

TEST REPORT

No.I19N02247-SAR

For

Doro AB

LTE phone

Model Name: DSB-0230

With

Hardware Version: 1031

Software Version:

MAGIC01A-S10A_DSB0230_123_USERDEBUG_190925

FCC ID: WS5DSB0230

Issued Date: 2019-11-20

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001

Email: yewu@caict.ac.cn, website: www.cszit.com

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I19N02247-SAR	Rev.0	2019-11-20	Initial creation of test report

TABLE OF CONTENT

1 SUMMARY OF TEST REPORT	5
1.1 Test Items	5
1.2 Test Standards	
1.3 Test Result 1.4 Testing Location	
1.5 Project Data	
1.6 SIGNATURE	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 APPLICANT INFORMATION	
3.2 MANUFACTURER INFORMATION	
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
4.1 ABOUT EUT	
4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
5 TEST METHODOLOGY	
5.1 Applicable Limit Regulations	
5.2 APPLICABLE MEASUREMENT STANDARDS	
6 SPECIFIC ABSORPTION RATE (SAR)	11
6.1 INTRODUCTION	
6.2 SAR DEFINITION	
7 TISSUE SIMULATING LIQUIDS	12
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	
8.1 System Setup 8.2 System Verification	
9 MEASUREMENT PROCEDURES	
9.1 Tests to be performed	
9.2 GENERAL MEASUREMENT PROCEDURE	
9.3 GSM MEASUREMENT PROCEDURES FOR SAR	
9.4 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.5 Bluetooth & WI-FI Measurement Procedures for SAR 9.6 SAR Measurement for LTE	
9.0 SAK MEASOREMENT FOR LTE	
9.8 PROXIMITY SENSOR CONSIDERATIONS	
10 CONDUCTED OUTPUT POWER	24
10.1 GSM MEASUREMENT RESULT	
10.2 WCDMA MEASUREMENT RESULT	
10.3 LTE MEASUREMENT RESULT	

10.4 WI-FI AND BT MEASUREMENT RESULT	
11 SIMULTANEOUS TX SAR CONSIDERATIONS	34
 11.1 INTRODUCTION 11.2 TRANSMIT ANTENNA SEPARATION DISTANCES 11.3 SAR MEASUREMENT POSITIONS 11.4 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS 	34 35
12 EVALUATION OF SIMULTANEOUS	36
13 SUMMARY OF TEST RESULTS	38
13.1 SAR results 13.2 WLAN Evaluation for 2.4G 13.3 WLAN Evaluation for 5G	45
14 SAR MEASUREMENT VARIABILITY	49
15 MEASUREMENT UNCERTAINTY	50
15.1 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz) 15.2 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3GHz~6GHz)	
16 MAIN TEST INSTRUMENTS	52
ANNEX A GRAPH RESULTS	53
ANNEX B SYSTEMVERIFICATION RESULTS	68
ANNEX C SAR MEASUREMENT SETUP	75
C.1 MEASUREMENT SET-UP C.2 DASY5 E-FIELD PROBE SYSTEM C.3 E-FIELD PROBE CALIBRATION C.4 OTHER TEST EQUIPMENT	76 76
ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	81
D.1 GENERAL CONSIDERATIONS D.2 BODY-WORN DEVICE D.3 DESKTOP DEVICE D.4 DUT SETUP PHOTOS	82 82
ANNEX E EQUIVALENT MEDIA RECIPES	84
ANNEX F SYSTEM VALIDATION	85
ANNEX G DAE CALIBRATION CERTIFICATE	86
ANNEX H PROBE CALIBRATION CERTIFICATE	89
ANNEX I DIPOLE CALIBRATION CERTIFICATE	100
ANNEX J SENSOR TRIGGERING DATA SUMMARY	146
ANNEX K EXTENDED CALIBRATION SAR DIPOLE	148

1 Summary of Test Report

1.1 Test Items

Description:	LTE phone
Model Name:	DSB-0230
Applicant's name:	Doro AB
Manufacturer's Name:	CK TELECOM LTD.

1.2 Test Standards

Please refer to "5. Test Methodology"

1.3 Test Result

Please refer to "14.Summary of Test Results"

1.4 Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5 Project Data

Testing Start Date: Testing End Date: October 18, 2019 November 14, 2019

1.6 Signature

李闲高

Li yongfu (Prepared this test report)

Zhang Yunzhuan (Reviewed this test report)

Cao Junfei Deputy Director of the laboratory (Approved this test report)

©Copyright. All rights reserved by SAICT

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Doro AB LTE phone DSB-0230 are as follows:

Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class	
	GSM850	0.16		
Head (Separation Distance 0mm)	PCS1900	0.27		
	UMTS FDD 5	0.19	PCE	
	UMTS FDD 2	0.50		
	LTE Band 7	0.79		
	BT 2.4GHz	0.08	DSS	
	WLAN 2.4GHz	0.87	DTS	
	WLAN 5GHz	0.94	NII	

Table 2.1: Highest Reported SAR for Head (1g)

Table 2.2: Highest Reported SAR for Hotspot / Body Worn (1g)

Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class
	GSM850	0.20	
	PCS1900	0.68	
Hotspot / Body Worn (Separation Distance 10 mm)	UMTS FDD 5	0.25	PCE
	UMTS FDD 2	1.02	
	LTE Band 7	1.15	
	WLAN 2.4GHz	0.22	DTS
	WLAN 5GHz	0.22	NII

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1 & 2.2), and the value is: 1.15W/kg (1g).

Tablez.5. The sum of reported OAK values for main antenna and Will r					
1	Position	Main antenna	Wi-Fi	Sum	SPLSR
Highest reported SAR value for Head	Left Cheek	0.79	0.87	1.66	Yes
Highest reported SAR value for Body	Front	1.15	0.14	1.29	/

Table2.3: The sum of reported SAR values for main antenna and Wi-Fi

According to the KDB 447498 D01, when the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The ratio is determined by (SAR1 + SAR2)^{1.5}/Ri, rounded to two decimal digits, and must be \leq 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Table2.4: The sum of reported SAR values for main antenna and BT

1	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Left Touch	0.79	0.08	0.87
Highest reported SAR value for Body	Front	1.15	0.33	1.48

BT*-Estimated SAR for Bluetooth (seethetable12.3)

According to the above tables, the highest sum of reported SAR values is 1.66 W/kg (1g).

The detail for simultaneous transmission consideration is described in chapter 12.

3 Client Information

3.1 Applicant Information

Company Name:	Doro AB	
Address /Post:	Jörgen Kocksgatan 1B SE-211 20 Malmö Sweden	
Contact:	Per Carlenhag	
Email:	per.carlenhag@doro.com	
Telephone:	+46 46 280 5000	
Fax:	+46 46 280 5001	

3.2 Manufacturer Information

Company Name:	CK TELECOM LTD	
Address /Post:	Technology Road. High-Tech Development Zone. Heyuan, Guangdong,	
Address /1 0st.	P.R. China	
Contact:	mourong xie	
Email:	mourong.xie@ck-telecom.com	
Telephone:	+86 0755-26739100 ext.8514	
Fax:	+86 0755-26739600	

4 Equipment under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	LTE phone
Model Name:	DSB-0230
Brand Name	Doro
Condition of EUT as received	No obvious damage in appearance
Operating mode/a):	GSM 850/1900, WCDMA 850/1900,
Operating mode(s):	LTE Band 7, Bluetooth, Wi-Fi 2.4G/5G
	824.2 – 848.8MHz (GSM 850)
	1850.2 – 1910MHz (GSM 1900)
	826.4 – 846.6MHz (WCDMA850 Band V)
Tootod Ty Fraguanay	1852.4 – 1907.6MHz (WCDMA1900 Band II)
Tested Tx Frequency:	2502.5 – 2567.5MHz (LTE_FDD Band 7)
	2402 – 2480MHz (Bluetooth 2.4G)
	2412 – 2462MHz (Wi-Fi 2.4G)
	5180 – 5825MHz (Wi-Fi 5G)
GPRS / EGPRS Multislot Class:	33
GPRS capability Class:	В
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Hotspot mode:	Support
Product Dimensions:	Long 152.9mm ;Wide 70.6mm ; Overall Diagonal 157mm
Display Diagonal:	140mm
Remark:	·

1. This device does not support DTM operation.

2. This device has two cellular antennas, and the DIV antenna has only signal receiving function

4.2 Internal Identification of EUT used during the test

EUT		HW		
ID*	IMEI	Version	SW Version	
EUT1	358707100008109	1031	MAGIC01A-S10A_DSB0230_123_USERDEBUG_190925	
EUT2	358707100005436	1031	MAGIC01A-S10A_DSB0230_123_USERDEBUG_190925	
EUT3	358707100004025	1031	MAGIC01A-S10A_DSB0230_123_USERDEBUG_190925	

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT 1 & 2, and conducted power with the EUT 3.

AE ID*	Description	Model	Manufacturer
AE1	Battery	DBV 3000A	Dongguang HongDe Battery Co.,Ltd
AE4	Hoodoot	150C-333E-3.5MM-2	BOLUO COUNTY QUANCHENG
AE4	Headset	8A V3	ELECTRONIC CO.,LTD

4.3 Internal Identification of AE used during the test

*AE ID: is used to identify the test sample in the lab internally.

5 Test Methodology

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Experimental Techniques.

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB 648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB 941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB 941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB 941225 D06 Hot Spot SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters.

KDB 865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

TCB workshop April 2019; RF Exposure Procedures (Tissue Simulating Liquids) ©Copyright. All rights reserved by SAICT

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and *E* is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range				
835	Head	0.90	0.86~0.95	41.5	39.4~43.6				
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0				
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2				
2550	Head	1.91	1.81~2.01	39.1	37.1~41.0				
5250	Head	4.71	4.47~4.95	35.9	34.1~37.7				
5600	Head	5.07	4.82~5.32	35.5	33.8~37.3				
5750	Head	5.22	4.96~5.48	35.4	33.6~37.1				

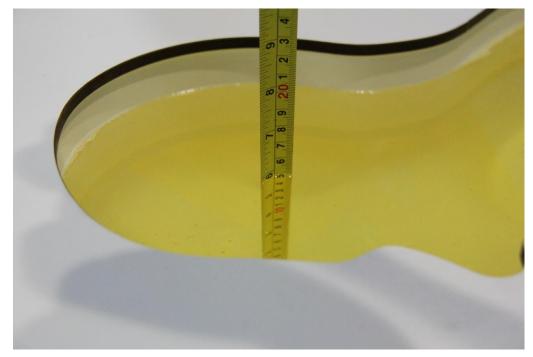
Table 7.1: Targets for tissue simulating liquid


7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Conductivity σ (S/m)	Drift (%)	Permittivity ε	Drift (%)
2019-10-18	Head	835	0.913	1.44	40.78	-1.73
2019-10-20	Head	1900	1.393	-0.50	38.64	-3.40
2019-11-14	Head	2450	1.825	1.39	38.53	-1.71
2019-10-21	Head	2550	1.946	1.88	38.16	-2.40
2019-10-24	Head	5250	4.768	1.23	34.77	-3.15
2019-10-24	Head	5600	4.954	-2.29	35.92	1.18
2019-10-24	Head	5800	5.136	-1.61	36.28	2.49

Note: The liquid temperature is 22.0°C.

