

# Variant FCC RF Test Report

| APPLICANT      | : | Doro AB                                    |
|----------------|---|--------------------------------------------|
| EQUIPMENT      | : | Mobile Telephone                           |
| BRAND NAME     | : | Doro                                       |
| MODEL NAME     | : | Doro PhoneEasy 615                         |
| FCC ID         | : | WS5DORO615W                                |
| STANDARD       | : | FCC 47 CFR Part 2, 22(H), 24(E)            |
| CLASSIFICATION | : | PCS Licensed Transmitter Held to Ear (PCE) |

This is a variant report which is only valid together with the original test report. The product was received on Nov. 14, 2012 and completely tested on Feb. 05, 2013. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI / TIA / EIA-603-C-2004 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager



SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.

Page Number: 1 of 19Report Issued Date: Feb. 19, 2013Report Version: Rev. 01



# TABLE OF CONTENTS

| RE | VISIO | N HISTORY                                                                   | 3  |
|----|-------|-----------------------------------------------------------------------------|----|
| SU | MMAR  | Y OF TEST RESULT                                                            | 4  |
| 1  | GENE  | RAL DESCRIPTION                                                             | 5  |
|    | 1.1   | Applicant                                                                   | 5  |
|    | 1.2   | Manufacturer                                                                | 5  |
|    | 1.3   | Feature of Equipment Under Test                                             | 5  |
|    | 1.4   | Product Specification of Equipment Under Test                               | 5  |
|    | 1.5   | Maximum ERP/EIRP Power                                                      | 6  |
|    | 1.6   | Testing Site                                                                | 6  |
|    | 1.7   | Applied Standards                                                           | 6  |
| 2  | TEST  | CONFIGURATION OF EQUIPMENT UNDER TEST                                       | 7  |
|    | 2.1   | Test Mode                                                                   | 7  |
|    | 2.2   | Connection Diagram of Test System                                           |    |
|    | 2.3   | Support Unit used in test configuration and system                          |    |
|    | 2.4   | Measurement Results Explanation Example                                     | 8  |
| 3  | TEST  | RESULT                                                                      | 9  |
|    | 3.1   | Conducted Output Power Measurement                                          | 9  |
|    | 3.2   | Effective Radiated Power and Effective Isotropic Radiated Power Measurement |    |
|    | 3.3   | Field Strength of Spurious Radiation Measurement                            |    |
| 4  | LIST  | OF MEASURING EQUIPMENT                                                      | 21 |
| 5  | UNCE  | RTAINTY OF EVALUATION                                                       | 22 |
| AP | PENDI | X A. PHOTOGRAPHS OF EUT                                                     |    |

#### APPENDIX B. SETUP PHOTOGRAPHS

APPENDIX C. PRODUCT EQUALITY DECLARATION



# **REVISION HISTORY**

| REPORT NO.  | VERSION | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                     | ISSUED DATE   |
|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| FG222402-01 | Rev. 01 | This is a variant report for Doro PhoneEasy 615. The<br>product equality declaration could be referred to<br>Appendix C. All the test cases were performed on<br>original report which can be referred to Sporton<br>Report Number FG222402. Based on the original<br>test report, only the Conducted Power, ERP/EIRP,<br>and Radiated Spurious Emissions were verified for<br>the differences. | Feb. 19, 2013 |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|             |         |                                                                                                                                                                                                                                                                                                                                                                                                 |               |



