6	47.14	-	-	74	-26.86	245	400	V
	* 4.96	38.92	V1TR	34.1	-31.6	41.42	54	-12.58	-	-	245	400	V
7	* 7.44	46.08	PK-U	35.5	-28.7	52.88	-	-	74	-21.12	285	183	V
	* 7.44	40.87	V1TR	35.5	-28.7	47.67	54	-6.33	-	-	285	183	V
1	3.307	42.78	Pk	32.7	-33.5	41.98	-	-	-	-	0-360	199	Н
5	3.307	37.87	Pk	32.7	-33.5	37.07	-	-	-	-	0-360	101	V
4	9.92	38.16	Pk	37.1	-26.5	48.76	-	-	-	-	0-360	199	Н
8	9.92	42.24	Pk	37.1	-26.5	52.84	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 86 of 121

Charger Low Channel

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)				(dB)			
1	* 2.377	48.59	PK-U	32.1	-24.1	56.59	-	-	74	-17.41	64	154	Н
	* 2.377	27.35	V1TR	32.1	-24.1	35.35	54	-18.65	-	-	64	154	Н
3	* 4.804	44.51	PK-U	34	-31.7	46.81	-	-	74	-27.19	227	223	Н
	* 4.804	38.98	V1TR	34	-31.7	41.28	54	-12.72	-	-	227	223	Н
7	* 4.804	48.49	PK-U	34	-31.7	50.79	-	-	74	-23.21	210	239	V
	* 4.804	44.84	V1TR	34	-31.7	47.14	54	-6.86	-	-	210	239	V
2	3.202	41.71	Pk	33.4	-33.4	41.71	-	-	-	-	0-360	101	Н
6	3.202	38.06	Pk	33.4	-33.4	38.06	-	-	-	-	0-360	102	V
4	7.206	36.23	Pk	35.6	-28.7	43.13	-	-	-	-	0-360	199	Н
8	7.206	40.45	Pk	35.6	-28.7	47.35	-	-	-	-	0-360	199	V
5	9.607	40.45	Pk	36.6	-27.1	49.95	-	-	-	-	0-360	199	Н
9	9.608	43.4	Pk	36.6	-27.1	52.9	-	-	-	-	0-360	102	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 87 of 121

Charger Mid Channel

FCC Part15	C 2.4GHz RSE.TST										F	Rev 9.5 20 Aug	2015
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.882	46.39	PK-U	34.1	-31.5	48.99	-	-	74	-25.01	197	244	Н
	* 4.882	42.03	V1TR	34.1	-31.5	44.63	54	-9.37	-	-	197	244	Н
3	* 7.323	41.12	PK-U	35.5	-28.4	48.22	-	-	74	-25.78	209	193	Н
	* 7.323	33.01	V1TR	35.5	-28.4	40.11	54	-13.89	-	-	209	193	Н
6	* 4.882	45.87	PK-U	34.1	-31.5	48.47	-	-	74	-25.53	199	222	V
	* 4.882	41.42	V1TR	34.1	-31.5	44.02	54	-9.98	-	-	199	222	V
7	* 7.323	43.62	PK-U	35.5	-28.4	50.72	-	-	74	-23.28	267	186	V
	* 7.323	37.31	V1TR	35.5	-28.4	44.41	54	-9.59	-	-	267	186	V
1	3.255	43.31	Pk	33.1	-33.7	42.71	-	-	-	-	0-360	102	Н
5	3.255	38.4	Pk	33.1	-33.7	37.8	-	-	-	-	0-360	102	V
8	8.95	33.5	Pk	35.9	-27.8	41.6	-	-	-	-	0-360	199	V
4	9.763	36.45	Pk	36.8	-26.4	46.85	-	-	-	-	0-360	199	Н
9	9.764	42.06	Pk	36.8	-26.4	52.46	-	-	-	-	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 88 of 121