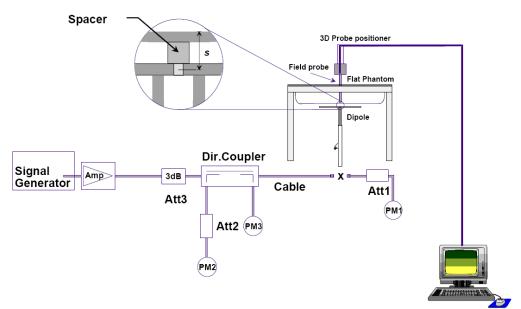


Picture 7-1: Liquid depth in the Head Phantom (835MHz)

Picture 7-2: Liquid depth in the Head Phantom (1900MHz)

Picture 7-3: Liquid depth in the Head Phantom (2450MHz)

Picture 7-4: Liquid depth in the Head Phantom (2550MHz)


Picture 7-5: Liquid depth in the Head Phantom (5GHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Measurement		Target value (W/kg)		Measured v	alue (W/kg)	Deviation (%)			
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g		
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average		
2019-10-18	835 MHz	6.29	9.62	6.44	10.04	2.38	4.37		
2019-10-20	1900 MHz	21.0	40.5	20.52	38.68	-2.29	-4.49		
2019-11-14	2450 MHz	24.1	52.0	24.60	54.00	2.07	3.85		
2019-10-21	2550 MHz	26.5	57.8	27.28	60.40	2.94	4.50		
2019-10-24	5250 MHz	22.3	78.0	22.80	80.60	2.24	3.33		
2019-10-24	5600 MHz	22.7	79.5	22.30	76.90	-1.76	-3.27		
2019-10-24	5750 MHz	22.2	78.4	21.70	75.70	-2.25	-3.44		

Table 8	3.1:	System	Verification	of	Head
		0,000	V CI III Oution	U .	noua

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

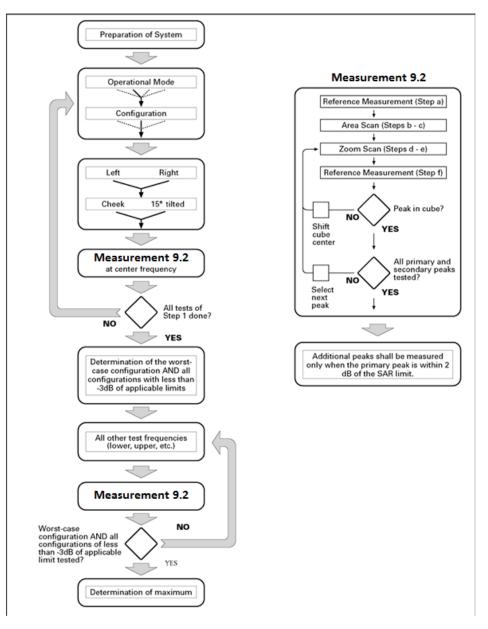
Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of

the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz
Maximum distance from (geometric center of pro			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle f normal at the measurem			30°±1°	20° ± 1°
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spa	itial resolutio	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of measurement plane orientation measurement resolution must dimension of the test device w point on the test device.	h, is smaller than the above, the \leq the corresponding x or y
Maximum zoom scan sp	oatial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^4$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^4$
	uniform g	rid: ∆z _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1^{st} two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	∆z _{Zoom} (n>1): between subsequent points	≤ 1.5·Δ	z _{Zoom} (n-1)
Minimum zoom scan volume	x, y, z	1	\ge 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
2011 for details. * When zoom scan is re	equired and $(\leq 8 \text{ mm}, \leq 1 \text{ mm})$	- the <u>reported</u> SAR from th 7 mm and ≤ 5 mm zoom	ridence to the tissue medium; see ne area scan based <i>1-g SAR estim</i> scan resolution may be applied, :	ation procedures of KDB

9.3 GSM Measurement Procedures for SAR

The following procedures may be considered for each frequency band to determine SAR test reduction for devices operating in GSM/GPRS/EDGE modes to demonstrate RF exposure compliance. GSM voice mode transmits with 1 time slot. GPRS and EDGE may transmit up to 4 time slots in the 8 time-slot frame according to the multislot class implemented in a device.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

9.4 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	$oldsymbol{eta}_{c}$	$oldsymbol{eta}_d$	$oldsymbol{eta}_d$ (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

No.I19N02247-SAR Page 22 of 148

Sub- test	eta_{c}	$oldsymbol{eta}_d$	eta_d	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	eta_{hs}	$eta_{\scriptscriptstyle ec}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

For Release 6 HSPA Data Devices

9.5 Bluetooth & WI-FI Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Anristu MT8820C. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the Anristu MT8820C. It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR

is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

- QPSK with 50% RB allocation The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.7 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

9.8 Proximity Sensor Considerations

This device uses a proximity sensor that share the same metallic electrode as the transmitting antenna to facilitate triggering in typical user interactivity with the device. Due to the operating configurations and exposure conditions required by the device, the proximity sensor is used to indicate when the Mobile Phone is held close to a user's body exposure condition. It utilizes the proximity sensor to reduce the output power in specific wireless and operating modes to ensure SAR compliance for the following scenarios: To reduce the output power of main antennas during body operating configurations. It is also set an output power leveled to the lowest one to make sure that in any case of SAR sensor hardware failure the SAR requirements can still be satisfied.

Sensor triggering distance summary data is included in Appendix J.

10 Conducted Output Power

10.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

GSM	Tune		Conducted Power (dBm)							
850MHz up		Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)						
ODUNITZ	34.5	32.95	33.24	33.20						
GSM	Tune		Conducted Power(dBm)							
1900MHz	up	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)						
	31	29.41	29.60	29.72						

Table 10.1:	The conducted	power measurement	results for GSM
	The conducted	power measurement	

GPRS850 /	Tune	Meas	ured Powe	r (dBm)	adquistion	Avera	ge Power	(dBm)
EGPRS850	up	251	190	128	calculation	251	190	128
1Tx-slots	34.5	32.79	33.04	33.05	-9.03dB	23.76	24.01	24.02
2Tx-slots	31	29.90	30.05	30.20	-6.02dB	23.88	24.03	24.18
3Tx-slots	29	27.96	27.89	28.27	-4.26dB	23.70	23.63	24.01
4Tx-slots	27.5	26.57	26.54	26.71	-3.01dB	23.56	23.53	23.70
EGPRS 850	Tune	Meas	ured Powe	r (dBm)	calculation	Measu	red Power	(dBm)
(8PSK)	up	251	190	128	calculation	251	190	128
1Tx-slots	27.5	26.54	26.72	27.01	-9.03dB	17.51	17.69	17.98
2Tx-slots	26	24.83	25.01	25.58	-6.02dB	18.81	18.99	19.56
3Tx-slots	24	22.86	22.88	23.34	-4.26dB	18.6	18.62	19.08
4Tx-slots	22.5	21.27	21.06	21.43	-3.01dB	18.26	18.05	18.42
GPRS1900 /	Tune	Meas	ured Powe	r (dBm)	aplaulation	Average Power (dBm)		
EGPRS1900	up	810	661	512	calculation	810	661	512
1Tx-slots	30.5	29.27	29.44	29.62	-9.03dB	20.24	20.41	20.59
2Tx-slots	28	26.67	26.83	27.13	-6.02dB	20.65	20.81	21.11
3Tx-slots	26	24.42	24.65	24.86	-4.26dB	20.16	20.39	20.60
4Tx-slots	24.5	23.15	23.41	23.60	-3.01dB	20.14	20.40	20.59
EGPRS 1900	Tune	Meas	ured Powe	r (dBm)	aplaulation	Measu	ired Power	(dBm)
(8PSK)	up	810	661	512	calculation	810	661	512
1Tx-slots	26.5	25.30	25.49	25.74	-9.03dB	16.27	16.46	16.71
2Tx-slots	25	23.78	24.01	24.37	-6.02dB	17.76	17.99	18.35
3Tx-slots	23	21.64	21.80	22.13	-4.26dB	17.38	17.54	17.87
4Tx-slots	21	19.73	19.78	20.08	-3.01dB	16.72	16.77	17.07

Table 10.2: The conducted power measurement results for GPRS and EGPRS

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for 850MHz and 1900MHz.

10.2 WCDMA Measurement result

	band	FDD Band 2 result					
Item		-	9538	9400	9262		
	ARFCN	Tune up	(1907.6MHz)	(1880MHz)	(1852.4MHz)		
WCDMA	١	24	23.1	23.2	23.4		
	1	22.5	21.5	21.6	21.6		
	2	22	21.1	21.3	20.8		
HSUPA	3	21.5	20.7	20.8	20.8		
	4	22.5	21.6	21.1	21.6		
	5	23	22.1	22.2	22.4		
	1	23	22.1	22.1	22.4		
HSDPA	2	23	22.2	22.4	22.3		
NOUPA	3	23	21.6	21.8	21.8		
-	4	23	21.6	21.6	21.8		
	1	23	22.0	22.1	22.2		
	2	23	22.2	22.2	22.1		
DC-HSDPA	3	23	21.5	21.6	21.7		
	4	23	21.6	21.7	21.6		
	band	FDD Band 5 result					
ltem		Tung un	4233	4182	4132		
	ARFCN	Tune up	(846.6MHz)	(836.4MHz)	(826.4MHz)		
WCDMA	١	24	23.2	23.4	23.3		
	1	23	21.6	21.9	22.0		
	2	22	20.9	21.5	20.9		
HSUPA	3	22	21.2	21.3	21.2		
	4	22.5	21.8	21.9	21.9		
	5	23.5	22.3	22.6	22.4		
	1	23	22.4	22.5	22.4		
HSDPA	2	23	22.4	22.6	22.4		
NOUFA	3	23	21.6	21.9	21.8		
	4	23	21.9	21.9	21.8		
	1	23	22.4	22.4	22.3		
	2	23	22.4	22.5	22.3		
DC-HSDPA	3	23	21.5	21.7	21.6		
-	4	23	21.8	21.8	21.6		

Table 10.3: The conducted Power for WCDMA

Sensor ON

	band		FDD E	Band 2 result	
Item	ARFCN	Tung un	9538	9400	9262
	ARFUN	Tune up	(1907.6MHz)	(1880MHz)	(1852.4MHz)
WCDMA	١	21.5	21.3	20.5	20.4
	1	18	16.4	17.5	16.9
	2	18	16.6	16.9	17.2
HSUPA	3	17	15.7	15.8	16.3
	4	17.5	16.7	16.2	16.5
	5	18.5	17.1	17.3	17.6
	1	19.7	18.3	17.8	19.7
HSDPA	2	19.7	17.7	17.9	19.6
NSUFA	3	19	17.0	17.9	18.8
	4	19	17.0	17.2	17.4
	1	19.7	18.2	17.9	19.5
DC-HSDPA	2	19.7	17.8	18.0	19.4
DC-NSDPA	3	19	17.2	17.9	18.6
	4	19	17.1	17.2	17.3