| Report<br>Section | FCC Rule                            | IC Rule                          | Description                            | Limit                               | Result | Remark                                     |
|-------------------|-------------------------------------|----------------------------------|----------------------------------------|-------------------------------------|--------|--------------------------------------------|
| 3.1               | §2.1046                             | RSS-132 (5.4)<br>RSS-133 (6.4)   | Conducted Output<br>Power              | N/A                                 | PASS   | -                                          |
| 3.2               | §22.913(a)(2)                       | RSS-132(5.4)<br>SRSP-503(5.1.3)  | Effective Radiated<br>Power            | < 7 Watts                           | PASS   | -                                          |
| 3.2               | §24.232(c)                          | RSS-133 (6.4)<br>SRSP-510(5.1.2) | Equivalent Isotropic<br>Radiated Power | < 2 Watts                           | PASS   | -                                          |
| 3.3               | §2.1053<br>§22.917(a)<br>§24.238(a) | RSS-132 (5.5)<br>RSS-133 (6.5)   | Field Strength of Spurious Radiation   | < 43+10log <sub>10</sub> (P[Watts]) | PASS   | Under limit<br>27.96 dB at<br>9400.000 MHz |

# SUMMARY OF TEST RESULT



# **1** General Description

# 1.1 Applicant

#### Doro AB

Magistratsvägen 10 SE-226 44 Lund Sweden

# 1.2 Manufacturer

#### CK TELECOM LTD.

Technology Road, High-Tech Development Zone, Heyuan, Guangdong, P.R.China.

# 1.3 Feature of Equipment Under Test

| Product Feature                 |                                    |  |  |  |
|---------------------------------|------------------------------------|--|--|--|
| Equipment                       | Mobile Telephone                   |  |  |  |
| Brand Name                      | Doro                               |  |  |  |
| Model Name                      | Doro PhoneEasy 615                 |  |  |  |
| FCC ID                          | WS5DORO615W                        |  |  |  |
| EUT supports Radios application | GSM/GPRS/WCDMA/Bluetooth           |  |  |  |
| HW Version                      | BOAT-V3.0                          |  |  |  |
| SW Version                      | BOAT-S05B_DORO615_L18EN_202_130130 |  |  |  |
| EUT Stage                       | Identical Prototype                |  |  |  |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

# 1.4 Product Specification of Equipment Under Test

| Product Specification subjective to this standard |                                                                         |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Tx Frequency                                      | GSM1900: 1850.2 MHz ~ 1909.8MHz<br>WCDMA Band V: 826.4 MHz ~ 846.6 MHz  |  |  |  |
| Rx Frequency                                      | GSM1900: 1930.2 MHz ~ 1989.8 MHz<br>WCDMA Band V: 871.4 MHz ~ 891.6 MHz |  |  |  |
| Maximum Output Power to Antenna                   | GSM1900 : 29.79 dBm<br>WCDMA Band V : 23.10 dBm                         |  |  |  |
| Antenna Type                                      | Fixed Internal Antenna                                                  |  |  |  |
| Type of Modulation                                | GSM: GMSK<br>GPRS: GMSK<br>WCDMA: QPSK (Uplink)                         |  |  |  |



# 1.5 Maximum ERP/EIRP Power

| FCC Rule | System                    | Type of Modulation | Maximum ERP/EIRP (W) |
|----------|---------------------------|--------------------|----------------------|
| Part 22  | WCDMA Band V RMC 12.2Kbps | QPSK               | 0.09                 |
| Part 24  | GSM1900 GSM               | GMSK               | 0.83                 |

# 1.6 Testing Site

| Test Site          | SPORTON INTERNATIONAL (KUNSHAN) INC.                       |          |                         |  |
|--------------------|------------------------------------------------------------|----------|-------------------------|--|
|                    | No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. |          |                         |  |
| Test Site Location | TEL: +86-0512-5790-0158                                    |          |                         |  |
|                    | FAX: +86-0512-5790-0958                                    |          |                         |  |
| Toot Site No       | Sporton                                                    | Site No. | FCC/IC Registration No. |  |
| Test Site No.      | TH01-KS 03CH01-KS 149928/4086E-1                           |          |                         |  |

# 1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- Preliminary Guidance for Receiving Applications for Certification of 3G Device. May 9, 2006.
- FCC 47 CFR Part 2, 22(H), 24(E)
- ANSI / TIA / EIA-603-C-2004
- FCC KDB 971168 D01 Power Meas. License Digital Systems v01
- IC RSS-132 Issue 3
- IC RSS-133 Issue 6
- IC RSS-Gen Issue 3
- NOTICE 2012-DRS0126

#### Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.
- 3. Per the section 2.2.3 of Notice of 2012-DRS0126, "Receivers Excluded from Industry Canada Requirements", only radio communication receivers operating in stand-alone mode within the band 30-960 MHz and scanner receivers are subject to Industry Canada requirements.



