

FCC TEST REPORT

Test report On Behalf of SKY WING COMMUNICATION ELECTRONICS CO., LTD For

WirelessAdapter
Model No.:TT-BA014
FCC ID:WSGTT-BA014

Prepared for: SKY WING COMMUNICATION ELECTRONICS CO., LTD

NO.63, Road 10, Longyan, Humen Town, Dongguan City, Guangdong, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,

Bao'an District, Shenzhen City, China

Date of Test: Jan. 13, 2019 ~ Jan. 24, 2019

Date of Report: Jan. 25, 2019 Report Number: HK1812171906E

TEST RESULT CERTIFICATION

Applicant's name:	SKY WING COMMUNICATION ELECTRONICS CO., LTD				
Address:	NO.63, Road 10, Longyan, Humen Town, Dongguan City, Guangdong, China				
Manufacture's Name:	SKY WING COMMUNICATION ELECTRONICS CO., LTD				
Address:	NO.63, Road 10, Longyan, Humen Town, Dongguan City, Guangdong, China				
Factory's Name	SKY WING COMMUNICATION ELECTRONICS CO., LTD				
Address	NO.63, Road 10, Longyan, Humen Town, Dongguan City, Guangdong, China				
Product description					
Trade Mark:	N/A				
Product Name:	Wireless Adapter				
Model and/or type reference:	TT-BA014				
Series Model	13, 15, 16, 17, 18, 19, 110, IXX				
Difference Description	All the same except for the model name				
Standards:	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013				
the Shenzhen HUAK Testing Teo of the material. Shenzhen HUA					
Date (s) of performance of tests					
Date of Issue	Jan. 25, 2019				
Test Result	: Pass				

Testing Engineer (Gary Qian) **Technical Manager**

Authorized Signatory:

(Jason Zhou)

Page 3 of 69 Report No.: HK1812171906E

TABLE OF CONTENTS	PAGE
1 . TEST SUMMARY	5
2 . GENERAL INFORMATION	6
2.1 . GENERAL DESCRIPTION OF EUT	6
2.2 . CARRIER FREQUENCY OF CHANNELS	7
2.3 . OPERATION OF EUT DURING TESTING	7
2.4 . DESCRIPTION OF TEST SETUP	8
2.5. EQUIPMENT USED IN EUT SYSTEM	8
2.6. MEASUREMENT INSTRUMENTS LIST	9
3. PEAK OUTPUT POWER	10
3.1. MEASUREMENT PROCEDURE	10
3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	10
3.3. LIMITS AND MEASUREMENT RESULT	11
4. BANDWIDTH	17
4.1. MEASUREMENT PROCEDURE	17
4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	17
4.3. LIMITS AND MEASUREMENT RESULTS	17
5. CONDUCTED SPURIOUS EMISSION	24
5.1. MEASUREMENT PROCEDURE	24
5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	24
5.3. LIMITS AND MEASUREMENT RESULT	24
6. RADIATED EMISSION	28
6.1. TEST LIMIT	28
6.2. MEASUREMENT PROCEDURE	28
6.3. TEST SETUP	30
6.4. TEST RESULT	32
7. BAND EDGE EMISSION	41
7.1. MEASUREMENT PROCEDURE	41
7.2. TEST SET-UP	41
7.3. TEST RESULT	42
8. NUMBER OF HOPPING FREQUENCY	46
8.1. MEASUREMENT PROCEDURE	46
8.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	46
8.3. LIMITS AND MEASUREMENT RESULT	46
9. TIME OF OCCUPANCY (DWELL TIME)	48

Page 4 of 69 Report No.: HK1812171906E

TABLE OF CONTENTS	PAGE
9.1. MEASUREMENT PROCEDURE	48
9.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	48
9.3. LIMITS AND MEASUREMENT RESULT	48
10. FREQUENCY SEPARATION	51
10.1. MEASUREMENT PROCEDURE	51
10.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	51
10.3. LIMITS AND MEASUREMENT RESULT	51
11. LINE CONDUCTED EMISSION TEST	53
11.1. LIMITS OF LINE CONDUCTED EMISSION TEST	53
11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	53
11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	54
11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	54
11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	55
12. ANTENNA REQUIREMENT	57
13. PHOTOGRAPH OF TEST	58
14. PHOTOGRAPHS OF EUT	61

1. TEST SUMMARY

1.1. TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	RESULT
PEAK OUTPUT POWER	COMPLIANT
20 DB BANDWIDTH	COMPLIANT
CONDUCTED SPURIOUS EMISSION	COMPLIANT
RADIATED EMISSION	COMPLIANT
BAND EDGES	COMPLIANT
NUMBER OF HOPPING FREQUENCY	COMPLIANT
TIME OF OCCUPANCY	COMPLIANT
FREQUENCY SEPARATION	COMPLIANT
LINE CONDUCTION EMISSION	COMPLIANT

1.2. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address : 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park,

Fuhai Street, Bao'an District, Shenzhen City, China

Designation Number: : CN1229

Test Firm Registration Number: 616276

1.3. MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

Page 6 of 69 Report No.: HK1812171906E

2. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

Operation Frequency	2.402 GHz to 2.480GHz	
RF Output Power	2.595dBm(Max)	
Bluetooth Version	V5.0	
BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK		
Number of channels	79 for BR/EDR	
Hardware Version	V002	
Software Version V001		
Antenna Designation	Extenral Antenna	
Antenna Gain	2dBi	
Power Supply DC 3.7V by battery		
Note: 1.The USB port only used for charging and can't be used to transfer data with PC.		

2.The EUT doesn't support BLE.

2.2. CARRIER FREQUENCY OF CHANNELS

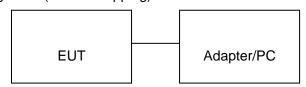
BR/EDR Channel List

Frequency Band	Channel Number	Frequency
	0	2402MHz
	1	2403MHz
	:	:
	38	2440 MHz
2400~2483.5MHz	39	2441 MHz
	40	2442 MHz
	:	:
	77	2479 MHz
	78	2480 MHz

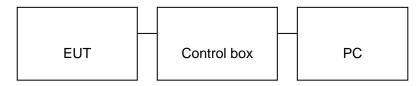
2.3. OPERATION OF EUT DURING TESTING

NO.	TEST MODE DESCRIPTION
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Low channel π /4-DQPSK
5	Middle channel π /4-DQPSK
6	High channel π /4-DQPSK
7	Low channel 8DPSK
8	Middle channel 8DPSK
9	High channel 8DPSK
10	BT Link with charging
11	BT Link(Hopping mode)
Nista	

Note:


- 1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. The EUT used fully-charged battery when tested.