10.3 LTE Measurement result

Table 10.4: The conducted Power for LTE

Full Power

	LTE-FDD E	Band 7		Actual	output Power	(dBm)			
Band-width	RB allocation RB offset Modulation High Middle Low						Tune up		
				2567.4MHz	2535MHz	2502.5MHz			
		Lliah	QPSK	21.97	22.20	22.08	23		
		High	16QAM	20.82	20.74	20.78	22		
	100	Middle	QPSK	22.12	22.23	22.09	23		
	1RB	Middle	16QAM	20.86	21.03	21.39	22		
		Low	QPSK	22.03	22.10	22.02	23		
		Low	16QAM	20.66	20.53	20.86	22		
5 MHz		Lliab	QPSK	21.09	21.28	21.30	22		
		High	16QAM	19.97	20.15	20.32	21		
	1000	Middle	QPSK	21.09	21.24	21.15	22		
	12RB 	Middle	16QAM	20.01	20.31	20.18	21		
		Low	QPSK	21.11	21.22	21.17	22		
				LOW	16QAM	20.03	20.36	20.23	21
		/	QPSK	21.10	21.26	21.28	22		
		/	16QAM	20.24	20.31	20.33	21		
				2565MHz	2535MHz	2505MHz	/		
		High	QPSK	22.05	22.47	22.15	23		
			riigii	16QAM	20.87	21.21	20.84	22	
	1RB	Middle	QPSK	22.14	22.23	22.19	23		
	IND	IVIIGUIE	16QAM	21.08	21.15	21.00	22		
		Low	QPSK	22.16	22.13	22.11	23		
		LOW	16QAM	21.08	20.94	20.79	22		
10 MHz		High	QPSK	21.16	21.27	21.13	22		
		riigii	16QAM	20.24	20.39	20.18	21		
	25RB	Middle	QPSK	21.20	21.24	21.26	22		
	ZJND		16QAM	20.29	20.40	20.34	21		
		Low	QPSK	21.16	21.37	21.17	22		
		LUW	16QAM	20.26	20.43	20.18	21		
	50RB	/	QPSK	21.10	21.39	21.21	22		
	50110	/	16QAM	20.16	20.42	20.27	21		

Full Power

	LTE-FDD E	Band 7		Actual	output Power	(dBm)	
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
				2562.5MHz	2535MHz	2507.5MHz	
		Lliab	QPSK	21.99	22.39	22.38	23
		High	16QAM	20.35	20.97	21.28	22
	1RB	Middle	QPSK	22.43	22.05	22.32	23
		Middle	16QAM	20.74	20.89	21.33	22
		Low	QPSK	21.97	22.18	22.16	23
		Low	16QAM	20.79	21.11	21.04	22
15 MHz		Lliab	QPSK	21.23	21.42	21.18	22
		High	16QAM	20.20	20.40	20.22	21
	36RB	Middle	QPSK	21.20	21.22	21.29	22
	JUND	Midule	16QAM	20.25	20.28	20.33	21
		Low	QPSK	21.17	21.24	21.32	22
		LOW	16QAM	20.23	20.29	20.28	21
	75RB	/	QPSK	21.16	21.40	21.32	22
		/	16QAM	20.21	20.46	20.36	21
				2560MHz	2535MHz	2510MHz	/
		High	QPSK	22.21	22.42	22.28	23
		- ingri	16QAM	20.78	20.88	21.58	22
	1RB	Middle	QPSK	22.10	22.50	22.41	23
	IND	Midule	16QAM	20.96	20.65	20.96	22
		Low	QPSK	22.19	22.25	22.01	23
		LOW	16QAM	20.70	20.39	20.34	22
20 MHz		High	QPSK	21.26	21.37	21.41	22
		riigii	16QAM	20.32	20.49	20.46	21
	50RB	Middle	QPSK	21.24	21.37	21.27	22
	JUND	INIGUIE	16QAM	20.31	20.47	20.33	21
		Low	QPSK	21.14	21.31	21.18	22
		LUW	16QAM	20.20	20.39	20.35	21
	100RB	/	QPSK	21.15	21.33	21.26	22
	TOURD	/	16QAM	20.14	20.40	20.30	21

Sensor ON

	LTE-FDD E	Band 7		Actual	output Power	(dBm)		
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up	
				2567.4MHz	2535MHz	2502.5MHz		
		High	QPSK	20.93	21.27	21.10	21.5	
		High	16QAM	21.02	20.62	20.71	21.5	
	1RB	Middle	QPSK	21.02	21.12	21.07	21.5	
		Middle	16QAM	20.81	20.87	21.13	21.5	
		Low	QPSK	20.84	21.11	20.87	21.5	
		Low	16QAM	20.67	20.65	20.76	21.5	
5 MHz		Lliab	QPSK	20.95	21.13	21.19	21.5	
		High	16QAM	20.13	20.17	20.26	21.5	
	12RB	Middle	QPSK	21.04	21.16	21.08	21.5	
	IZRD	Middle	16QAM	20.04	20.14	20.09	21.5	
		Low	QPSK	21.04	21.04	21.00	21.5	
		LOW	16QAM	20.25	20.06	19.99	21.5	
	25RB	/	QPSK	21.03	21.18	21.10	21.5	
	ZJKD	/	16QAM	19.98	20.23	20.09	21.5	
				2565MHz	2535MHz	2505MHz	/	
			High	QPSK	21.00	21.27	21.14	21.5
		riigii	16QAM	20.79	20.93	20.85	21.5	
	1RB	Middle	QPSK	20.99	21.27	21.20	21.5	
	IND	Midule	16QAM	21.02	21.15	21.48	21.5	
		Low	QPSK	20.94	21.03	21.01	21.5	
		LOW	16QAM	20.91	20.84	20.96	21.5	
10 MHz		High	QPSK	21.11	21.18	21.03	21.5	
		підп	16QAM	20.08	20.21	20.13	21.5	
	25RB	Middle	QPSK	21.11	21.18	21.18	21.5	
	ZJKD	widule	16QAM	20.20	20.32	20.32	21.5	
		Low	QPSK	21.17	21.23	21.09	21.5	
		LOW	16QAM	20.17	20.39	20.13	21.5	
	50RB	/	QPSK	21.08	21.29	21.13	21.5	
	JUND	/	16QAM	20.03	20.34	20.18	21.5	

Sensor ON

	LTE-FDD E	Band 7		Actual	output Power	(dBm)		
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up	
				2562.5MHz	2535MHz	2507.5MHz		
		High	QPSK	20.95	21.40	21.26	21.5	
		High	16QAM	21.12	20.97	20.80	21.5	
	1RB	Middle	QPSK	21.15	21.21	21.27	21.5	
		Middle	16QAM	20.87	20.95	20.73	21.5	
		Low	QPSK	21.19	21.20	21.09	21.5	
		Low	16QAM	20.68	20.85	20.94	21.5	
15 MHz		Lliab	QPSK	21.07	21.30	21.09	21.5	
		High	16QAM	20.21	20.39	20.10	21.5	
	2600	Middle	QPSK	21.16	21.10	21.12	21.5	
	36RB	Middle	16QAM	20.23	20.22	20.24	21.5	
		Low	QPSK	21.18	21.23	21.16	21.5	
		LOW	16QAM	20.14	20.25	20.18	21.5	
	75RB	/	QPSK	21.00	21.35	21.23	21.5	
	756	/	16QAM	20.08	20.37	20.14	21.5	
				2560MHz	2535MHz	2510MHz	/	
			High	QPSK	21.05	21.17	20.99	21.5
		riigii	16QAM	20.72	20.97	21.27	21.5	
	1RB	Middle	QPSK	21.09	21.29	21.07	21.5	
	IND	Middle	16QAM	21.09	20.90	20.91	21.5	
		Low	QPSK	20.84	20.80	20.94	21.5	
		LOW	16QAM	20.92	20.74	20.81	21.5	
20 MHz		High	QPSK	21.09	21.23	21.24	21.5	
		підп	16QAM	20.29	20.36	20.25	21.5	
	50RB	Middle	QPSK	21.11	21.25	21.14	21.5	
	JURD	widule	16QAM	20.32	20.28	20.16	21.5	
		Low	QPSK	21.09	21.18	21.07	21.5	
		LOW	16QAM	20.29	20.30	20.10	21.5	
	100RB	/	QPSK	21.14	21.25	21.11	21.5	
	IUURD	/	16QAM	20.23	20.23	20.12	21.5	

Г

10.4 Wi-Fi and BT Measurement result

	Table '	10.5: The	e conducted Power measurement results for BT
ьт			

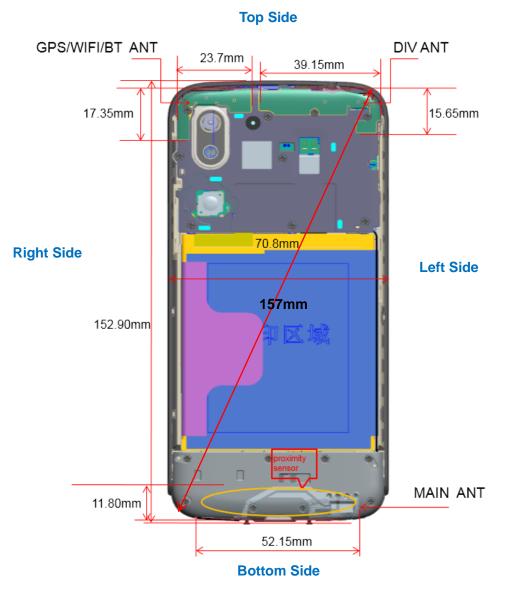
BT	Tuno un	Averaged Power (dBm)				
Mode	Tune up	Ch.0 (2402 MHz)	Ch39 (2441 MHz)	Ch78 (2480 MHz)		
GFSK	12	11.37	10.49	10.74		
EDR2M-4_DQPSK	12	11.44	10.52	10.82		
EDR3M-8DPSK	12	11.69	10.69	11.11		
/	Tune up	Ch0 (2402MHz)	Ch19 (2440MHz)	Ch39 (2480MHz)		
BLE	2	1.79	1.30	1.02		

Table 10.6: The conducted Power measurement results for 2.4G WIFI

WiFi 2.4GHz	Tuno un	Averaged Power (dBm) Duty Cycle: 100%				
Mode	Tune up	Ch.1(2412 MHz)	Ch.6(2437Mhz)	Ch.11(2462MHz)		
802.11b	16.5	15.99	15.67	15.56		
802.11g	15.5	14.51	14.18	14.03		
802.11n(20MHz)	15.5	14.55	14.27	14.07		

	Averaged Po	wer (dBm) Du	ity Cycle: 100%	
Mode	802.11a	802.11n -20MHz	Mode	802.11n -40MHz
Channel	6Mbps	MCS0	Channel	MCS0
		<u-nii-1></u-nii-1>		
Tune up	14	14	/	13.5
36(5180MHz)	13.50	13.29	38(5190MHz)	12.30
40(5200MHz)	13.44	13.16	46(5230MHz)	12.35
44(5220MHz)	13.42	13.24	/	/
44(5240MHz)	13.41	13.22	/	/
		<u-nii-2a></u-nii-2a>		
Tune up	14	14	/	13.5
52(5260MHz)	13.44	13.32	54(5270MHz)	12.28
56(5280MHz)	13.33	13.24	62(5310MHz)	12.14
60(5300MHz)	13.29	13.21	/	/
64(5320MHz)	13.25	13.15	/	/
		<u-nii-2c></u-nii-2c>		
Tune up	14	14	/	13.5
100(5500MHz)	13.45	13.37	102(5510MHz)	12.21
116(5580MHz)	13.60	13.47	110(5550MHz)	12.23
124(5620MHz)	13.63	13.45	126(5630MHz)	12.26
132(5660MHz)	13.69	13.57	134(5670MHz)	12.25
140(5700MHz)	13.66	13.53	142(5710MHz)	12.34
144(5720MHz)	13.70	13.58	/	/
		<u-nii-3></u-nii-3>		
Tune up	14.5	14.5	/	13.5
149(5745MHz)	13.83	13.76	151(5755MHz)	12.78
157(5785MHz)	14.03	13.97	159(5795MHz)	12.83
165(5825MHz)	14.15	14.11	/	/

Table 10.7: The conducted Power measurement results for 5G WIFI



11 Simultaneous TX SAR Considerations

11.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

11.2 Transmit Antenna Separation Distances

Picture 11.1 Antenna Locations (Back View)

11.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR, the edges with less than 25mm distance to the antennas need to be tested for SAR.