# 2 Test Configuration of Equipment Under Test

# 2.1 Test Mode

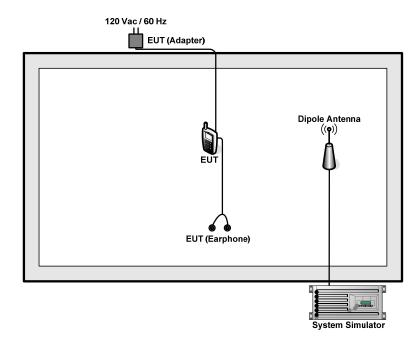
During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

Frequency range investigated for radiated emission is as follows:

- 1. 30 MHz to 9000 MHz for WCDMA Band V.
- 2. 30 MHz to 19000 MHz for GSM1900.

| Test Modes                      |                   |                   |  |  |  |
|---------------------------------|-------------------|-------------------|--|--|--|
| Band Radiated TCs Conducted TCs |                   |                   |  |  |  |
| GSM 1900                        | GSM Link          | ■ GSM Link        |  |  |  |
| WCDMA Band V                    | RMC 12.2Kbps Link | RMC 12.2Kbps Link |  |  |  |

**Note:** The maximum power levels are GSM mode for GMSK link, and RMC 12.2Kbps mode for WCDMA band II, only these modes were used for all tests.


#### The conducted power tables are as follows:

| Conducted Power (*Unit: dBm) |        |         |                    |  |  |
|------------------------------|--------|---------|--------------------|--|--|
| Band                         |        | GSM1900 |                    |  |  |
| Channel                      | 512    | 661     | 810                |  |  |
| Frequency                    | 1850.2 | 1880.0  | 1909.8             |  |  |
| GSM                          | 29.69  | 29.59   | <mark>29.79</mark> |  |  |
| GPRS 8                       | 29.69  | 29.58   | 29.78              |  |  |
| GPRS 10                      | 28.95  | 28.86   | 29.13              |  |  |
| GPRS 11                      | 27.15  | 27.06   | 27.35              |  |  |
| GPRS 12                      | 26.05  | 25.97   | 26.26              |  |  |

| Conducted Power (*Unit: dBm) |              |                    |       |  |
|------------------------------|--------------|--------------------|-------|--|
| Band                         | WCDMA Band V |                    |       |  |
| Channel                      | 4132         | 4182               | 4233  |  |
| Frequency                    | 826.4        | 836.4              | 846.6 |  |
| RMC 12.2K                    | 23.08        | <mark>23.10</mark> | 22.94 |  |



# 2.2 Connection Diagram of Test System



# 2.3 Support Unit used in test configuration and system

| ltem | Equipment        | Trade Name | Model No. | FCC ID | Data Cable | Power Cord        |
|------|------------------|------------|-----------|--------|------------|-------------------|
| 1.   | System Simulator | R&S        | CMU 200   | N/A    | N/A        | Unshielded, 1.8 m |
| 2.   | DC Power Supply  | GWINSTEK   | GPS-3030D | N/A    | N/A        | Unshielded, 1.8 m |

# 2.4 Measurement Results Explanation Example

#### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Example :