Charger High Channel

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)				(dB)			
2	* 4.96	43.76	PK-U	34.1	-31.6	46.26	-	-	74	-27.74	193	224	Н
	* 4.96	36.96	V1TR	34.1	-31.6	39.46	54	-14.54	-	-	193	224	Н
3	* 7.44	42.03	PK-U	35.5	-28.7	48.83	-	-	74	-25.17	215	182	Н
	* 7.44	34.5	V1TR	35.5	-28.7	41.3	54	-12.7	-	-	215	182	Н
6	* 4.96	45.24	PK-U	34.1	-31.6	47.74	-	-	74	-26.26	254	229	V
	* 4.96	38.83	V1TR	34.1	-31.6	41.33	54	-12.67	-	-	254	229	V
7	* 7.44	45.3	PK-U	35.5	-28.7	52.1	-	-	74	-21.9	280	180	V
	* 7.44	39.56	V1TR	35.5	-28.7	46.36	54	-7.64	-	-	280	180	V
1	3.307	42.52	Pk	32.7	-33.5	41.72	-	-	-	-	0-360	102	Н
5	3.307	38.64	Pk	32.7	-33.5	37.84	-	-	-	-	0-360	102	V
4	9.92	37.48	Pk	37.1	-26.5	48.08	-	-	-	-	0-360	102	Н
8	9.92	40.81	Pk	37.1	-26.5	51.41	-	-	-	-	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 89 of 121

9.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, STANDALONE) LOW CHANNEL RESTRICTED, HORIZ

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)	(dBuV/m)						
2	* 2.377	44.55	Pk	32.1	-24.1	52.55	-	-	74	-21.45	67	102	Н
1	* 2.39	39.1	Pk	32.2	-24.2	47.1	-	-	74	-26.9	67	102	Н
3	* 2.39	27.44	V1TR	32.2	-24.2	35.44	54	-18.56	-	-	67	102	Н
4	* 2.39	27.46	V1TR	32.2	-24.1	35.56	54	-18.44	-	-	67	102	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 90 of 121

LOW CHANNEL RESTRICTED, VERT

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)	(dBuV/m)			(dB)			
2	* 2.377	43.74	Pk	32.1	-24.1	51.74	-	-	74	-22.26	40	115	V
1	* 2.39	40.85	Pk	32.2	-24.2	48.85	-	-	74	-25.15	40	115	V
3	* 2.39	27.06	V1TR	32.2	-24.2	35.06	54	-18.94	-	-	40	115	V
4	* 2.39	27.08	V1TR	32.2	-24.2	35.08	54	-18.92	-	-	40	115	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 91 of 121

RESTRICTED BANDEDGE (LOW CHANNEL, CHARGER)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	42.11	Pk	32.2	-24.2	50.11	-	-	74	-23.89	162	238	Н
2	* 2.377	45.06	Pk	32.1	-24.1	53.06	-	-	74	-20.94	162	238	Н
3	* 2.39	27.77	V1TR	32.2	-24.2	35.77	54	-18.23	-	-	162	238	Н
4	* 2.39	27.9	V1TR	32.2	-24.2	35.9	54	-18.1	-	-	162	238	н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 92 of 121

LOW CHANNEL RESTRICTED, VERT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	39	Pk	32.2	-24.2	47	-	-	74	-27	334	348	V
2	* 2.389	39.6	Pk	32.2	-24.1	47.7	-	-	74	-26.3	334	348	V
3	* 2.39	26.36	V1TR	32.2	-24.2	34.36	54	-19.64	-	-	334	348	V
4	* 2.389	26.4	V1TR	32.2	-24.1	34.5	54	-19.5	-	-	334	348	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 93 of 121

RESTRICTED BANDEDGE (HIGH CHANNEL, STANDALONE)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	38.22	Pk	32.4	-24.7	45.92	-	-	74	-28.08	210	292	Н
2	* 2.484	41.06	Pk	32.4	-24.7	48.76	-	-	74	-25.24	210	292	Н
3	* 2.484	28.71	V1TR	32.4	-24.7	36.41	54	-17.59	-	-	210	292	Н
4	* 2.484	28.56	V1TR	32.4	-24.7	36.26	54	-17.74	-	-	210	292	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 94 of 121

HIGH CHANNEL RESTRICTED, VERT

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Average	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	Limit	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)	(dBuV/m)			(dB)			
1	* 2.484	35.67	Pk	32.4	-24.7	43.37	-	-	74	-30.63	323	161	V
3	* 2.484	26.23	V1TR	32.4	-24.7	33.93	54	-20.07	-	-	323	161	V
4	* 2.484	26.33	V1TR	32.4	-24.7	34.03	54	-19.97	-	-	323	161	V
2	2.519	37.95	Pk	32.5	-24.9	45.55	-	-	74	-28.45	323	161	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 95 of 121