SAR measurement positions								
Mode Front Rear Left edge Right edge Top edge Bottom edge								
Main antenna	Yes	Yes	Yes	Yes	No	Yes		
WIFI antenna Yes Yes No Yes Yes No								

11.4 Standalone SAR Test Exclusion Considerations

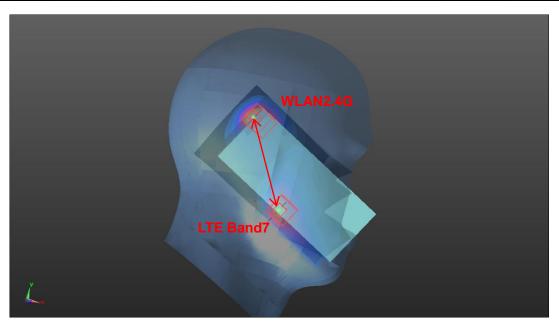
Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

			SAR test	RF outpu	ut power	SAR test
Band/Mode	f(GHz)	Position	exclusion threshold (mW)	dBm	mW	exclusion
Bluetooth	2 4 4 4	Head	9.60	12	15.85	No
Didelooli	2.441	Body	19.20	12	15.85	Yes
2.4GHz WLAN	2.45	Head	9.58	16.5	44.67	No
		Body	19.17	16.5	44.67	No
	5.2	Head	6.58	14	25.12	No
	5.2	Body	13.16	14	25.12	No
	5.3	Head	6.52	14	25.12	No
	5.5	Body	13.03	14	25.12	No
5GHz WLAN	FC	Head	6.34	14	25.12	No
	5.6	Body	12.68	14	25.12	No
	ΕQ	Head	6.23	14.5	28.18	No
	5.8	Body	12.46	14.5	28.18	No

Table 11.1: Standalone SAR test exclusion considerations


12 Evaluation of Simultaneous

/	Position	Main antenna	Wi-Fi	Sum	SPLSR
Highest reported SAR value for Head	Left Cheek	0.79	0.87	1.66	Yes
Highest reported SAR value for Body	Front	1.15	0.14	1.29	/

Table 12.1: The sum of reported SAR values for main antenna and Wi-Fi

According to the KDB 447498 D01, when the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The ratio is determined by (SAR1 + SAR2)^{1.5}/Ri, rounded to two decimal digits, and must be \leq 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Band	Position	SAR	Gap	SAR peak location (m)			3D distance	Pair SAR	SPLSR	Simultaneous SAR
		(W/kg)	(cm)	Х	Y	Z	(mm)	sum (W/kg)		
LTE Band 7	Left Cheek	1.11	0	0.0638	0.245	-0.173	84.9	2.36	0.04	Not required
WLAN 2.4G		1.25	0	0.0355	0.325	-0.174				

/	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Left Touch	0.79	0.08	0.87
Highest reported SAR value for Body	Front	1.15	0.33	1.48

Table 12.2: The sum of reported SAR values for main antenna and Bluetooth

BT* - Estimated SAR for Bluetooth (see the table 13.3)

Table 12.3: Estimated SAR for Bluetooth

Position	f (CH-)	Distance (mm)	Upper limi	t of power *	Estimated _{1g}
Position	f (GHz)	Distance (mm)	dBm	mW	(W/kg)
Body	2.441	10	12	15.85	0.33

* - Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

Where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is 1.66 W/kg and the SPLSR \leq 0.04.

13 Summary of Test Results

According to the client's decision rule in the test registration form, which is "based on the measurement results as the basis of the conformity statement", the test conclusion of this report meets the limit requirements.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR × $10^{(P_{Target}-P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

 $P_{Measured}$ is the measured power in chapter 10.

Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS for GSM850/1900	1:4
WCDMA8501900	1:1
LTE Band 7	1:1

Testing Environment

Temperature:	18°C~25°C
Relative humidity:	30%~70%
Ground system resistance:	<4Ω
Ambient noise & Reflection:	< 0.012 W/kg

13.1 SAR results

	Table 13.1: SAR Values (GSM 850 - Head)											
	Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C											
Frequency		Test	Test	Figure		Max.	Measured	Reported	Power			
MHz	Ch.	Mode	Position	No.	Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)			
836.6	190	Speech	Left Touch	1	33.24	34.5	0.120	0.16	0.04			
836.6	190	Speech	Left Tilt	/	33.24	34.5	0.080	0.11	0.01			
836.6	190	Speech	Right Touch	/	33.24	34.5	0.112	0.15	0.08			
836.6	190	Speech	Right Tilt	/	33.24	34.5	0.059	0.08	0.01			

Table 12 1: SAR Values (CSM 950 Head)

Table 13.2: SAR Values (GSM 850 -Body)

		Am	bient Tempera	ature: 22.5	5°C Liqu	uid Tempe	rature: 22.0°	С			
Freque MHz	ency Ch.	Test Mode	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)		
	Hotspot / Body Worn Test Data (10mm)										
836.6	190	GPRS	Front	/	30.05	31	0.094	0.12	0.08		
836.6	190	GPRS	Rear	2	30.05	31	0.158	0.20	0.01		
836.6	190	GPRS	Left	/	30.05	31	0.033	0.04	0.06		
836.6	190	GPRS	Right	/	30.05	31	0.058	0.07	0.04		
836.6	190	GPRS	Bottom	/	30.05	31	0.021	0.03	0.03		

	Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C												
Frequency		Test	Test	Figure	Conducted	Max.	Measured	Reported	Power				
MHz	Ch.	Mode	Position	No.	Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)				
1880	661	Speech	Left Touch	3	29.60	31	0.195	0.27	0.06				
1880	661	Speech	Left Tilt	/	29.60	31	0.124	0.17	0.12				
1880	661	Speech	Right Touch	/	29.60	31	0.140	0.19	0.06				
1880	661	Speech	Right Tilt	/	29.60	31	0.098	0.13	0.01				

Table 13.3: SAR Values (GSM 1900 - Head)

Table 13.4: SAR Values (GSM 1900 - Body)

		Amt	pient Tempera	ture: 22.4°	C Liqui	d Tempera	ture: 22.0°C				
Frequency		Test	Test	Figure	Conducted	Max.	Measured	Reported	Power		
MHz	Ch.	Mode	Position	No.	Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)		
	Hotspot / Body Worn Test Data (10mm)										
1880	661	GPRS	Front	/	26.83	28	0.463	0.61	0.03		
1880	661	GPRS	Rear	4	26.83	28	0.520	0.68	0.02		
1880	661	GPRS	Left	/	26.83	28	0.251	0.33	0.01		
1880	661	GPRS	Right	/	26.83	28	0.163	0.21	0.03		
1880	661	GPRS	Bottom	/	26.83	28	0.204	0.27	0.08		

	Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C												
Frequency		Test	Test	Figure	Conducted	Max.	Measured	Reported	Power				
MHz	Ch.	Mode	Position	No.	Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)				
836.4	4182	RMC	Left Touch	/	23.40	24	0.150	0.17	0.01				
836.4	4182	RMC	Left Tilt	/	23.40	24	0.107	0.12	0.02				
836.4	4182	RMC	Right Touch	5	23.40	24	0.162	0.19	-0.12				
836.4	4182	RMC	Right Tilt	/	23.40	24	0.157	0.18	-0.10				

Table 13.5: SAR Values (WCDMA 850 - Head)

		Am	bient Tempera	ature: 22.8	B°C Liqι	uid Tempe	rature: 22.2°	С			
Frequ MHz	iency Ch.	Test Mode	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)		
	Hotspot / Body Worn Test Data (10mm)										
836.4	4182	RMC	Front	/	23.40	24	0.119	0.14	0.05		
836.4	4182	RMC	Rear	6	23.40	24	0.219	0.25	0.03		
836.4	4182	RMC	Left	/	23.40	24	0.063	0.07	0.09		
836.4	4182	RMC	Right	/	23.40	24	0.156	0.18	0.05		
836.4	4182	RMC	Bottom	/	23.40	24	0.034	0.04	0.10		

	Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C											
Frequency		- Test Test		Figure	Conducted	Max.	Measured	Reported	Power			
MHz	Ch.	Mode	Position	No.	Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)			
1880	9400	RMC	Left Touch	7	23.20	24	0.415	0.50	-0.05			
1880	9400	RMC	Left Tilt	/	23.20	24	0.223	0.27	0.11			
1880	9400	RMC	Right Touch	/	23.20	24	0.304	0.37	-0.04			
1880	9400	RMC	Right Tilt	/	23.20	24	0.200	0.24	0.07			

Table 13.7: SAR Values (WCDMA1900 - Head)

Table 13.8: SAR Values (WCDMA1900 - Body)

		Am	bient Temperature	: 22.4°C	Liquid	Temperatu	re: 22.0°C					
Freque MHz	Frequency Tes MHz Ch. Mod		Test Position	Figur e No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)			
	Hotspot / Body Worn Test Data (10mm)											
1880	9400	RMC	Front	/	20.50	21.5	0.606	0.76	0.09			
1880	9400	RMC	Rear	8	20.50	21.5	0.812	1.02	0.01			
1880	9400	RMC	Left	/	23.20	24	0.429	0.52	0.15			
1880	9400	RMC	Right	/	23.20	24	0.263	0.32	0.04			
1880	9400	RMC	Bottom	/	20.50	21.5	0.400	0.50	0.09			
1907.6	9538	RMC	Rear	/	21.30	21.5	0.804	0.84	0.06			
1852.4	9262	RMC	Rear	/	20.40	21.5	0.651	0.84	0.06			
1880	9400	RMC	Front-17mm	/	23.20	24	0.326	0.39	-0.07			
1880	9400	RMC	Rear-25mm	/	23.20	24	0.210	0.25	0.07			
1880	9400	RMC	Bottom-27mm	/	23.20	24	0.128	0.15	-0.04			

-												
		Ambie	ent Temperature	e: 22.2°C	Liquid ⁻	Temperature	e: 21.7°C					
Freq	uency		Test	Figure	Conducted	Max.	Measured	Reported	Power			
MHz	Ch.	Test Mode	Position	No.	Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)			
2535	21100	1RB_Mid	Left Touch	9	22.50	23	0.708	0.79	-0.05			
2510	20850	50RB_High	Left Touch	/	21.41	22	0.561	0.64	0.07			
2535	21100	1RB_Mid	Left Tilt	/	22.50	23	0.241	0.27	-0.04			
2510	20850	50RB_High	Left Tilt	/	21.41	22	0.205	0.23	0.07			
2535	21100	1RB_Mid	Right Touch	/	22.50	23	0.362	0.41	0.03			
2510	20850	50RB_High	Right Touch	/	21.41	22	0.269	0.31	0.03			
2535	21100	1RB_Mid	Right Tilt	/	22.50	23	0.274	0.31	0.05			
2510	20850	50RB_High	Right Tilt	/	21.41	22	0.230	0.26	0.08			

Table 13.9: SAR Values (LTE Band 7 - Head)