Page 8 of 69 Report No.: HK1812171906E


2.4. DESCRIPTION OF TEST SETUP

Configure 1: (Normal hopping)

Note: Owing to the EUT has own battery, and testing may be performed while adapter or PC removed.

Configure 2: (Control continuous TX)

2.5. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment Mfr/Brand Model/Type No.		Remark	
1	Wireless Adapter	N/A	TT-BA014	EUT
2	Battery	Li-ion	YJ603235	Accessory
3	PC	APPLE	A1465	A.E
4	Mobile phone	APPLE	A1367	A.E
5	Control box	CSR	USB_SPI_TOOLS	A.E
6	Adapter	OenWell	CW0501000	A.E
7	USB Cable	N/A	1m unshielded	A.E
8	Speaker	STRO	N/A	A.E

Page 9 of 69 Report No.: HK1812171906E

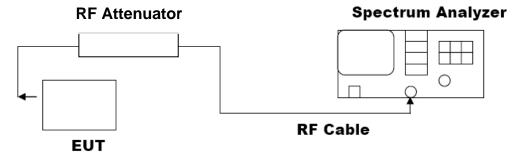
2.6. MEASUREMENT INSTRUMENTS LIST

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 27, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 27, 2018	1 Year

TEST EQUIPMENT OF RADIATED EMISSION TEST

IESI	TEST EQUIPMENT OF RADIATED EMISSION TEST					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
2.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 27, 2018	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
4.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 27, 2018	1 Year
5.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	1 Year
6.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 27, 2018	1 Year
7.	Broad-band Horn Antenna	Schewarzbeck	LB-180400-KF	HKE-031	Dec. 27, 2018	1 Year
8.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Dec. 27, 2018	1 Year
9.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	1 Year
10.	Filter (2.4-2.483GHz)	Micro-tronics	087		N/A	N/A
11.	Radiation Cable 1	MXT	HK1	R05	N/A	N/A
12.	Radiation Cable 2	MXT	HK1	R06	N/A	N/A


3. PEAK OUTPUT POWER

3.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. RBW > the 20 dB bandwidth of the emission being measured, VBW \geq RBW.
- 4. Record the maximum power from the Spectrum Analyzer.
- 5. The maximum peak power shall be less 21dBm.

3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Page 11 of 69 Report No.: HK1812171906E

3.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT				
	FOR GFSK N	OUDULATION		
Frequency Peak Power Applicable Limits (GHz) (dBm) Pass or Fail				
2.402	1.987	21	Pass	
2.441	2.595	21	Pass	
2.480	2.442	21	Pass	

CH₀

CH39

CH78

PEAK OUTPUT POWER MEASUREMENT RESULT FOR $\, {\rm II} \,$ /4-DQPSK MODULATION **Applicable Limits** Frequency **Peak Power** Pass or Fail (GHz) (dBm) (dBm) 2.402 21 **Pass** 1.315 2.441 **Pass** 21 2.301 2.480 **Pass** 21 2.202

Page 13 of 69

CH₀

CH39

CH78

Page 15 of 69

PEAK OUTPUT POWER MEASUREMENT RESULT FOR 8DPSK MODULATION				
Frequency (GHz) Peak Power Applicable Limits (dBm) Pass or Fail				
2.402	1.256	21	Pass	
2.441	2.232	21	Pass	
2.480	2.162	21	Pass	

CH₀

CH39

CH78

4. BANDWIDTH

4.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ 3RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Note: The EUT has been used temporary antenna connector for testing.

4.3. LIMITS AND MEASUREMENT RESULTS

BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESULT								
	Measurement Result							
Applicable Limits		Test Data (MHz	Danill					
		99%OBW (MHz)	-20dB BW(MHz)	Result				
	Low Channel	0.955	1.111	PASS				
N/A	Middle Channel	0.931	1.103	PASS				
	High Channel	0.941	1.105	PASS				

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Page 19 of 69 Report No.: HK1812171906E

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

BLUETOOTH 2MBPS LIMITS AND MEASUREMENT RESULT							
	asurement Result						
Applicable Limits		Test Data (MHz	Dooult				
		99%OBW (MHz)	-20dB BW(MHz)	Result			
	Low Channel	1.218	1.383	PASS			
N/A	Middle Channel	1.221	1.379	PASS			
	High Channel	1.222	1.385	PASS			

Page 20 of 69

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

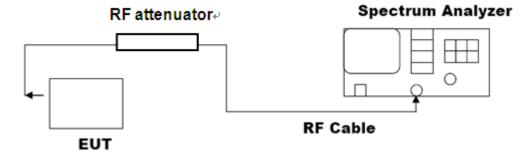
BLUETOOTH 3MBPS LIMITS AND MEASUREMENT RESULT Measurement Result Applicable Limits Test Data (MHz) Result 99%OBW (MHz) -20dB BW(MHz) Low Channel 1.223 **PASS** 1.387 N/A Middle Channel **PASS** 1.229 1.386 High Channel 1.231 1.388 **PASS**

Page 22 of 69

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

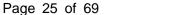
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

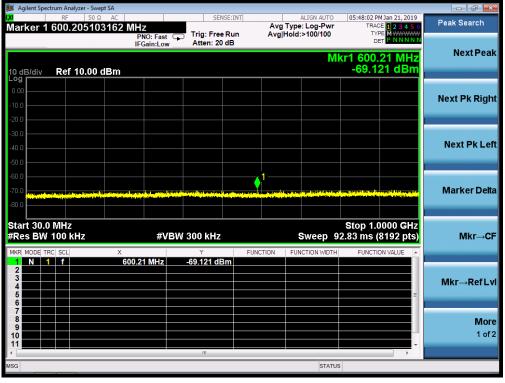


5. CONDUCTED SPURIOUS EMISSION

5.1. MEASUREMENT PROCEDURE


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. RBW = 100 kHz; VBW = 300kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