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

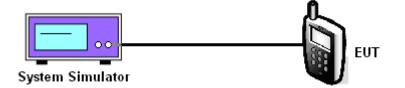


# 3 Test Result

# 3.1 Conducted Output Power Measurement

### 3.1.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.


#### 3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

#### 3.1.3 Test Procedures

- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

### 3.1.4 Test Setup





### 3.1.5 Test Result of Conducted Output Power

| PCS Band                |                                                           |       |        |  |  |  |
|-------------------------|-----------------------------------------------------------|-------|--------|--|--|--|
| Modes                   | GSM1900 (GSM)                                             |       |        |  |  |  |
| Channel                 | 512      661      810        (Low)      (Mid)      (High) |       |        |  |  |  |
| Frequency<br>(MHz)      | 1850.2                                                    | 1880  | 1909.8 |  |  |  |
| Conducted Power (dBm)   | 29.69                                                     | 29.59 | 29.79  |  |  |  |
| Conducted Power (Watts) | 0.93                                                      | 0.91  | 0.95   |  |  |  |

Note: maximum burst average power for GSM, and maximum average power for WCDMA.

| Cellular Band           |                                   |                             |       |  |  |  |  |
|-------------------------|-----------------------------------|-----------------------------|-------|--|--|--|--|
| Modes                   | WCD                               | WCDMA Band V (RMC 12.2Kbps) |       |  |  |  |  |
| Channel                 | 4132 (Low) 4182 4233 (High) (Mid) |                             |       |  |  |  |  |
| Frequency<br>(MHz)      | 826.4                             | 836.4                       | 846.6 |  |  |  |  |
| Conducted Power (dBm)   | 23.08                             | 23.10                       | 22.94 |  |  |  |  |
| Conducted Power (Watts) | 0.20                              | 0.20                        | 0.20  |  |  |  |  |



# 3.2 Effective Radiated Power and Effective Isotropic Radiated Power Measurement

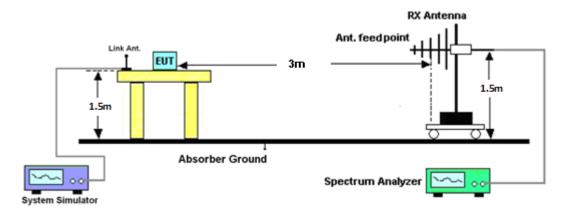
#### 3.2.1 Description of the ERP/EIRP Measurement

The substitution method, in ANSI / TIA / EIA-603-C-2004, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v01. The ERP of mobile transmitters must not exceed 7 Watts and the EIRP of mobile transmitters are limited to 2 Watts.

#### 3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

#### 3.2.3 Test Procedures


- 1. The EUT was placed on a turntable with 1.5 meter height in a fully anechoic chamber.
- 2. The EUT was set at 3 meters from the receiving antenna, which was mounted on the antenna tower.
- GSM operating modes: Set RBW= 1MHz, VBW= 3MHz, RMS detector over burst; UMTS operating modes: Set RBW= 100 KHz, VBW= 300 KHz, RMS detector over frame, and use channel power option with bandwidth=5MHz, per section 4.0 of KDB 971168 D01.
- 4. The table was rotated 360 degrees to determine the position of the highest radiated power.
- 5. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.
- 6. Taking the record of maximum ERP/EIRP.
- 7. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. The conducted power at the terminal of the dipole antenna is measured.
- 9. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.
- 10. ERP/EIRP = Ps + Et Es + Gs = Ps + Rt Rs + Gs

Ps (dBm) : Input power to substitution antenna. Gs (dBi or dBd) : Substitution antenna Gain. Et = Rt + AF Es = Rs + AF AF (dB/m) : Receive antenna factor Rt : The highest received signal in spectrum analyzer for EUT.

Rs : The highest received signal in spectrum analyzer for substitution antenna.