		Amb	ient Temperature:		•	emperatu			
Freq MHz	uency Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)
			Hotspot /	Body Wo	orn Test Data	(10mm)			
2535	21100	1RB_Mid	Front	/	21.29	21.5	0.979	1.03	-0.11
2535	21100	50RB_Mid	Front	/	21.25	21.5	1.030	1.09	0.06
2535	21100	1RB_Mid	Rear	/	21.29	21.5	0.642	0.67	0.03
2535	21100	50RB_Mid	Rear	/	21.25	21.5	0.636	0.67	0.08
2535	21100	1RB_Mid	Left	/	22.50	23	0.588	0.66	-0.15
2535	21100	50RB_Mid	Left	/	21.41	22	0.464	0.53	0.14
2535	21100	1RB_Mid	Right	/	22.50	23	0.032	0.04	0.04
2535	21100	50RB_Mid	Right	/	21.41	22	0.030	0.03	0.09
2535	21100	1RB_Mid	Bottom	/	21.29	21.5	0.641	0.67	-0.07
2535	21100	50RB_Mid	Bottom	/	21.25	21.5	0.429	0.45	0.05
2560	21350	1RB_Mid	Front	/	21.09	21.5	0.968	1.06	-0.05
2510	20850	1RB_Mid	Front	10	21.07	21.5	1.040	1.15	-0.02
2560	21350	50RB_Mid	Front	/	21.11	21.5	0.992	1.09	0.06
2510	20850	50RB_High	Front	/	21.24	21.5	1.010	1.07	0.04
2535	21100	100RB	Front	/	21.25	21.5	1.010	1.07	0.11
2535	21100	1RB_Mid	Front-17mm	/	22.50	23	0.498	0.56	0.03
2510	20850	50RB_High	Front-17mm	/	21.41	22	0.397	0.45	0.08
2535	21100	1RB_Mid	Rear-25mm	/	22.50	23	0.123	0.14	0.08
2510	20850	50RB_High	Rear-25mm	/	21.41	22	0.094	0.11	0.07
2535	21100	1RB_Mid	Bottom-27mm	/	22.50	23	0.109	0.12	0.09
2510	20850	50RB_High	Bottom-27mm	/	21.41	22	0.084	0.10	0.15

Table 13.10: SAR Values (LTE Band 7 - Body)

Table 13.11: SAR Values (BT - Head)

		Ambie	ent Temperature	e: 22.2°C	Liquid T	emperature	: 21.7°C		
Frequency			Test Figure		Conducted	Max.	Measured	Reported	Power
MHz	Ch.	Test Mode	Position No.		Power (dBm) (dBm)		SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
2402	0	8DPSK	Left Touch	11	11.69	12	0.070	0.08	-0.08
2402	0	8DPSK	Left Tilt	/	11.69	12	0.026	0.03	0.06
2402	0	8DPSK	Right Touch	/	11.69	12	<0.01	<0.01	0.06
2402	0	8DPSK	Right Tilt	/	11.69	12	<0.01	<0.01	0.00

13.2 WLAN Evaluation for 2.4G

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> position procedure.

		Amb	pient Temperat	ure: 22.6°	C Liqu	id Temper	ature: 22.0°C)	
Frequency		Toot	Test	Figure	Conducte	Max.	Measured	Reported	Power
MHz			Position No.		d Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
2412	1	802.11 b	Left Touch	12	15.99	16.5	0.751	0.84	0.01
2412	1	802.11 b	Left Tilt	/	15.99	16.5	0.628	0.71	0.09
2412	1	802.11 b	Right Touch	/	15.99	16.5	0.343	0.39	-0.04
2412	1	802.11 b	Right Tilt	/	15.99	16.5	0.239	0.27	0.02
2437	6	802.11 b	Left Touch	/	15.67	16.5	0.715	0.87	0.11

Table 13.12: SAR Values (WLAN 2.4G - Head)

Note1: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Freque	ency	Test Position	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.		factor	factor	(1g)(W/kg)	(1g)(W/kg)
2437	6	Left Touch	100%	100%	0.87	0.87

Table 13.13: SAR Values (WLAN 2.4G - Head) – Scaled Reported SAR

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

		Amb	ient Temper	ature: 22.	6°C Lic	uid Tempe	erature: 22.0	°C			
Frequ MHz	ency Ch.	Test Mode	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)		
	Test Data (10mm)										
2412	1	802.11 b	Front	/	15.99	16.5	0.125	0.14	0.04		
2412 1 802.11 b Rear 13 15.99 16.5 0.198 0.2							0.22	-0.14			
2412	1	802.11 b	Right	/	15.99	16.5	0.133	0.15	0.04		
2412	1	802.11 b	Тор	/	15.99	16.5	0.082	0.09	0.05		

Table 13.14: SAR Values (WLAN 2.4G - Body)

Note1: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

	Ambient Temperature: 22.6°C Liquid Temperature: 22.0°C											
Frequ	ency	Test	Actual duty	maximum duty Reported SAR		Scaled reported SAR						
MHz	MHz Ch. Posit		factor	factor	(1g)(W/kg)	(1g)(W/kg)						
2412	2412 1 Rear		100%	100%	0.22	0.22						

Table 13.15: SAR Values (WLAN 2.4G - Body) – Scaled Reported SAR

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

13.3 WLAN Evaluation for 5G

	Table 13:16: SAR Values (WLAN 5G - Head)											
		Amb	pient Temperat	ure: 22.6°	C Liqu	id Temper	ature: 22.0°C)				
Frequ MHz	iency Ch.	Test Mode	Test Position	Figure No.	Conducte d Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)			
	U-NII-2A											
5260	52	802.11 a	Left Touch	/	13.44	14	0.571	0.65	0.08			
5260	52	802.11 a	Left Tilt	/	13.44	14	0.510	0.58	0.06			
5260	52	802.11 a	Right Touch	/	13.44	14	0.543	0.62	-0.12			
5260	52	802.11 a	Right Tilt	14	13.44	14	0.829	0.94	-0.13			
5280	56	802.11 a	Right Tilt	/	13.33	14	0.551	0.64	-0.13			
				l	J-NII-2C							
5720	144	802.11 a	Left Touch	/	13.70	14	0.351	0.38	0.07			
5720	144	802.11 a	Left Tilt	/	13.70	14	0.321	0.34	0.08			
5720	144	802.11 a	Right Touch	/	13.70	14	0.425	0.46	0.49			
5720	144	802.11 a	Right Tilt	/	13.70	14	0.342	0.37	0.01			
					U-NII-3							
5825	165	802.11 a	Left Touch	/	14.15	14.5	0.288	0.31	0.07			
5825	165	802.11 a	Left Tilt	/	14.15	14.5	0.261	0.28	0.04			
5825	165	802.11 a	Right Touch	/	14.15	14.5	0.293	0.32	0.09			
5825	165	802.11 a	Right Tilt	/	14.15	14.5	0.231	0.25	0.07			

Table 13.16: SAR Values (WLAN 5G - Head)

Note1: U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is \leq 1.2W/kg, SAR is not required for U-NII-1 band.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Frequ	ency	Test Position	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.		factor	factor	(1g)(W/kg)	(1g)(W/kg)
5260	52	Right Tilt	100%	100%	0.94	0.94

Table 13.17: SAR Values (WLAN 5G - Head) – Scaled Reported SAR

	Table 13.18: SAR Values (WLAN 5G - Body)											
		Ambie	nt Temper	ature: 22.	6°C Lic	juid Tempe	erature: 22.0	°C				
Frequ MHz	uency Ch.	Test Mode	Test Positio n	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)			
				Tes	st Data (10m	n)						
	U-NII-2A											
5260	52	802.11 a	Front	/	13.44	14	0.118	0.13	0.09			
5260	52	802.11 a	Rear	/	13.44	14	0.173	0.20	0.05			
5260	52	802.11 a	Right	/	13.44	14	0.031	0.04	0.03			
5260	52	802.11 a	Тор	15	13.44	14	0.192	0.22	0.05			
					U-NII-2C							
5720	144	802.11 a	Front	/	13.70	14	0.085	0.09	0.01			
5720	144	802.11 a	Rear	/	13.70	14	0.097	0.10	0.05			
5720	144	802.11 a	Right	/	13.70	14	<0.01	<0.01	0.00			
5720	144	802.11 a	Тор	/	13.70	14	0.078	0.08	0.06			
					U-NII-3							
5825	165	802.11 a	Front	/	14.15	14.5	0.027	0.03	0.01			
5825	165	802.11 a	Rear	/	14.15	14.5	0.075	0.08	0.09			
5825	165	802.11 a	Right	/	14.15	14.5	<0.01	<0.01	0.00			
5825	165	802.11 a	Тор	/	14.15	14.5	0.074	0.08	0.03			
				,		11.0	0.07 1	0.00	0.00			

Table 13.18: SAR Values (WLAN 5G - Body)

Note1: U-NII-1 and U-NII-2A bands have the same specified maximum output and tolerance; SAR is measured for U-NII-2A band first. Adjusted SAR of U-NII-2A band is \leq 1.2W/kg, SAR is not required for U-NII-1 band.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

		Ambient Ter	mperature: 22.6	S°C Liquid	d Temperature: 22	.0°C
Freque	ency	Test	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.	Position	factor	factor	(1g)(W/kg)	(1g)(W/kg)
5260	5260 52 Top		100%	100%	0.22	0.22

Table 13.19: SAR Values (WLAN 5G - Body) – Scaled Reported SAR

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

14 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 14.1: SAR measurement variability for Body – wCDMA1900							
Frequ	Frequency Test Position		Original	1 st Repeated	Ratio	2 nd Repeated	
MHz	Ch.	Test Position	SAR (W/kg)	SAR (W/kg)	Ralio	SAR (W/kg)	
1880	9400	Rear	0.812	0.805	1.01	/	

Table 14.1. SAD Measurement Variability for Pady WCDMA1000

Table 14.2: SAR Measurement Variability for Body – LTE Band 7							
Frequency	Test Position	Original	1 st Repeated	Ratio	2 nd Repeated		
MHz Ch	Test Position	SAR (M/ka)	SAR (M/ka)	Ralio	SAR (M/ka)		

Frequency		Test Position	Original 1 st Repeated		Ratio	2 nd Repeated	
MHz	Ch.	Test Fusition	SAR (W/kg)	SAR (W/kg)	Nalio	SAR (W/kg)	
2510	20850	Front	1.04	0.997	1.04	/	

Frequency		Test Position	Original	1 st Repeated	Ratio	2 nd Repeated	
MHz	Ch.	Test Position	SAR (W/kg)	SAR (W/kg)	Ralio	SAR (W/kg)	
5260	52	Left Cheek	0.829	0.816	1.02	/	

15 Measurement Uncertainty

15.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

	. Error Description			Probably		(0))	(0))	Std.	Std.	Degree
No.		Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Unc.	Unc.	of
			value	Distribution		1g	10g	(1g)	(10g)	freedom
	Measurement system									
1	Probe calibration	В	12	Ν	2	1	1	6.0	6.0	∞
2	Axial isotropy	В	4.7	R	$\sqrt{3}$	√0.5	√0.5	4.3	4.3	∞
3	Hemispherical isotropy	В	9.6	R	$\sqrt{3}$	1	1	4.8	4.8	∞
4	Boundary effect	В	1.1	R	$\sqrt{3}$	1	1	0.6	0.6	∞
5	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
6	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
7	Modulation response	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
8	Readout electronics	В	1.0	N	1	1	1	1.0	1.0	∞
9	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
10	Integration time	В	1.7	R	$\sqrt{3}$	1	1	1.0	1.0	∞
11	RF ambient conditions-noise	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
12	RF ambient conditions-reflection	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Probe positioned mech. restrictions	В	0.35	R	$\sqrt{3}$	1	1	0.2	0.2	∞
14	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
15	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related						
16	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	5
17	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
18	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	om and set-up						
19	Phantom uncertainty	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
20	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
21	Liquid conductivity (meas.)	А	1.3	Ν	1	0.64	0.43	0.83	0.56	9
22	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
23	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	0.96	0.78	9
Combined standard uncertainty u		<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{23} c_i^2 u_i^2}$					11.3	11.2	95.5
	nded uncertainty ïdence interval of 95 %)	l	$u_e = 2u_c$					22.6	22.4	