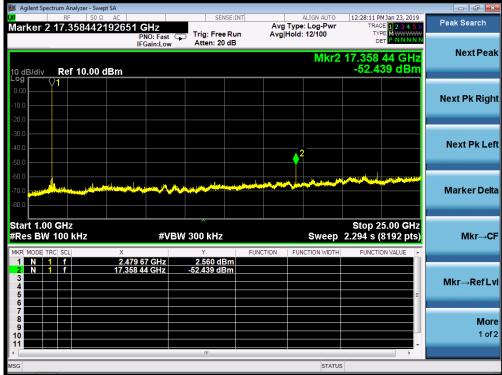
5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)


5.3. LIMITS AND MEASUREMENT RESULT

5.3. LIMITS AND MEASUREMENT RESULT							
LIMITS AND MEASUREMENT RESULT							
A P	Measurement Result						
Applicable Limits	Test Data	Result					
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit						
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS					
intentional radiator is operating, the radio	Channel						
frequency power that is produce by the intentional							
radiator shall be at least 20 dB below that in							
100KHz bandwidth within the band that contains							
the highest level of the desired power.	At least -20dBc than the limit	DACC					
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS					
restricted bands, as defined in §15.205(a), must							
also comply with the radiated emission limits							
specified in§15.209(a))							


TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF GFSK MODULATION IN LOW CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL



TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

6. RADIATED EMISSION

6.1. TEST LIMIT

Frequency	Distance	Field Strengths Limit					
(MHz)	Meters	μ V/m	dB(μV)/m				
0.009 ~ 0.490	300	2400/F(kHz)					
0.490 ~ 1.705	30	24000/F(kHz)					
1.705 ~ 30	30	30	40.0				
30 ~ 88	3	100					
88 ~ 216	3	150	43.5				
216 ~ 960	3	200	46.0				
960 ~ 1000	3	500	54.0				
Above 1000	3	Other:74.0 dB(µV)/m (Peak) 54.0 dB(μV)/m				
		(Average)					

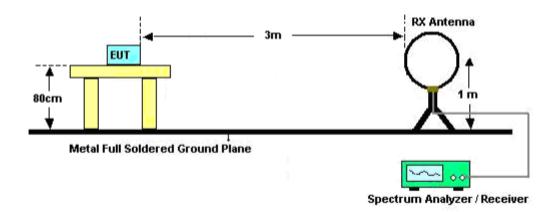
Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

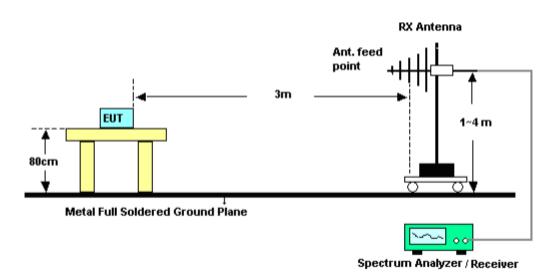
6.2. MEASUREMENT PROCEDURE

- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak&AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

The following table is the setting of spectrum analyzer and receiver.

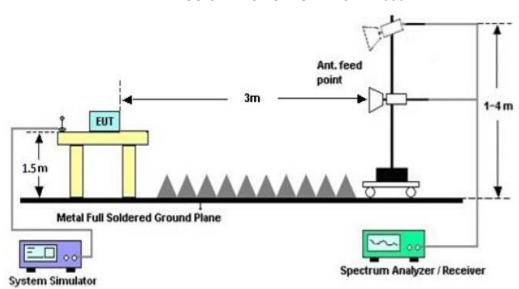

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
	1GHz~26.5GHz
Start ~Stop Frequency	RBW 1MHz/ VBW 3MHz for Peak,
	RBW 1MHz/ VBW 10Hz for Average

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



6.3. TEST SETUP

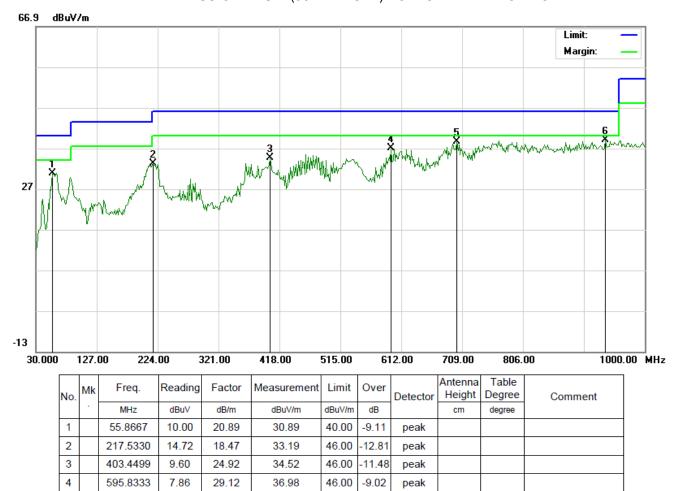
RADIATED EMISSION TEST SETUP BELOW 30MHz



RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

6.4. TEST RESULT


(Worst Modulation: GFSK)

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHz

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL

46.00

46.00

-7.33

-7.05

peak

peak

RESULT: PASS

5

700.9166

936.9500

7.90

3.91

30.77


35.04

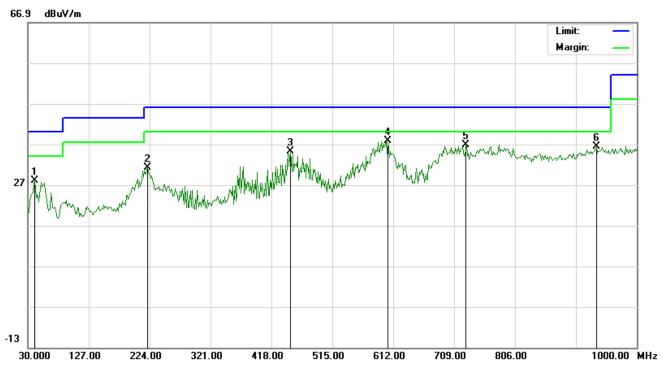
38.67

38.95

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		62.3333	9.03	19.93	28.96	40.00	-11.04	peak			
2		215.9165	16.01	18.37	34.38	43.50	-9.12	peak			
3		392.1333	10.25	24.55	34.80	46.00	-11.20	peak			
4		539.2500	8.65	27.95	36.60	46.00	-9.40	peak			
5		684.7500	6.39	30.52	36.91	46.00	-9.09	peak			
6	*	793.0665	5.59	33.00	38.59	46.00	-7.41	peak			