### 3.2.4 Test Setup





### 3.2.5 Test Result of ERP

|           | WCDMA Band V (RMC 12.2Kbps) Radiated Power ERP |        |                  |       |       |      |  |  |  |  |
|-----------|------------------------------------------------|--------|------------------|-------|-------|------|--|--|--|--|
|           | Horizontal Polarization                        |        |                  |       |       |      |  |  |  |  |
| Frequency | Rt                                             | Rs     | Ps               | Gs    | ERP   | ERP  |  |  |  |  |
| (MHz)     | (dBm)                                          | (dBm)  | (dBm)            | (dBd) | (dBm) | (W)  |  |  |  |  |
| 826.40    | -29.97                                         | -48.12 | 0.00             | -1.08 | 17.07 | 0.05 |  |  |  |  |
| 836.40    | -29.31                                         | -48.28 | 0.00             | -0.93 | 18.04 | 0.06 |  |  |  |  |
| 846.60    | -28.01                                         | -48.35 | 0.00             | -0.76 | 19.58 | 0.09 |  |  |  |  |
|           |                                                | Ve     | rtical Polarizat | ion   |       |      |  |  |  |  |
| Frequency | Rt                                             | Rs     | Ps               | Gs    | ERP   | ERP  |  |  |  |  |
| (MHz)     | (dBm)                                          | (dBm)  | (dBm)            | (dBd) | (dBm) | (W)  |  |  |  |  |
| 826.40    | -40.25                                         | -47.97 | 0.00             | -1.08 | 6.64  | 0.00 |  |  |  |  |
| 836.40    | -39.66                                         | -48.01 | 0.00             | -0.93 | 7.42  | 0.01 |  |  |  |  |
| 846.60    | -38.02                                         | -48.05 | 0.00             | -0.76 | 9.27  | 0.01 |  |  |  |  |

### 3.2.6 Test Result of EIRP

| GSM1900 (GSM) Radiated Power EIRP |             |             |                   |             |               |             |  |  |
|-----------------------------------|-------------|-------------|-------------------|-------------|---------------|-------------|--|--|
|                                   |             | Hori        | zontal Polariza   | tion        |               |             |  |  |
| Frequency<br>(MHz)                | Rt<br>(dBm) | Rs<br>(dBm) | Ps<br>(dBm)       | Gs<br>(dBi) | EIRP<br>(dBm) | EIRP<br>(W) |  |  |
| 1850.20                           | -25.12      | -51.88      | 0.00              | 1.96        | 28.72         | 0.74        |  |  |
| 1880.00                           | -26.98      | -52.99      | 0.00              | 2.00        | 28.01         | 0.63        |  |  |
| 1909.80                           | -28.00      | -54.28      | 0.00              | 1.98        | 28.26         | 0.67        |  |  |
|                                   |             | Ve          | rtical Polarizati | on          |               |             |  |  |
| Frequency<br>(MHz)                | Rt<br>(dBm) | Rs<br>(dBm) | Ps<br>(dBm)       | Gs<br>(dBi) | EIRP<br>(dBm) | EIRP<br>(W) |  |  |
| 1850.20                           | -24.90      | -52.13      | 0.00              | 1.96        | 29.19         | 0.83        |  |  |
| 1880.00                           | -26.66      | -53.17      | 0.00              | 2.00        | 28.51         | 0.71        |  |  |
| 1909.80                           | -27.76      | -54.13      | 0.00              | 1.98        | 28.35         | 0.68        |  |  |



# 3.3 Field Strength of Spurious Radiation Measurement

### 3.3.1 Description of Field Strength of Spurious Radiated Measurement

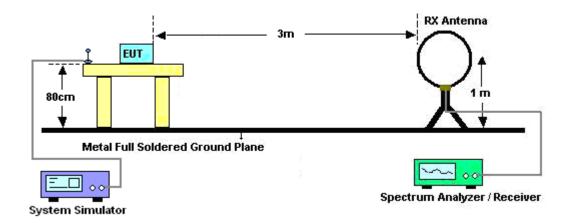
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

### 3.3.2 Measuring Instruments

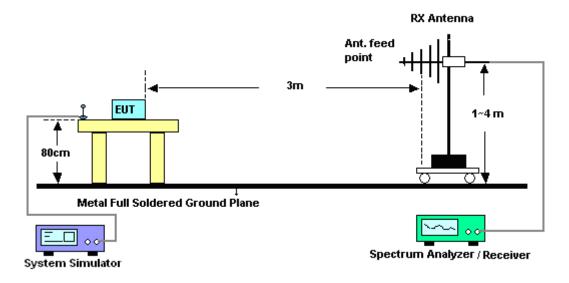
See list of measuring instruments of this test report.