15.2 Measurement Uncertainty for Normal SAR Tests (3GHz~6GHz)

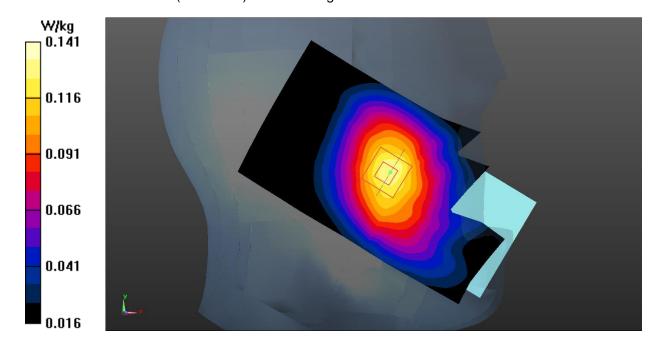
	15.2 Measurement (JIICEI	tannty for No		16313	30112	~0011	<u> </u>		
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Meas	urement system							(0)	(0)	
1	Probe calibration	В	13	N	2	1	1	6.5	6.5	∞
2	Axial isotropy	В	4.7	R	$\sqrt{3}$	√0.5	√0.5	4.3	4.3	∞
3	Hemispherical isotropy	В	9.6	R	$\sqrt{3}$	1	1	4.8	4.8	∞
4	Boundary effect	В	2.3	R	$\sqrt{3}$	1	1	1.3	1.3	∞
5	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
6	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
7	Modulation response	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
8	Readout electronics	В	1.0	N	1	1	1	1.0	1.0	∞
9	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
10	Integration time	В	1.7	R	$\sqrt{3}$	1	1	1.0	1.0	∞
11	RF ambient conditions-noise	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	œ
12	RF ambient conditions-reflection	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Probe positioned mech. restrictions	В	0.71	R	$\sqrt{3}$	1	1	0.4	0.4	8
14	Probe positioning with respect to phantom shell	В	5.7	R	$\sqrt{3}$	1	1	3.3	3.3	8
15	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Test	sample related									
16	Test sample positioning	A	3.3	Ν	1	1	1	3.3	3.3	5
17	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
18	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phan	tom and set-up						•			
19	Phantom uncertainty	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
20	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
21	Liquid conductivity (meas.)	А	1.3	Ν	1	0.64	0.43	0.83	0.56	9
22	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
23	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	0.96	0.78	9
Comb	nined standard uncertainty	$u_c = 1$	$\sqrt{\sum_{i=1}^{23} c_i^2 u_i^2}$					12.2	12.1	95.5
-	nded uncertainty idence interval of 95 %)	$u_e = 2$	2 <i>u</i> _c					24.4	24.2	

16 Main Test Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period			
01	Network analyzer	Agilent E5071C	MY46103759	2018-11-16	One year			
02	Dielectric probe	85070E	MY44300317	/	/			
03	Power meter	E4418B	MY50000366	2018-12-14				
04	Power sensor	E9304A	MY50000188	2016-12-14	One year			
05	Power meter	NRP	101460	2019-02-04				
06	Power sensor	NRP-Z91	100553	2019-02-04	One year			
07	Signal Generator	E8257D	MY47461211	2019-06-03	One year			
08	Amplifier	VTL5400	0404	/	/			
09	E-field Probe	SPEAG EX3DV4	3633	2019-02-26	One year			
10	DAE	SPEAG DAE4	786	2019-01-11	One year			
11	Dipole Validation Kit	SPEAG D835V2	4d057	2018-10-09	Three year			
12	Dipole Validation Kit	SPEAG D1900V2	5d088	2018-10-24	Three year			
13	Dipole Validation Kit	SPEAG D2450V2	873	2018-10-26	Three year			
14	Dipole Validation Kit	SPEAG D2550V2	1010	2018-08-24	Three year			
15	Dipole Validation Kit	SPEAG D5GHzV2	1238	2019-08-29	Three year			
16	BTS	E5515C	GB46110722	2019-01-05	One year			
17	Radio Communication Analyzer	Anristu MT8820C	6201341853	2019-03-07	One year			
18	Thermometer	FLUKE 51-II	99250045	2019-07-17	One year			
19	Thermometer	Anymetre JR900	31#	2019-07-18	One year			

Table 17.1: List of Main Instruments

END OF REPORT BODY

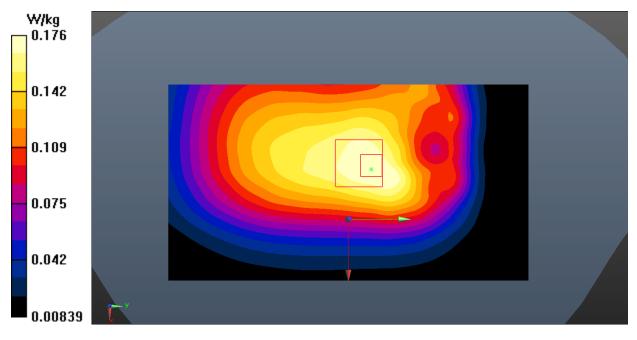

ANNEX A Graph Results

GSM850 Head

Date: 2019-10-18 Electronics: DAE4 Sn786 Medium: Head 835 MHz Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.914 S/m; ϵ_r = 40.757; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM (0) Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3633 ConvF (9.51, 9.51, 9.51)

Left Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.132 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.260 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.159 W/kg SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.089 W/kg Maximum value of SAR (measured) = 0.141 W/kg



GSM850 Body

Date: 2019-10-18 Electronics: DAE4 Sn786 Medium: Head 835 MHz Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.914 S/m; ϵ_r = 40.757; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GPRS 2Txslot (0) Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: EX3DV4 - SN3633 ConvF (9.51, 9.51, 9.51)

Rear Side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.178 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.215 W/kg SAR(1 g) = 0.158 W/kg; SAR(10 g) = 0.114 W/kg Maximum value of SAR (measured) = 0.176 W/kg

GSM1900 Head

Date: 2019-10-20 Electronics: DAE4 Sn786 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.375 S/m; ϵ_r = 38.722; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GSM (0) Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3633 ConvF (7.63, 7.63, 7.63)

Left Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.212 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.951 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.308 W/kg SAR(1 g) = 0.195 W/kg; SAR(10 g) = 0.120 W/kg Maximum value of SAR (measured) = 0.253 W/kg

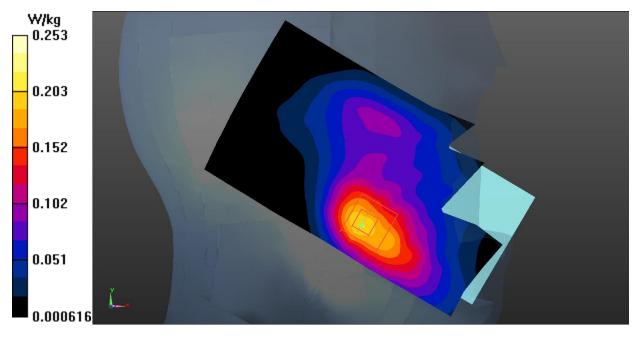


Fig.3 GSM1900 Head

GSM1900 Body

Date: 2019-10-20 Electronics: DAE4 Sn786 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.375 S/m; ϵ_r = 38.722; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, GPRS 2Txslot (0) Frequency: 1880 MHz Duty Cycle: 1:4 Probe: EX3DV4 - SN3633 ConvF (7.63, 7.63, 7.63)

Rear Side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.666 W/kg

Rear Side Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.95 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.943 W/kg SAR(1 g) = 0.520 W/kg; SAR(10 g) = 0.295 W/kg Maximum value of SAR (measured) = 0.634 W/kg

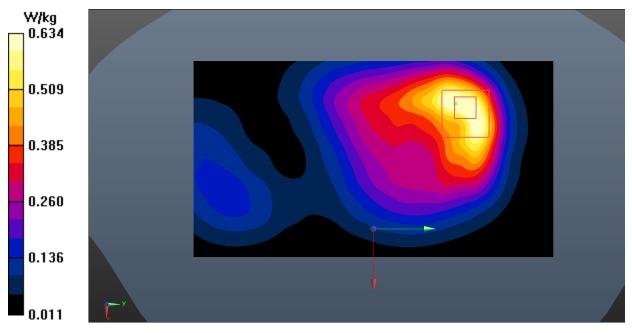


Fig.4 GSM1900 Body

WCDMA 850 Head

Date: 2019-10-18 Electronics: DAE4 Sn786 Medium: Head 835 MHz Medium parameters used (interpolated): f = 836.4 MHz; σ = 0.914 S/m; ϵ_r = 40.759; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (9.51, 9.51, 9.51)

Right Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.169 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.845 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.212 W/kg SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.118 W/kg

Maximum value of SAR (measured) = 0.188 W/kg

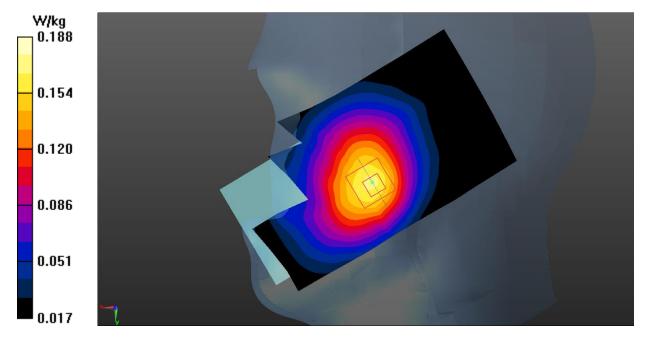


Fig.5 WCDMA850 Head

WCDMA 850 Body

Date: 2019-10-18 Electronics: DAE4 Sn786 Medium: Head 835 MHz Medium parameters used (interpolated): f = 836.4 MHz; σ = 0.914 S/m; ϵ_r = 40.759; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (9.51, 9.51, 9.51)

Rear Side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.263 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.89 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.313 W/kg SAR(1 g) = 0.219 W/kg; SAR(10 g) = 0.157 W/kg Maximum value of SAR (measured) = 0.265 W/kg

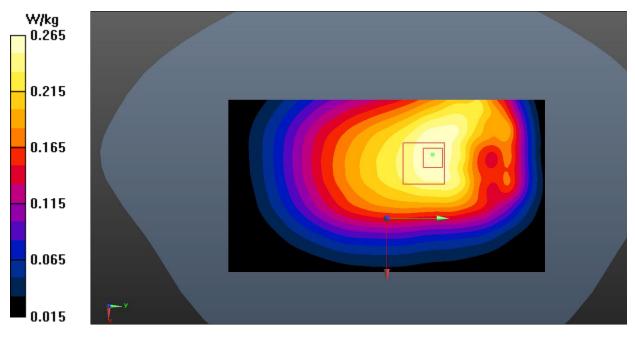


Fig.6 WCDMA850 Body

WCDMA 1900 Head

Date: 2019-10-20 Electronics: DAE4 Sn786 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.375 S/m; ϵ_r = 38.722; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WCDMA (0) Frequency: 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (7.63, 7.63, 7.63)

Left Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.442 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.373 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.415 W/kg; SAR(10 g) = 0.120 W/kg Maximum value of SAR (measured) = 0.441 W/kg

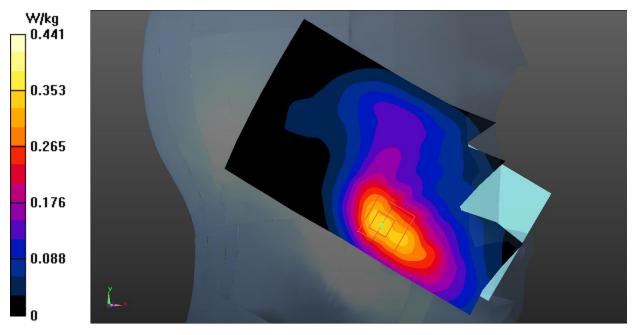


Fig.7 WCDMA1900 Head

WCDMA 1900 Body

Date: 2019-10-20 Electronics: DAE4 Sn786 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.375 S/m; ϵ_r = 38.722; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WCDMA (0) Frequency: 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (7.63, 7.63, 7.63)