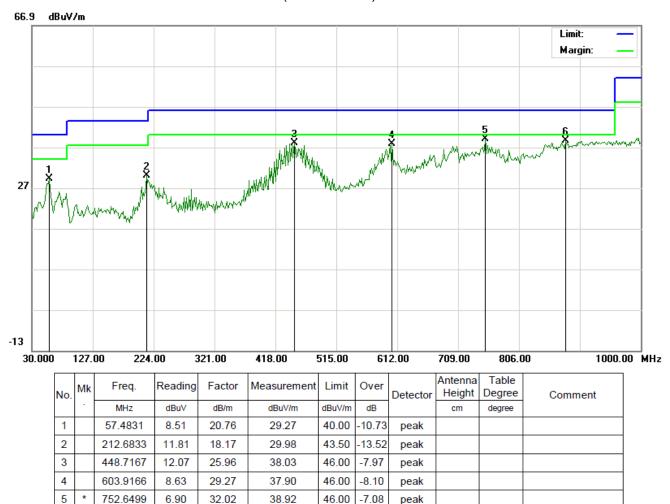
RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

Report No.: HK1812171906E



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		41.3166	6.38	21.60	27.98	40.00	-12.02	peak			
2		220.7666	12.47	18.69	31.16	46.00	-14.84	peak			
3		448.7167	9.22	25.96	35.18	46.00	-10.82	peak			
4	*	603.9166	8.60	29.27	37.87	46.00	-8.13	peak			
5		728.3999	5.33	31.44	36.77	46.00	-9.23	peak			
6		935.3333	1.29	35.02	36.31	46.00	-9.69	peak			

RESULT: PASS

RADIATED EMISSION TEST- (30MHz-1GHz)- MIDDLE CHANNEL -VERTICAL

RESULT: PASS

6

880.3667

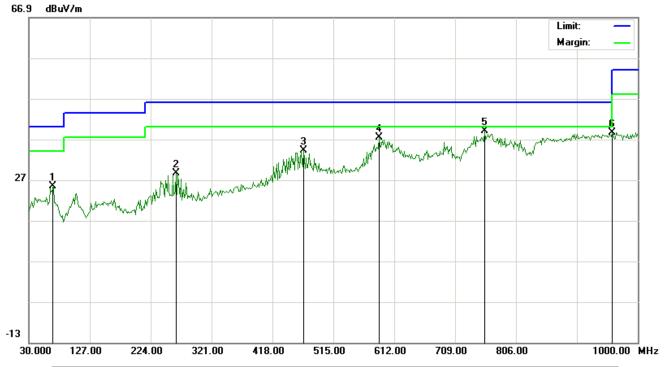
4.16

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

38.54

34.38

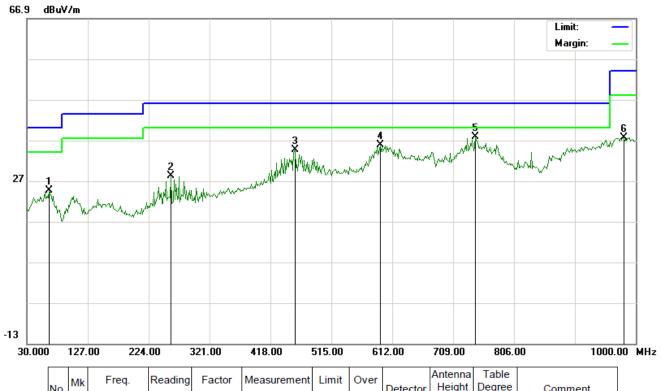
2. The "Factor" value can be calculated automatically by software of measurement system.


46.00

-7.46

peak

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		68.7999	7.27	18.17	25.44	40.00	-14.56	peak			
2		264.4166	8.42	20.12	28.54	46.00	-17.46	peak			
3		468.1166	7.78	26.41	34.19	46.00	-11.81	peak			
4		587.7500	8.53	28.96	37.49	46.00	-8.51	peak			
5	*	755.8831	6.86	32.10	38.96	46.00	-7.04	peak		·	
6		959.5833	3.31	35.27	38.58	46.00	-7.42	peak			

RESULT: PASS

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		65.5667	5.50	19.05	24.55	40.00	-15.45	peak			
2		259.5667	8.40	19.76	28.16	46.00	-17.84	peak			
3		456.8000	8.42	26.15	34.57	46.00	-11.43	peak			
4		592.6000	6.70	29.06	35.76	46.00	-10.24	peak			
5	*	744.5666	5.94	31.83	37.77	46.00	-8.23	peak			
6		980.6000	2.11	35.48	37.59	54.00	-16.41	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

Page 38 of 69 Report No.: HK1812171906E

RADIATED EMISSION ABOVE 1GHz

EUT:	Wireless Adapter	Model Name. :	TT-BA014
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4804.026	44.59	7.12	51.71	74	-22.29	peak
4804.026	40.36	7.12	47.48	54	-6.52	AVG
7206.039	39.62	9.84	49.46	74	-24.54	peak
7206.039	36.15	9.84	45.99	54	-8.01	AVG
Domonic						

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT:	Wireless Adapter	Model Name. :	TT-BA014
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4804.026	43.65	7.12	50.77	74	-23.23	peak
4804.026	40.32	7.12	47.44	54	-6.56	AVG
7206.039	38.92	9.84	48.76	74	-25.24	peak
7206.039	35.68	9.84	45.52	54	-8.48	AVG

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 39 of 69 Report No.: HK1812171906E