RESTRICTED BANDEDGE (HIGH CHANNEL, CHARGER) HIGH CHANNEL RESTRICTED, HORIZ

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	38.36	Pk	32.4	-24.7	46.06	-	-	74	-27.94	243	376	Н
2	* 2.484	41.24	Pk	32.4	-24.7	48.94	-	-	74	-25.06	243	376	Н
3	* 2.484	28.58	V1TR	32.4	-24.7	36.28	54	-17.72	-	-	243	376	Н
4	* 2.484	28.4	V1TR	32.4	-24.7	36.1	54	-17.9	-	-	243	376	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

V1TR: VB=1/Ton, where: Ton is packet duration

Page 96 of 121

HIGH CHANNEL RESTRICTED, VERT

-

17

387

V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

-24.7

36.31

54

-17.69

32.4

V1TR: VB=1/Ton, where: Ton is packet duration

V1TR

28.61

4

* 2.484

Page 97 of 121

HARMONICS AND SPURIOUS EMISSIONS

STANDALONE LOW CHANNEL

Marker	Frequency	Meter Reading	Det	AF	Amp/Cbl/ fltr/Pad	Corrected	Avg Limit	Margin (dB)	Peak Limit	PK Margin	Azimuth	Height (cm)	Polarity
	(0112)	(dBuV)		(dB/m)	(dB)	(dBuV/m)	(00007111)	(00)	(00007),	(00)	(DCB3)	(em)	
2	* 4.804	44.03	PK-U	34	-31.7	46.33	-	-	74	-27.67	68	260	Н
	* 4.804	34.66	V1TR	34	-31.7	36.96	54	-17.04	-	-	68	260	Н
5	* 4.804	42.9	PK-U	34	-31.7	45.2	-	-	74	-28.8	241	101	V
	* 4.804	34.09	V1TR	34	-31.7	36.39	54	-17.61	-	-	241	101	V
1	3.202	37.79	Pk	33.4	-33.4	37.79	-	-	-	-	0-360	102	Н
3	7.206	31.54	Pk	35.6	-28.7	38.44	-	-	-	-	0-360	199	Н
4	9.608	30.44	Pk	36.6	-27.1	39.94	-	-	-	-	0-360	199	Н
6	7.206	37.01	Pk	35.6	-28.7	43.91	-	-	-	-	0-360	199	V
7	9.608	33.15	Pk	36.6	-27.1	42.65	-	-	-	-	0-360	102	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 98 of 121

STANDALONE MID CHANNEL

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)							
4	* 7.323	38.76	PK-U	35.5	-28.4	45.86	-	-	74	-28.14	209	166	Н
	* 7.323	29.4	V1TR	35.5	-28.4	36.5	54	-17.5	-	-	209	166	Н
5	* 7.323	40.98	PK-U	35.5	-28.4	48.08	-	-	74	-25.92	267	167	V
	* 7.323	32.47	V1TR	35.5	-28.4	39.57	54	-14.43	-	-	267	167	V
1	2.415	36.8	Pk	32.3	-24.4	44.7	-	-	-	-	0-360	102	Н
2	3.254	37.72	Pk	33.1	-33.7	37.12	-	-	-	-	0-360	102	Н
3	5.548	34.67	Pk	34.6	-31.5	37.77	-	-	-	-	0-360	102	Н
6	9.763	32.21	Pk	36.8	-26.4	42.61	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 99 of 121

STANDALONE HIGH CHANNEL

FCC Part15C 2.4GHz RSE.TST

Rev 9.5 28 Aug 2015

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)							
3	* 7.44	39.11	PK-U	35.5	-28.7	45.91	-	-	74	-28.09	217	185	Н
	* 7.44	28.51	V1TR	35.5	-28.7	35.31	54	-18.69	-	-	217	185	Н
5	* 7.44	42.06	PK-U	35.5	-28.7	48.86	-	-	74	-25.14	300	205	V
	* 7.44	33.55	V1TR	35.5	-28.7	40.35	54	-13.65	-	-	300	205	V
1	2.454	35.21	Pk	32.3	-24.5	43.01	-	-	-	-	0-360	199	Н
2	5.567	34.15	Pk	34.6	-31.2	37.55	-	-	-	-	0-360	102	Н
6	9.919	30.17	Pk	37.1	-26.6	40.67	-	-	-	-	0-360	101	V
4	12.931	29.66	Pk	39.2	-25	43.86	-	-	-	-	0-360	102	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector PK-U: Maximum Peak V1TR: VB=1/Ton, where: Ton is packet duration