### 3.3.3 Test Procedures

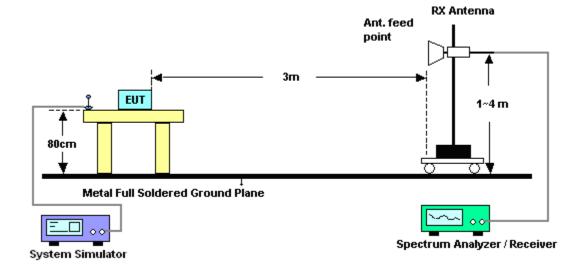
- 11. The EUT was placed on a rotatable wooden table with 0.8 meter above ground.
- 12. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 13. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 14. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 15. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 16. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 17. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 18. Taking the record of output power at antenna port.
- 19. Repeat step 7 to step 8 for another polarization.
- 20. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 21. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)
  = P(W) [43 + 10log(P)] (dB)


= [30 + 10log(P)] (dBm) - [43 + 10log(P) ] (dB)

- = -13dBm.
- 22. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 23. ERP (dBm) = EIRP 2.15




#### 3.3.4 Test Setup


For radiated emissions below 30MHz



#### For radiated emissions from 30MHz to 1GHz

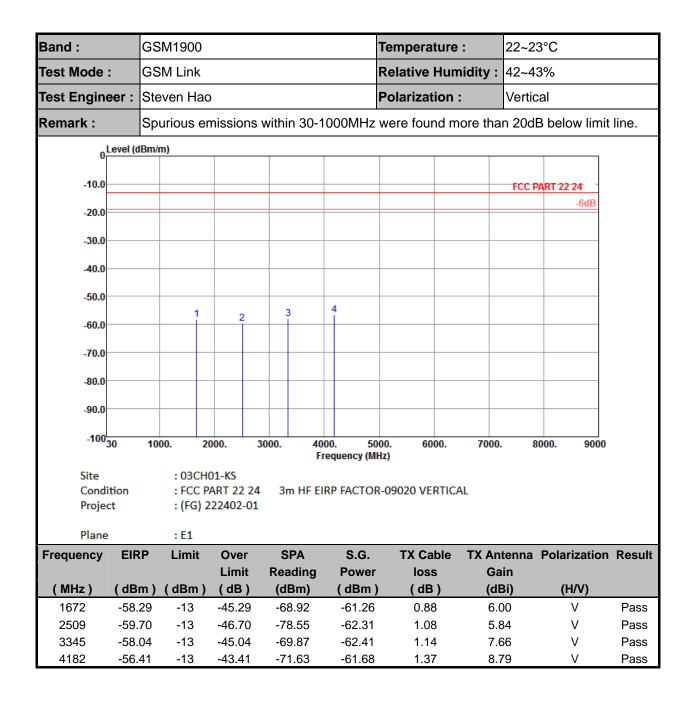




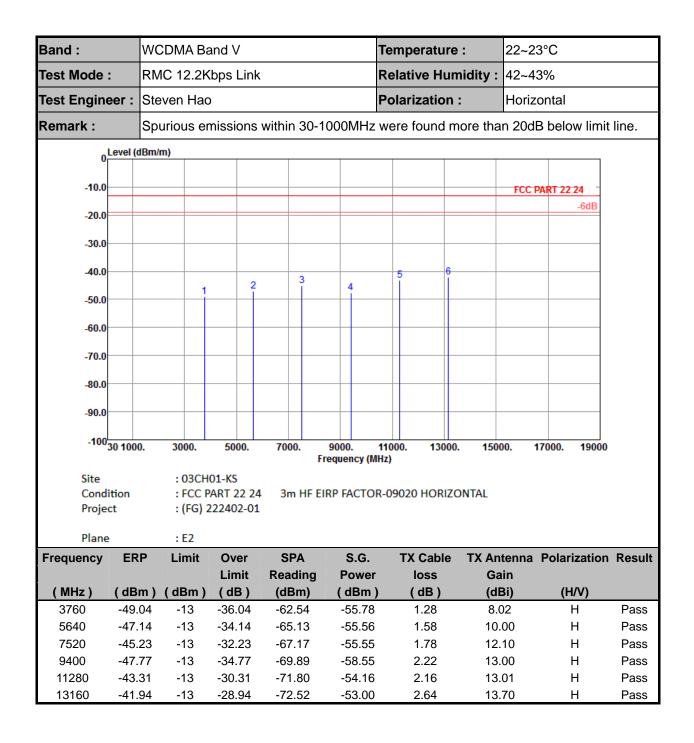


#### For radiated emissions above 1GHz

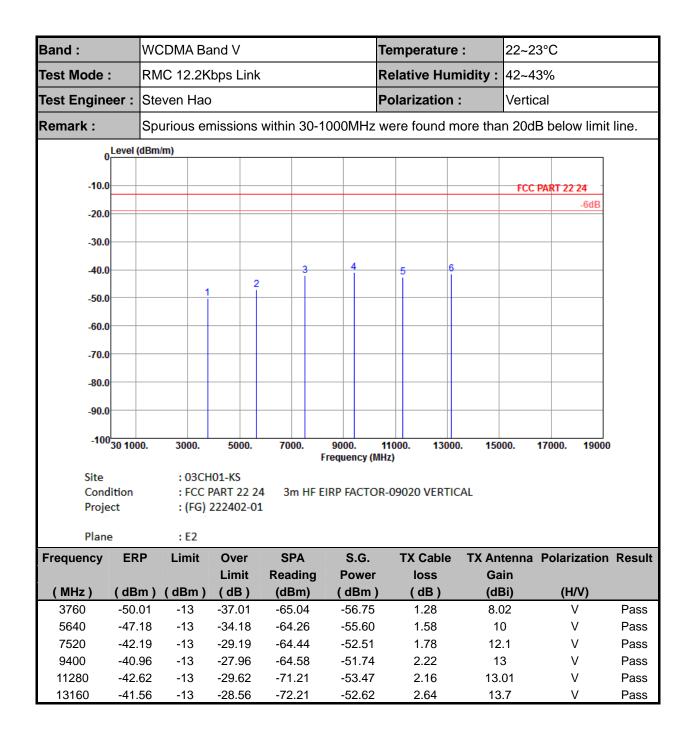
#### 3.3.5 Test Results of Radiated Emissions (9 KHz ~ 30 MHz)


The low frequency, which started from 9 KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.