EUT:	Wireless Adapter	Model Name. :	TT-BA014
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 2	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
4882.032	44.39	7.12	51.51	74	-22.49	peak			
4882.032	41.29	7.12	48.41	54	-5.59	AVG			
7323.048	39.61	9.84	49.45	74	-24.55	peak			
7323.048	36.44	9.84	46.28	54	-7.72	AVG			
Remark:									
Factor = A	Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

EUT:	Wireless Adapter	Model Name. :	TT-BA014
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 2	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4882.032	43.52	7.12	50.64	74	-23.36	peak
4882.032	40.28	7.12	47.4	54	-6.6	AVG
7323.048	39.64	9.84	49.48	74	-24.52	peak
7323.048	37.65	9.84	47.49	54	-6.51	AVG

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT: Wireless Adapter Model Name. : TT-BA014

Temperature: 20 °C Relative Humidtity: 48%

Pressure: 1010 hPa Test Voltage: DC 3.7V

Test Mode: Mode 3 Polarization: Horizontal

Report No.: HK1812171906E

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	, value Type			
4960.042	44.12	7.12	51.24	74	-22.76	peak			
4960.042	41.06	7.12	48.18	54	-5.82	AVG			
7440.063	39.92	9.84	49.76	74	-24.24	peak			
7440.063	37.65	9.84	47.49	54	-6.51	AVG			
Remark:									
Factor = Ar	Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

EUT:	Wireless Adapter	Model Name. :	TT-BA014
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 3	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	raide Type			
4960.042	43.82	7.12	50.94	74	-23.06	peak			
4960.042	40.25	7.12	47.37	54	-6.63	AVG			
7440.063	38.92	9.84	48.76	74	-25.24	peak			
7440.063	36.51	9.84	46.35	54	-7.65	AVG			
Remark:									
Factor = Antenna Factor + Cable Loss – Pre-amplifier.									

Note: Other emissions from 8G to 25 GHz are considered as ambient noise. No recording in the test report. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

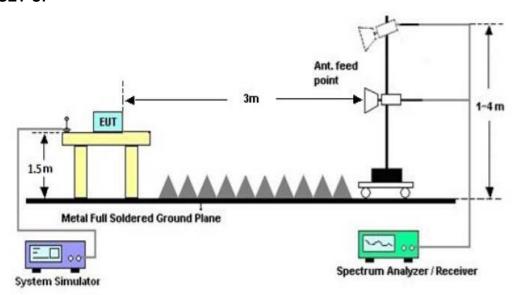
The "Factor" value can be calculated automatically by software of measurement system.

The GFSK modulation was the worst case and only the data of worst recorded in this report.

7. BAND EDGE EMISSION

7.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the bottom operation frequency individually.
- 2. Set SPA Start or Stop Frequency=Operation Frequency,

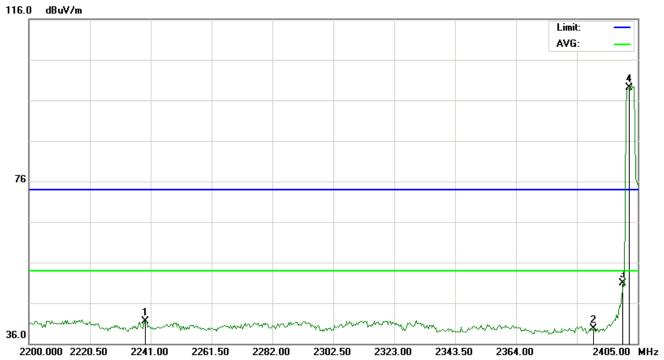

For unrestricted band: RBW=100kHz, VBW=300kHz

For restricted band: RBW=1MHz, VBW=3*RBW

Center frequency = Operation frequency

3. The band edges was measured and recorded.

7.2. TEST SET-UP



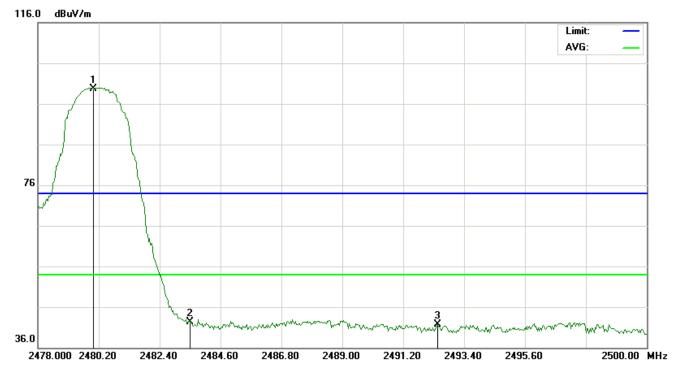
7.3. TEST RESULT

(Worst Modulation: GFSK)

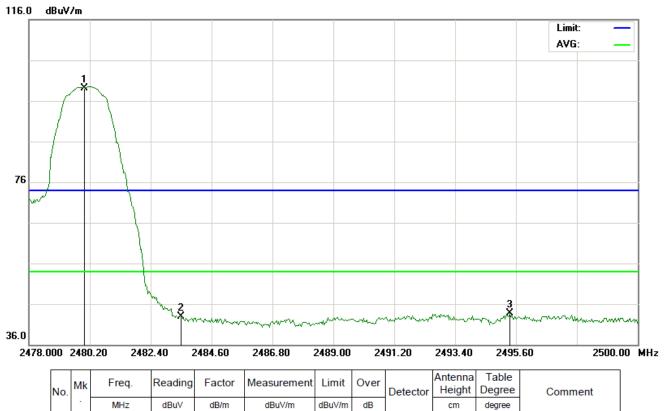

TEST PLOT OF BAND EDGE FOR LOW CHANNEL (1Mbps)-Horizontal

No.	О.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
-	1		2239.292	28.06	13.45	41.51	74.00	-32.49	peak			
1	2		2390.000	26.17	13.46	39.63	74.00	-34.37	peak			
,	3		2400.000	37.44	13.46	50.90	74.00	-23.10	peak			
4	4	*	2402.000	85.63	13.46	99.09	74.00	25.09	peak			