Page 100 of 121

CHARGER LOW CHANNEL

FCC Part15C 2.4GHz RSE.TST

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF AT0069 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.377	43.59	PK-U	32.1	-24.1	51.59	-	-	74	-22.41	77	369	Н
	* 2.377	26.2	V1TR	32.1	-24.1	34.2	54	-19.8	-	-	77	369	Н
2	3.203	37.49	Pk	33.4	-33.4	37.49	-	-	-	-	0-360	101	Н
3	7.206	32.02	Pk	35.6	-28.7	38.92	-	-	-	-	0-360	101	Н
5	7.206	35.87	Pk	35.6	-28.7	42.77	-	-	-	-	0-360	200	V
6	9.607	32.56	Pk	36.6	-27.1	42.06	-	-	-	-	0-360	102	V
4	9.608	31.48	Pk	36.6	-27.1	40.98	-	-	-	-	0-360	101	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 101 of 121

CHARGER MID CHANNEL

FCC Part15C 2.4GHz RSE.TST

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	Fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)				(dB)			
3	* 7.323	38.62	PK-U	35.5	-28.4	45.72	-	-	74	-28.28	196	270	Н
	* 7.323	27.84	V1TR	35.5	-28.4	34.94	54	-19.06	-	-	196	270	Н
5	* 7.323	41.28	PK-U	35.5	-28.4	48.38	-	-	74	-25.62	282	216	V
	* 7.323	33.05	V1TR	35.5	-28.4	40.15	54	-13.85	-	-	282	216	V
1	2.416	35.29	Pk	32.3	-24.4	43.19	-	-	-	-	0-360	199	Н
2	3.255	38.5	Pk	33.1	-33.7	37.9	-	-	-	-	0-360	199	Н
4	3.255	36.29	Pk	33.1	-33.7	35.69	-	-	-	-	0-360	101	V
6	9.763	31.2	Pk	36.8	-26.4	41.6	-	-	-	-	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 102 of 121

CHARGER HIGH CHANNEL

Marker	Frequency	Meter	Det	AF	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	РК	Azimuth	Height	Polarity
	(GHz)	Reading		AT0069	fltr/Pad	Reading	(dBuV/m)	(dB)	(dBuV/m)	Margin	(Degs)	(cm)	
		(dBuV)		(dB/m)	(dB)	(dBuV/m)				(dB)			
2	* 4.556	40.25	PK-U	34	-32	42.25	-	-	74	-31.75	339	247	Н
	* 4.558	29	V1TR	34	-32	31	54	-23	-	-	339	247	Н
4	* 7.441	39.28	PK-U	35.5	-28.7	46.08	-	-	74	-27.92	16	390	Н
	* 7.44	28.92	V1TR	35.5	-28.7	35.72	54	-18.28	-	-	16	390	Н
5	* 7.44	41.65	PK-U	35.5	-28.7	48.45	-	-	74	-25.55	282	188	V
	* 7.44	33.18	V1TR	35.5	-28.7	39.98	54	-14.02	-	-	282	188	V
1	3.21	35.66	Pk	33.4	-33.2	35.86	-	-	-	-	0-360	102	Н
3	6.469	33.15	Pk	35.4	-30.1	38.45	-	-	-	-	0-360	102	Н
6	14.875	29.01	Pk	39.9	-23.6	45.31	-	-	-	-	0-360	199	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 103 of 121

9.2.3. WORSE-CASE 18-26GHz

SPURIOUS EMISSIONS 18 to 26GHz (STANDALONE)

Marker	Frequency	Meter	Det	AF	Amp/Cbl	Corrected	Average	Margin	Peak Limit	Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0076	(dB)	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)						
2	* 20.411	46.36	PK-U	33.4	-40.3	39.46	-	-	74	-34.54	33	360	Н
	* 20.41	35.77	V1TR	33.4	-40.3	28.87	54	-25.13	-	-	33	360	Н
4	* 22.881	47.51	PK-U	33.7	-39.4	41.81	-	-	74	-32.19	344	187	Н
	* 22.878	35.89	V1TR	33.7	-39.4	30.19	54	-23.81	-	-	344	187	н
1	* 20.38	46.95	PK-U	33.3	-39.9	40.35	-	-	74	-33.65	285	398	V
	* 20.379	35.82	V1TR	33.3	-39.9	29.22	54	-24.78	-	-	285	398	V
3	21.688	46.88	Pk	33.7	-39.7	40.88	-	-	-	-	0-360	202	V
5	24.654	46.58	Pk	34.6	-38.5	42.68	-	-	-	-	0-360	250	Н
6	25.778	45.96	Pk	34.8	-37.7	43.06	-	-	-	-	0-360	252	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