Rear Side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.24 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.55 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 0.812 W/kg; SAR(10 g) = 0.452 W/kg Maximum value of SAR (measured) = 1.15 W/kg

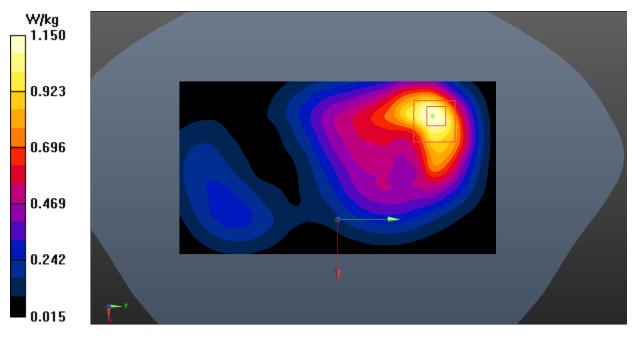
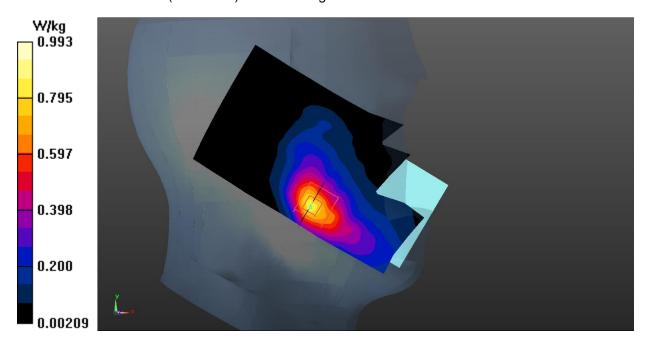


Fig.8 WCDMA1900 Body

LTE Band 7 Head


Date: 2019-10-21 Electronics: DAE4 Sn786 Medium: Head 2550 MHz Medium parameters used: f = 2535 MHz; σ = 1.928 S/m; ϵ_r = 38.211; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_FDD (0) Frequency: 2535 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (7.12, 7.12, 7.12)

Left Cheek Middle 1RB_Mid/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.830 W/kg

Left Cheek Middle 1RB_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.048 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.708 W/kg; SAR(10 g) = 0.388 W/kg Maximum value of SAR (measured) = 0.993 W/kg

LTE Band 7 Body

Date: 2019-10-21 Electronics: DAE4 Sn786 Medium: Head 2550 MHz Medium parameters used: f = 2510 MHz; σ = 1.899 S/m; ϵ_r = 38.292; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, 4G_LTE_FDD (0) Frequency: 2510 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (7.33, 7.33, 7.33)

Front Side Low 1RB_Mid/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.58 W/kg

Front Side Low 1RB_Mid /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.36 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.06 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.528 W/kg

Maximum value of SAR (measured) = 1.51 W/kg

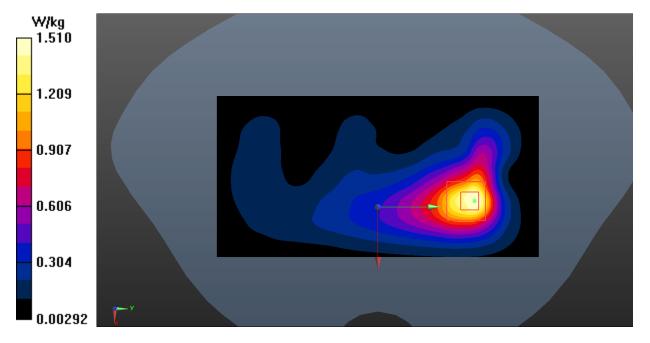


Fig.10 LTE Band 7 Body

Bluetooth 2.4G Head

Date: 2019-11-14 Electronics: DAE4 Sn786 Medium: Head 2450 MHz Medium parameters used (interpolated): f = 2402 MHz; σ = 1.768 S/m; ϵ_r = 38.687; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, BT (0) Frequency: 2402 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

Left Cheek Low/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.171 W/kg

Left Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.485 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.149 W/kg SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.035 W/kg Maximum value of SAR (measured) = 0.100 W/kg

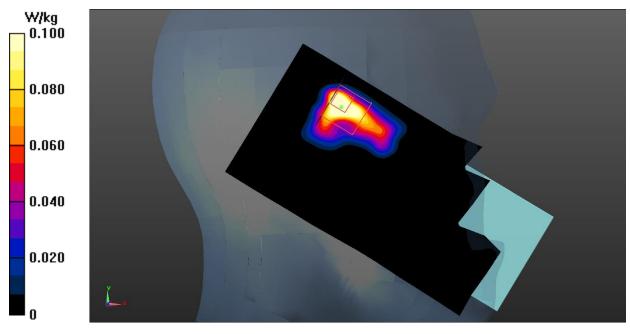
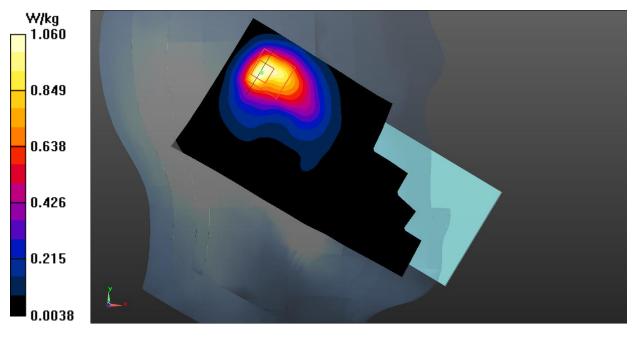


Fig.11 Bluetooth 2.4G Head



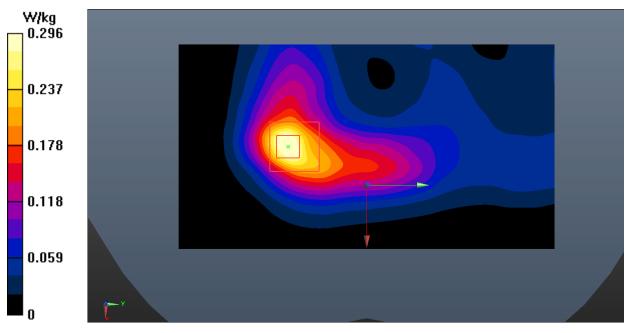
Wi-Fi 2.4G Head

Date: 2019-11-14 Electronics: DAE4 Sn786 Medium: Head 2450 MHz Medium parameters used: f = 2412 MHz; σ = 1.78 S/m; ϵ_r = 38.654; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WiFi (0) Frequency: 2412 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

Left Cheek Low /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.42 W/kg

Left Cheek Low /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.99 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.57 W/kg SAR(1 g) = 0.751 W/kg; SAR(10 g) = 0.387 W/kg Maximum value of SAR (measured) = 1.06 W/kg

Fig.12 Wi-Fi 2.4G Head



Wi-Fi 2.4G Body

Date: 2019-11-14 Electronics: DAE4 Sn786 Medium: Head 2450 MHz Medium parameters used: f = 2412 MHz; σ = 1.78 S/m; ϵ_r = 38.654; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, WiFi (0) Frequency: 2412 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.33, 7.33, 7.33);

Rear Side Low/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.299 W/kg

Rear Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.445 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.418 W/kg SAR(1 g) = 0.198 W/kg; SAR(10 g) = 0.100 W/kg Maximum value of SAR (measured) = 0.296 W/kg

Fig.13 Wi-Fi 2.4G Body

Wi-Fi 5.2G Head

Date: 2019-10-24 Electronics: DAE4 Sn786 Medium: Head 5250 MHz Medium parameters used: f = 5260 MHz; σ = 4.801 S/m; ϵ_r = 34.75; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD (0) Frequency: 5260 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN3633 ConvF (5.42, 5.42, 5.42)

Right Tilt CH52/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.902 W/kg

Right Tilt CH52/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 14.01 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 1.82 W/kg SAR(1 g) = 0.829 W/kg; SAR(10 g) = 0.456 W/kg Maximum value of SAR (measured) = 1.20 W/kg

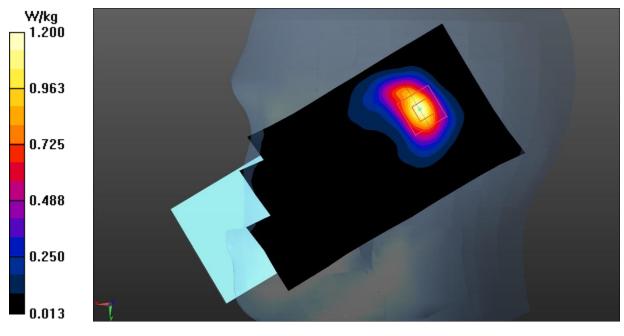


Fig.14 Wi-Fi 5G Head

Wi-Fi 5.2G Body

Date: 2019-10-24 Electronics: DAE4 Sn786 Medium: Head 5250 MHz Medium parameters used: f = 5260 MHz; σ = 4.801 S/m; ϵ_r = 34.75; ρ = 1000 kg/m³ Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C Communication System: UID 0, LTE_TDD (0) Frequency: 5260 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN3633 ConvF (5.42, 5.42, 5.42)

Top Side CH52/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.407 W/kg

op Side CH52/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.634 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.627 W/kg SAR(1 g) = 0.192 W/kg; SAR(10 g) = 0.076 W/kg Maximum value of SAR (measured) = 0.358 W/kg

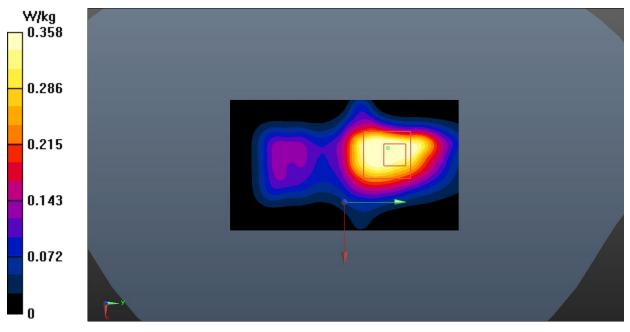
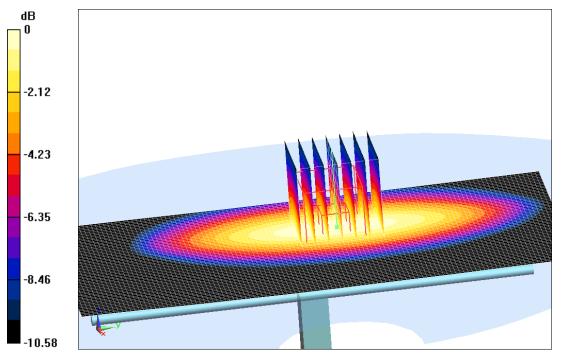


Fig.15 Wi-Fi 5G Body


ANNEX B SystemVerification Results

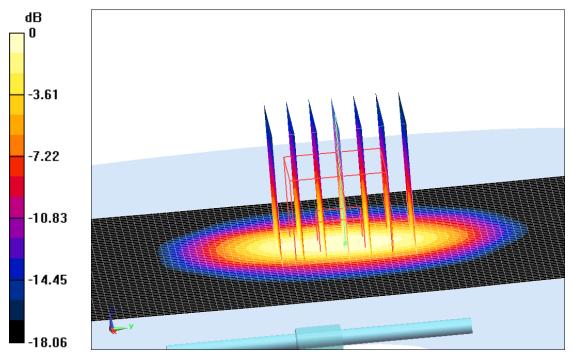
835MHz

Date: 2019-10-18 Electronics: DAE4 Sn786 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; σ = 0.913 S/m; ϵ r = 40.776; ρ = 1000 kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3633 ConvF (9.51, 9.51, 9.51)