Page 43 of 69 Report No.: HK1812171906E


TEST PLOT OF BAND EDGE FOR LOW CHANNEL (1Mbps)-Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		2269.700	26.81	13.45	40.26	74.00	-33.74	peak			
2		2390.000	27.17	13.46	40.63	74.00	-33.37	peak			
3		2400.000	34.94	13.46	48.40	74.00	-25.60	peak			
4	*	2402.000	85.23	13.46	98.69	74.00	24.69	peak			


TEST PLOT OF BAND EDGE FOR HIGH CHANNEL (1Mbps)-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	85.54	14.11	99.65	74.00	25.65	peak			
2		2483.500	28.16	14.13	42.29	74.00	-31.71	peak			
3		2492.447	27.57	14.18	41.75	74.00	-32.25	peak			

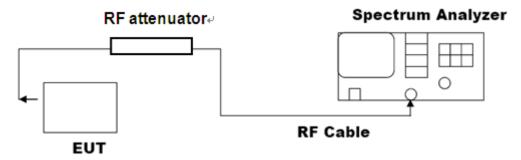
TEST PLOT OF BAND EDGE FOR HIGH CHANNEL (1Mbps)-Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over		Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	85.07	14.11	99.18	74.00	25.18	peak			
2		2483.500	28.72	14.13	42.85	74.00	-31.15	peak			
3		2495.380	29.49	14.20	43.69	74.00	-30.31	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

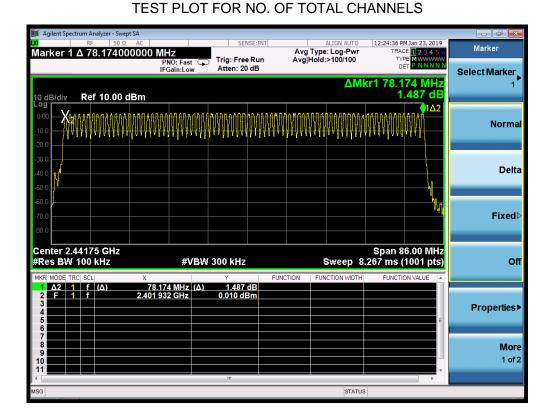
- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. Hopping off and Hopping on have been tested and only worst case recorded



8. NUMBER OF HOPPING FREQUENCY

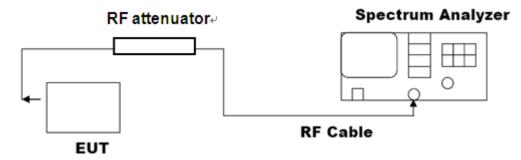
8.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz
- 4. Set the Spectrum Analyzer as RBW>=1%span, VBW>=3RBW.


8.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

8.3. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS



9. TIME OF OCCUPANCY (DWELL TIME)

9.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set Span = zero span, centered on a hoping channel
- 4. Set the spectrum analyzer as RBW=1MHz, VBW>=RBW, Span = 0 Hz

9.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

9.3. LIMITS AND MEASUREMENT RESULT

The Worst Case (1Mbps)

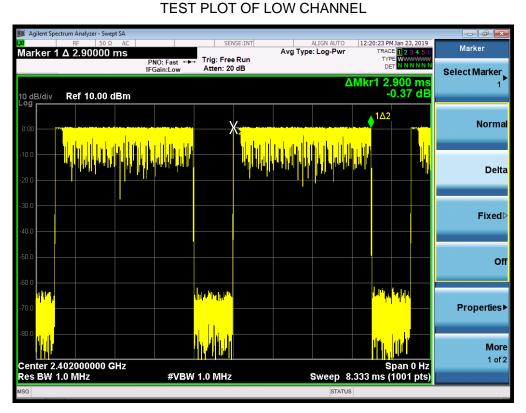
Channel	Time of Pulse for DH5 (ms)	Period Time (s)	Sweep Time (ms)	Limit (ms)
Low	2.900	31.6	309.33	400
Middle	2.900	31.6	309.33	400
High	2.900	31.6	309.33	400