I K - I Eak UELECIUI DK LL: Maximum Da

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 104 of 121

SPURIOUS EMISSIONS 18 to 26GHz (CHARGER)

Marker	Frequency	Meter	Det	AF	Amp/Cbl	Corrected	Average	Margin	Peak Limit	Margin	Azimuth	Height	Polarity
	(GHz)	Reading		AT0076	(dB)	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)		(dB/m)		(dBuV/m)	(dBuV/m)						
1	* 19.107	48.18	PK-U	32.9	-40.8	40.28	-	-	74	-33.72	110	192	Н
	* 19.107	36.5	V1TR	32.9	-40.8	28.6	54	-25.4	-	-	110	192	Н
3	* 22.127	48.15	PK-U	33.9	-39.9	42.15	-	-	74	-31.85	0	291	Н
	* 22.126	36.5	V1TR	33.9	-39.9	30.5	54	-23.5	-	-	0	291	Н
2	* 19.529	50.74	PK-U	32.9	-40.4	43.24	-	1	74	-30.76	245	145	V
	* 19.529	41.47	V1TR	32.9	-40.4	33.97	54	-20.03	-	-	245	145	V
4	* 22.227	47.25	PK-U	33.7	-39.6	41.35	-	-	74	-32.65	203	160	V
	* 22.227	35.93	V1TR	33.7	-39.6	30.03	54	-23.97	-	-	203	160	V
5	23.562	47.68	Pk	34.2	-39.2	42.68	-	-	-	-	0-360	299	V
6	26.047	46.29	Pk	35.1	-37.5	43.89	-	-	-	-	0-360	249	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

PK-U: Maximum Peak

V1TR: VB=1/Ton, where: Ton is packet duration

Page 105 of 121

9.3. WORST-CASE BELOW 1 GHz

Note: All measurements were made at a test distance of 3 m. The limits in the plots and tabular data are the FCC/IC limits extrapolated from the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz – 30 MHz) to the measurement distance to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (specification distance / test distance). The anechoic chamber has been properly calibrated so that the measurement results correspond to what would be obtained from an open field sites.

SPURIOUS EMISSIONS 9kHz to 30MHz (WORST-CASE CONFIGURATION, STANDALONE)

FCC 15.209 Below 30MHz.TST

Rev 9.5 28 Aug 2815

Marker	Frequency	Meter	Det	AT0079 AF (dB/m)	Cbl (dB)	Corrected	FCC 15.209	Margin	Azimuth
	(MHz)	Reading				Reading	(projected to 3m)	(dB)	(Degs)
		(dBuV)				dB(uVolts/meter)			
1	.01622	45.13	Pk	16.4	.1	61.63	123.4	-61.77	0-360
2	.03588	41.85	Pk	13.6	.1	55.55	116.51	-60.96	0-360
3	.36176	40.16	Pk	11.9	.1	52.16	96.44	-44.28	0-360
4	5.16955	19.15	Pk	11.3	.4	30.85	69.54	-38.69	0-360
5	23.3121	14.86	Pk	9.4	.8	25.06	69.54	-44.48	0-360
6	28.59112	15.06	Pk	8.6	.9	24.56	69.54	-44.98	0-360

Pk - Peak detector

Page 106 of 121

SPURIOUS EMISSIONS 9kHz to 30MHz (WORST-CASE CONFIGURATION, CHARGER)

FCC 15.209 Below 38MHz.TST

Rev 9.5 28 Aug 2815

Marker	Frequency	Meter	Det	AT0079 AF (dB/m)	Cbl (dB)	Corrected	FCC 15.209	Margin	Azimuth
	(MHz)	Reading				Reading	(projected to 3m)	(dB)	(Degs)
		(dBuV)				dB(uVolts/meter)			
1	.01844	46.49	Pk	15.5	.1	62.09	122.29	-60.2	0-360
2	.35878	40.31	Pk	11.9	.1	52.31	96.51	-44.2	0-360
3	1.2237	28.96	Pk	11.9	.2	41.06	65.85	-24.79	0-360
4	5.16657	20.82	Pk	11.3	.4	32.52	69.54	-37.02	0-360
5	23.14508	15.87	Pk	9.5	.8	26.17	69.54	-43.37	0-360
6	23.28227	18.4	Pk	9.4	.8	28.6	69.54	-40.94	0-360