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 61.464 V/m; Power Drift = 0.08 dB SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (interpolated) = 2.66 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.464 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.68 W/kg

0 dB = 2.68 W/kg = 4.28 dB W/kg



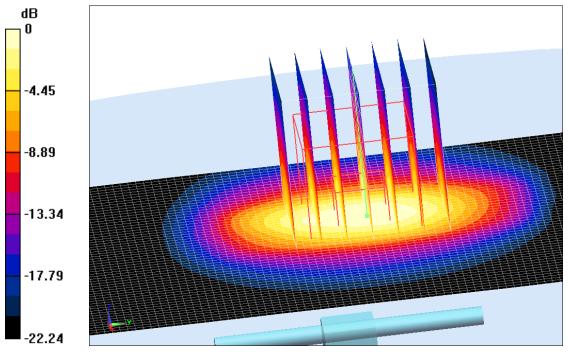
1900MHz Date: 2019-10-20 Electronics: DAE4 Sn786 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.393 S/m; ϵ_r = 38.644; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (7.63, 7.63, 7.63);

System Validation/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 80.259 V/m; Power Drift = -0.04 dB SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (interpolated) = 10.4 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.259 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 20.9 W/kg SAR(1 g) = 9.67 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 10.3 W/kg

0 dB = 10.3 W/kg = 10.13 dB W/kg



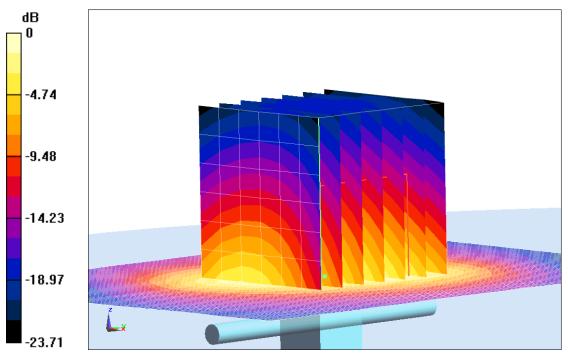
$\begin{array}{l} \textbf{2450MHz} \\ \text{Date: 2019-11-14} \\ \text{Electronics: DAE4 Sn786} \\ \text{Medium: Head 2450MHz} \\ \text{Medium parameters used: f = 2450 MHz; } \sigma = 1.825 \text{ S/m; } \epsilon_r = 38.529; \ \rho = 1000 \text{ kg/m}^3 \\ \text{Ambient Temperature: 22.3°C} \\ \text{Liquid Temperature: 21.8°C} \\ \text{Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1} \\ \text{Probe: EX3DV4 - SN3633 ConvF (7.33, 7.33, 7.33);} \end{array}$

System Validation /Area Scan (31x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 86.363 V/m; Power Drift = 0.08 dB SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.10 W/kg Maximum value of SAR (interpolated) = 14.4 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.363 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

0 dB = 14.6 W/kg = 11.64 dB W/kg



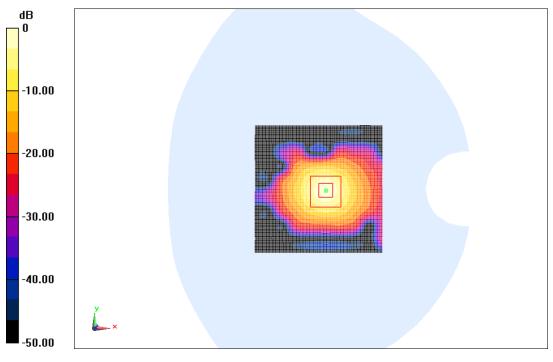
No.I19N02247-SAR Page 71 of 148

 $\label{eq:2550MHz} \begin{array}{l} \mbox{Date: } 2019\mbox{-}10\mbox{-}21 \\ \mbox{Electronics: } DAE4 \mbox{ Sn786} \\ \mbox{Medium: Head } 2550\mbox{MHz} \\ \mbox{Medium parameters used: } f = 2550\mbox{ MHz; } \sigma = 1.946\mbox{ S/m; } \epsilon_r = 38.16; \mbox{ρ} = 1000\mbox{ kg/m}^3 \\ \mbox{Ambient Temperature: } 22.5^{\circ}\mbox{C} \\ \mbox{Liquid Temperature: } 22.0^{\circ}\mbox{C} \\ \mbox{Communication System: } \mbox{CW_TMC Frequency: } 2550\mbox{ MHz Duty Cycle: } 1:1 \\ \mbox{Probe: } \mbox{EX3DV4} - \mbox{SN3633 ConvF}(7.12, 7.12, 7.12); \end{array}$

System Validation/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 90.713 V/m; Power Drift = 0.11 dB SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.67 W/kg Maximum value of SAR (interpolated) = 16.3 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.713 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 15.1 W/kg; SAR(10 g) = 6.82 W/kg Maximum value of SAR (measured) = 16.5 W/kg

0 dB = 16.5 W/kg = 12.17 dB W/kg



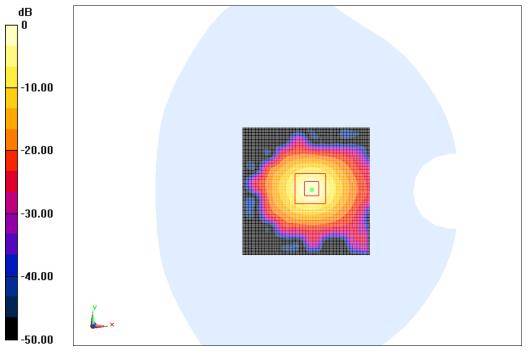
$\begin{array}{l} \textbf{5250MHz} \\ \text{Date: 2019-10-24} \\ \text{Electronics: DAE4 Sn786} \\ \text{Medium: Head 5300MHz} \\ \text{Medium parameters used: } f = 5250 \text{ MHz}; \ \sigma = 4.768 \text{ S/m}; \ \epsilon_r = 34.772; \ \rho = 1000 \text{ kg/m}^3 \\ \text{Ambient Temperature: } 23.0^{\circ}\text{C} \qquad \text{Liquid Temperature: } 22.5^{\circ}\text{C} \\ \text{Communication System: CW Frequency: } 5250 \text{ MHz} \text{ Duty Cycle: } 1:1 \\ \text{Probe: EX3DV4} - \text{SN3633 ConvF} (5.42, 5.42, 5.42); \end{array}$

System Validation /Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 64.148 V/m; Power Drift = 0.06 dB SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (interpolated) = 9.47 W/kg

System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 64.148 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 25.4 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 9.51 W/kg

0 dB = 9.51 W/kg = 9.78 dB W/kg


No.I19N02247-SAR Page 73 of 148

5600MHzDate: 2019-10-24Electronics: DAE4 Sn786Medium: Head 5600MHzMedium parameters used: f = 5600 MHz; σ = 4.954 S/m; ε_r = 35.917; ρ = 1000 kg/m³Ambient Temperature: 23.0°CLiquid Temperature: 22.5°CCommunication System: CW Frequency: 5600 MHz Duty Cycle: 1:1Probe: EX3DV4 – SN3633 ConvF (4.72, 4.72, 4.72);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 62.772 V/m; Power Drift = -0.03 dB SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (interpolated) = 9.41 W/kg

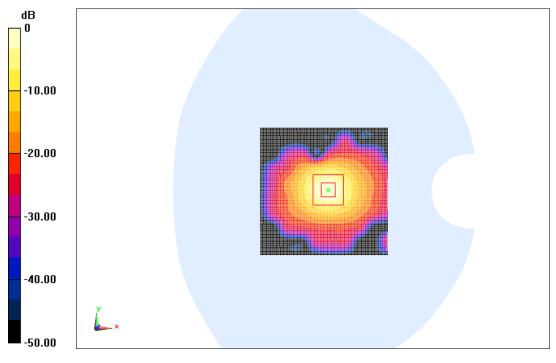
System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 62.772 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 23.9 W/kg SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 9.38 W/kg

0 dB = 9.38 W/kg = 9.72 dB W/kg

Fig.B.8. validation 5600MHz 100mW

No.I19N02247-SAR Page 74 of 148


5750MHz

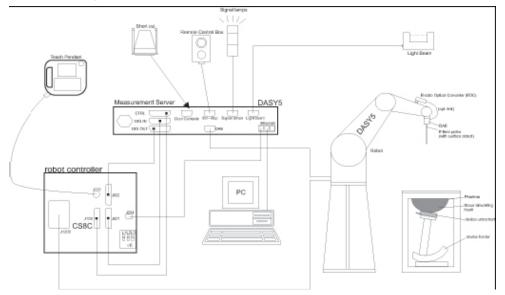
Date: 2019-10-24 Electronics: DAE4 Sn786 Medium: Head 5800 MHz Medium parameters used: f = 5750 MHz; σ = 5.136 S/m; ε_r = 36.284; ρ = 1000 kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3633 ConvF (4.73, 4.73, 4.73);


System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 61.809 V/m; Power Drift = -0.08 dB SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.20 W/kg Maximum value of SAR (interpolated) = 9.35 W/kg

System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 61.809 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 23.2 W/kg SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 9.31 W/kg

0 dB = 9.31 W/kg = 9.69 dB W/kg



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

No.I19N02247-SAR Page 76 of 148

C.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by SAICT

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4 Device Holder for Phantom

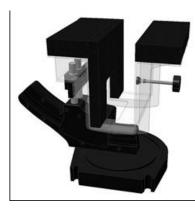
The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material


has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7-1: Device Holder

Picture C.7-2: Laptop Extension Kit

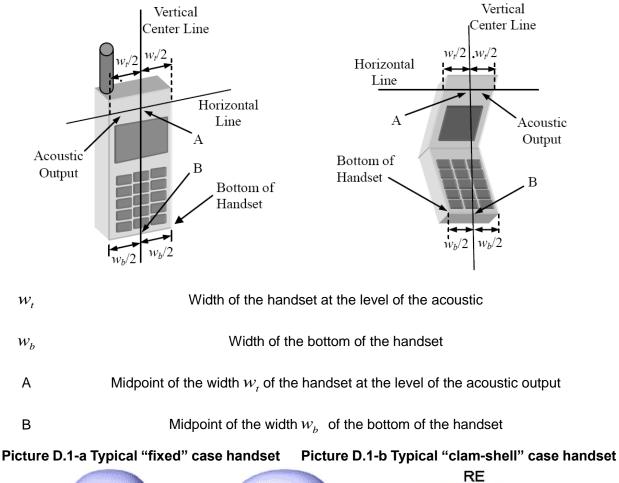
C.4.5 Phantom

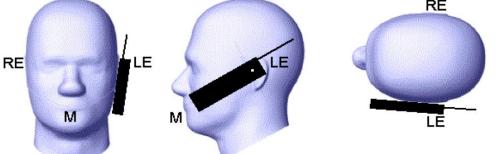
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

No.I19N02247-SAR Page 80 of 148

Shell Thickness: $2 \pm 0.2 \text{ mm}$ Filling Volume:Approx. 25 litersDimensions: $810 \times 1000 \times 500 \text{ mm} (\text{H} \times \text{L} \times \text{W})$ Available:Special


Picture C.8: SAM Twin Phantom



ANNEX D Position of the wireless device in relation to the phantom

D.1 General Considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

Picture D.2 Cheek position of the wireless device on the left side of SAM