Low Channel Time

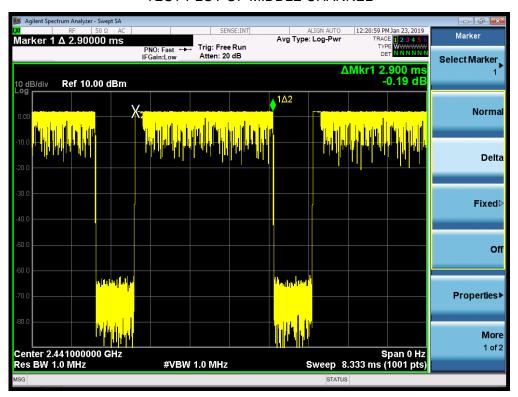
2.900*(1600/6)/79*31.6=309.33ms

Middle Channel Time

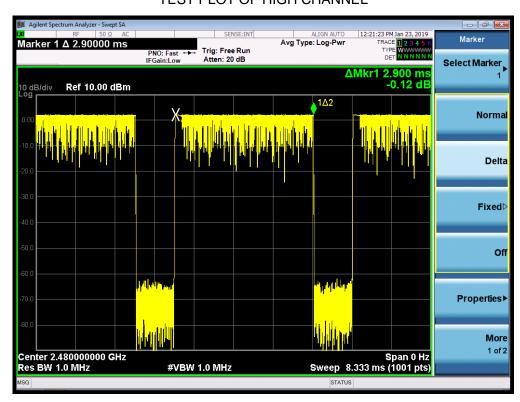
2.900*(1600/6)/79*31.6=309.33ms


High Channel Time

2.900*(1600/6)/79*31.6=309.33ms

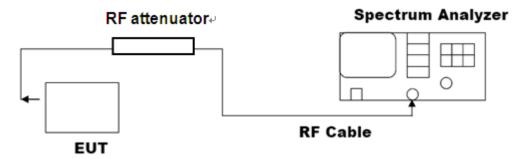


Report No.: HK1812171906E



TEST PLOT OF MIDDLE CHANNEL

TEST PLOT OF HIGH CHANNEL

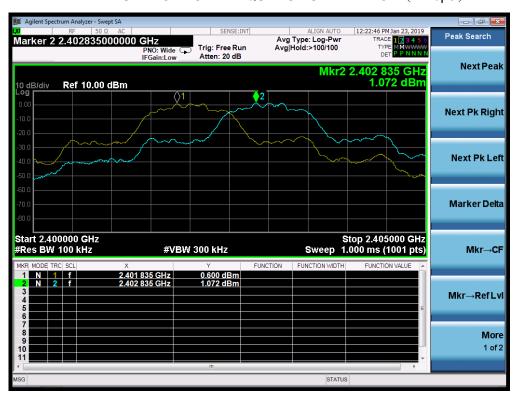


10. FREQUENCY SEPARATION

10.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold

10.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

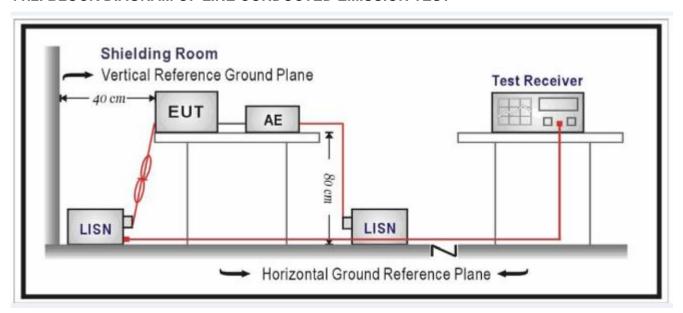


10.3. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT	
	KHz	KHz		
CH00-CH01	1000	>=25 KHz or 2/3 20 dB BW	Pass	

TEST PLOT FOR FREQUENCY SEPARATION (1Mbps)

11. LINE CONDUCTED EMISSION TEST


11.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

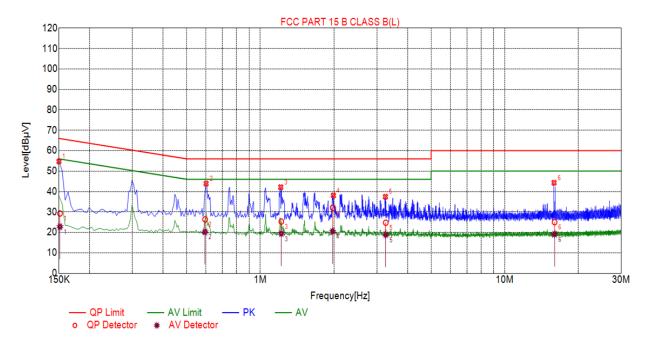
11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

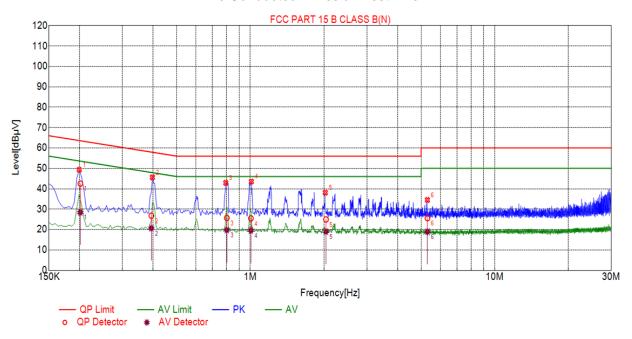
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.


Page 55 of 69 Report No.: HK1812171906E

11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

By adapter (worst case)

FOR BR/EDR

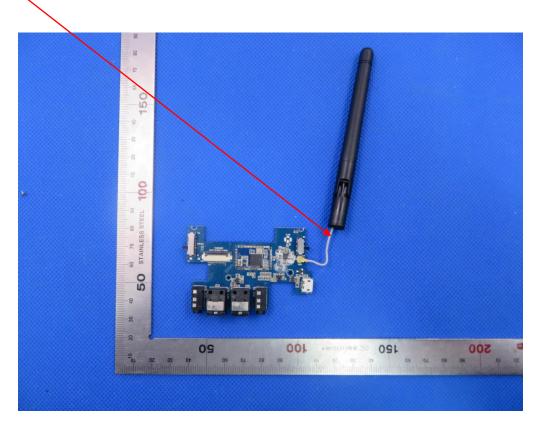

Line Conducted Emission Test Line 1-L

Final	Final Data List											
NO.	Freq. [MHz]	Factor (dB)	QP Value [dBµV]	QP Limit [dBµV]	QP Margin (dB)	AV Value [dBµV]	AV Limit (dBµV)	AV Margin (dB)				
1	0.1514	10.03	29.25	65.93	36.68	22.79	55.93	33.14				
2	0.5940	10.05	26.38	56.00	29.62	20.23	46.00	25.77				
3	1.2183	10.09	25.32	56.00	30.68	19.40	46.00	26.60				
4	1.9762	10.14	32.07	56.00	23.93	20.49	46.00	25.51				
5	3.2599	10.23	24.76	56.00	31.24	18.86	46.00	27.14				
6	16.0014	9.98	25.03	60.00	34.97	19.10	50.00	30.90				

Line Conducted Emission Test Line 2-N

Final	Final Data List												
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin (dB)	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin (dB)					
1	0.2015	10.03	42.55	63.55	21.00	28.43	53.55	25.12					
2	0.3935	10.04	26.81	57.99	31.18	20.69	47.99	27.30					
3	0.8012	10.06	25.71	56.00	30.29	19.78	46.00	26.22					
4	1.0054	10.06	25.48	56.00	30.52	19.56	46.00	26.44					
5	2.0396	10.15	24.96	56.00	31.04	19.02	46.00	26.98					
6	5.3082	10.26	25.62	60.00	34.38	19.01	50.00	30.99					

12. ANTENNA REQUIREMENT


Standard Applicable

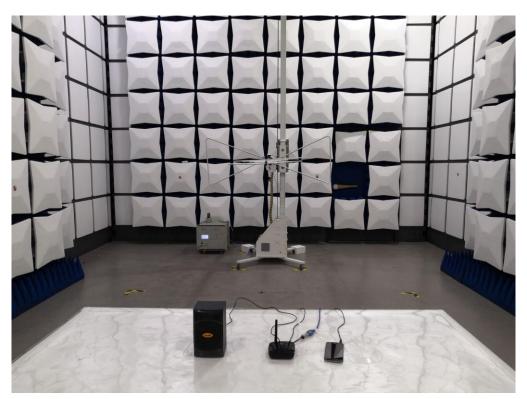
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