Pk - Peak detector

Page 107 of 121

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, STANDALONE)

FCC Part 15C 38-1000MHz.TST

Rev 9.5 28 Aug 2815

Marker	Frequency	Meter	Det	AF AT0074	Port 0 Factors	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)		Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	30.8925	29.69	Pk	25.5	-31.8	23.39	40	-16.61	0-360	299	Н
2	53.9275	35.52	Pk	11.9	-31.6	15.82	40	-24.18	0-360	102	V
3	139.99	30.48	Pk	17.5	-30.7	17.28	43.52	-26.24	0-360	102	V
4	185.635	32.31	Pk	15.8	-30.4	17.71	43.52	-25.81	0-360	102	V
5	201	31.61	Pk	17.1	-30.2	18.51	43.52	-25.01	0-360	199	V
6	537	30.07	Pk	22.7	-28.7	24.07	46.02	-21.95	0-360	199	V

Pk - Peak detector

FCC Part 15C 30-1000MHz.TST Rev 9.5 20 Aug 2015

Page 108 of 121
SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, CHARGER)

FCC Part 15C 38-1000MHz.TST

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF AT0074 (dB/m)	Port 0 Factors	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	34.845	40.31	Pk	22.4	-31.7	31.01	40	-8.99	0-360	102	V
2	66.295	50.59	Pk	12.2	-31.2	31.59	40	-8.41	0-360	102	V
3	92.985	50.53	Pk	12.3	-31	31.83	43.52	-11.69	0-360	102	V
4	99.53	48.76	Pk	14.3	-31.1	31.96	43.52	-11.56	0-360	102	V
5	130.47	44.22	Pk	18.1	-30.7	31.62	43.52	-11.9	0-360	199	Н
6	145.2388	44.6	Pk	17.1	-30.7	31	43.52	-12.52	0-360	199	Н

Pk - Peak detector FCC Part 15C 30-1000MHz.TST Rev 9.5 20 Aug 2015

Page 109 of 121

10. POWER LINE CONDUCTED

LIMITS

ANSI C63.10 Section 6.2

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 110 of 121

POWER LINE CONDUCTED RESULTS (CHARGER)

Range 1: Line-L1 .15 - 30MHz										
Marker	Frequency	Meter	Det	LISN VCF [dB]	Cbl/Limiter	Corrected	Class-B QP	Margin	Class-B Avg	Margin
	(MHz)	Reading			(dB)	Reading	Limit	(dB)	Limit	(dB)
		(dBuV)				dBuV				
3	.159	38.04	Pk	.2	10	48.24	65.52	-17.28	-	-
4	.159	6.41	Av	.2	10	16.61	-	-	55.52	-38.91
5	.372	30.5	Pk	.1	10	40.6	58.46	-17.86	-	-
6	.372	11.54	Av	.1	10	21.64	-	-	48.46	-26.82
11	22.128	21	Pk	.3	10.6	31.9	60	-28.1	-	-
12	22.155	4.76	Av	.3	10.6	15.66	-	-	50	-34.34

Pk - Peak detector

Av - Average detection

Page 111 of 121

Range 2: Line-L2 .15 - 30MHz										
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF [dB]	Cbl/Limiter (dB)	Corrected Reading dBuV	Class-B QP Limit	Margin (dB)	Class-B Avg Limit	Margin (dB)
1	.156	37.67	Pk	.2	10	47.87	65.67	-17.8	-	-
2	.156	7.38	Av	.2	10	17.58	-	-	55.67	-38.09
7	.366	26.32	Pk	.1	10	36.42	58.59	-22.17	-	-
8	.366	2.76	Av	.1	10	12.86	-	-	48.59	-35.73
9	8.904	25.03	Pk	.1	10.3	35.43	60	-24.57	-	-
10	8.895	7.37	Av	.1	10.3	17.77	-	-	50	-32.23

Pk - Peak detector

Av - Average detection

Page 112 of 121

11. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 113 of 121

RADIATED RF MEASUREMENT SETUP (BELOW 1 GHz)

Page 114 of 121

Page 115 of 121

RADIATED RF MEASUREMENT SETUP (ABOVE 1 GHz)

Page 116 of 121

Page 117 of 121

RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION

Page 118 of 121

Page 119 of 121

Page 120 of 121

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT

Page 121 of 121