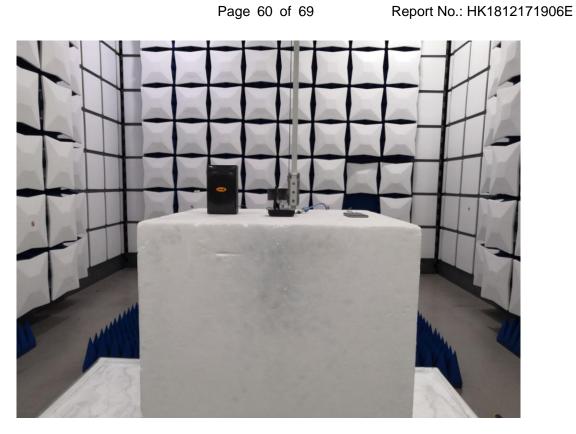
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Page 58 of 69 Report No.: HK1812171906E

13. PHOTOGRAPH OF TEST


FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP



Page 61 of 69 Report No.: HK1812171906E

14. PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

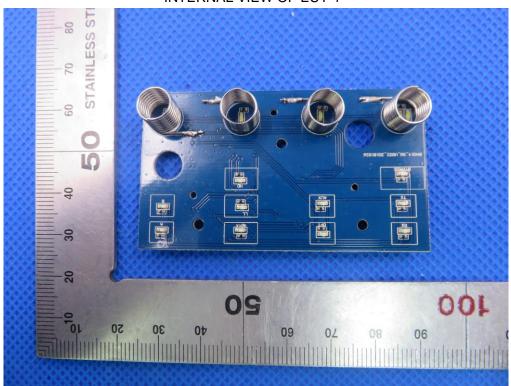
Page 62 of 69 Report No.: HK1812171906E

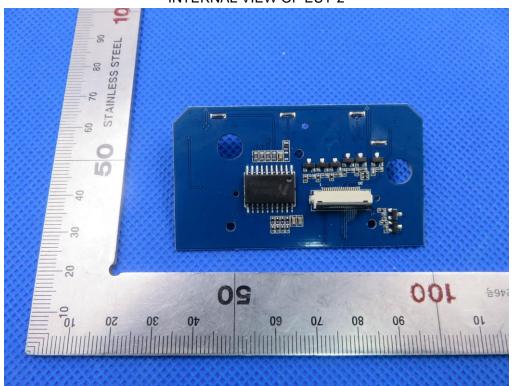
FRONT VIEW OF EUT

BACK VIEW OF EUT

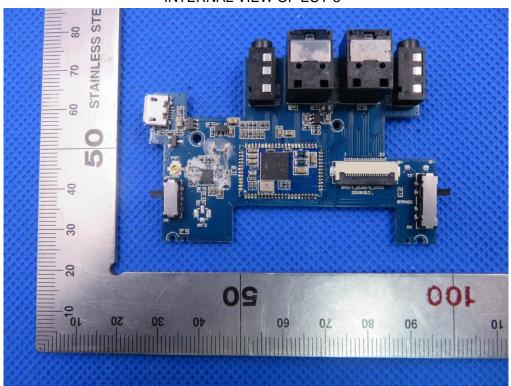
RIGHT VIEW OF EUT

VIEW OF EUT (PORT)-2


VIEW OF BATTERY



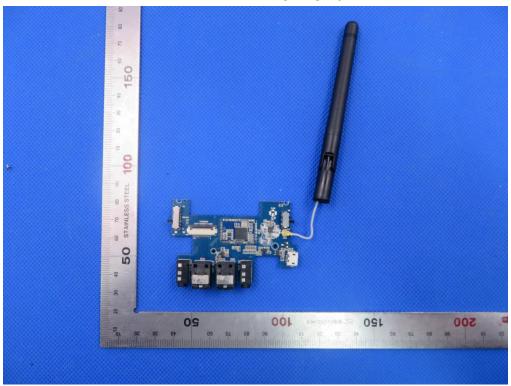
Page 66 of 69 Report No.: HK1812171906E


INTERNAL VIEW OF EUT-2

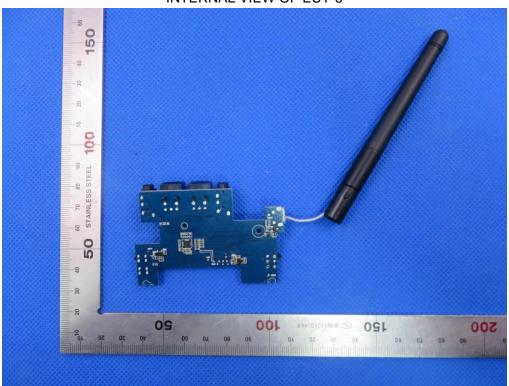


Page 67 of 69 Report No.: HK1812171906E

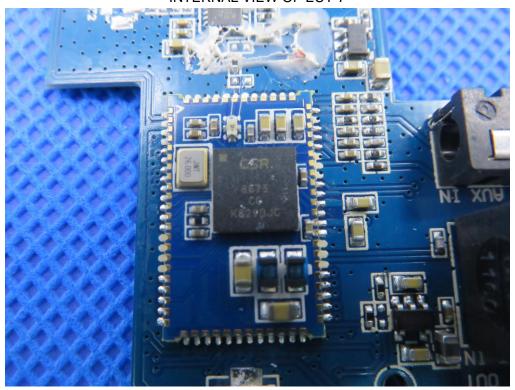
INTERNAL VIEW OF EUT-3



INTERNAL VIEW OF EUT-4



INTERNAL VIEW OF EUT-5



INTERNAL VIEW OF EUT-6

INTERNAL VIEW OF EUT-7

VIEW OF ADAPTER (AE)

The adapter was supplied by HUAK

----END OF REPORT----