## 3.3.6 Test Result of Field Strength of Spurious Radiated

| Band :              |                   | GSM1900 |        |                              |          |          |           | Temper              | ature | :       | 22~23  | 3°C           |        |
|---------------------|-------------------|---------|--------|------------------------------|----------|----------|-----------|---------------------|-------|---------|--------|---------------|--------|
| Test Mode           | :                 | GSM     | Link   |                              |          |          |           | Relative Humidity : |       | 42~43%  |        |               |        |
| Test Engine         | eer :             | Steve   | en Hao | )                            |          |          |           | Polariza            | ation | :       | Horiz  | ontal         |        |
| Remark :            |                   | Spuri   | ous er | nissions                     | s within | 30-10    | 00MHz     | were fo             | und m | ore tha | n 20dE | 3 below limit | line.  |
|                     | 0 Level           | (dBm/m  | )      |                              |          |          |           |                     |       |         |        |               |        |
| -10.                | 0                 |         |        |                              |          |          |           |                     |       |         | FCC    | PART 22 24    |        |
| -20.                | 0                 |         |        |                              |          |          |           |                     |       |         |        | -6dB          |        |
| -20.                |                   |         |        |                              |          |          |           |                     |       |         |        |               |        |
| -30.                | 0                 |         |        |                              |          |          |           |                     |       |         |        |               |        |
| -40.                | 0                 |         |        |                              |          |          |           |                     |       |         |        |               |        |
| -50.                | 0                 |         |        |                              |          |          |           |                     |       |         |        |               |        |
| -60.                | 0                 |         | 1      | 2                            |          | 3        | 4         |                     |       |         |        |               |        |
| -70.                | 0                 |         |        | _                            |          |          |           |                     |       |         |        |               |        |
| -80.                | 0                 |         |        |                              |          |          |           |                     |       |         |        |               |        |
| -90.                | 0                 |         |        |                              |          |          |           |                     |       |         |        |               |        |
| -10                 | 0 <mark>30</mark> | 100     | 0.     | 2000.                        | 3000.    | 400      | 0.        | 5000.               | 6000. | 700     | 0.     | 8000. 9000    |        |
|                     |                   | 100     |        | 20001                        |          |          | equency ( |                     |       |         |        |               |        |
| Site<br>Con<br>Proj | dition            |         | : FCC  | H01-KS<br>PART 22<br>222402- |          | n HF Elf | RP FACT   | DR-09020            | HORIZ | ONTAL   |        |               |        |
| Plar                | ne                |         | : E1   |                              |          |          |           |                     |       |         |        |               |        |
| Frequency           | EIR               | P I     | Limit  | Over                         | SP       | A        | S.G.      | тх с                | able  | TX An   | tenna  | Polarization  | Result |
|                     |                   |         |        | Limit                        | Read     | -        | Power     |                     | SS    | Ga      |        |               |        |
| (MHz)               | (dB               |         | dBm)   | ( dB )                       | (dB      | -        | ( dBm )   |                     | B)    | (dE     |        | (H/V)         |        |
| 1672                | -57.              |         | -13    | -44.50                       | -70.     |          | -60.47    |                     | 88    | 6.0     |        | Н             | Pass   |
| 2509                | -59.              |         | -13    | -46.16                       | -78.     |          | -61.77    |                     | 08    | 5.8     |        | Н             | Pass   |
| 3345                | -59.              |         | -13    | -46.25                       | -69.     |          | -63.62    |                     | 14    | 7.6     |        | н             | Pass   |
| 4182                | -56.              | 51      | -13    | -43.51                       | -71.     | 27       | -61.78    | 1.                  | 37    | 8.7     | '9     | Н             | Pass   |
















# 4 List of Measuring Equipment

| Instrument                   | Manufacturer | Model No. | Serial No. | Characteristics | Calibration<br>Date | Test Date     | Due Date      | Remark                   |
|------------------------------|--------------|-----------|------------|-----------------|---------------------|---------------|---------------|--------------------------|
| Spectrum<br>Analyzer         | R&S          | FSP40     | 100319     | 9kHz~40GHz      | Dec. 29, 2012       | Feb. 05, 2013 | Dec. 28, 2013 | Conducted<br>(TH01-KS)   |
| System<br>Simulator          | R&S          | CMU200    | 837587/066 | 2G Full-Band    | Dec. 29, 2012       | Feb. 05, 2013 | Dec. 28, 2013 | Conducted<br>(TH01-KS)   |
| DC Power<br>Supply           | GWINSTEK     | GPS-3030D | E1884515   | N/A             | Aug. 22, 2012       | Feb. 05, 2013 | Aug. 21, 2013 | Conducted<br>(TH01-KS)   |
| Thermal<br>Chamber           | Ten Billion  | TTC-B3S   | TBN-960502 | N/A             | Dec. 29, 2012       | Feb. 05, 2013 | Dec. 28, 2013 | Conducted<br>(TH01-KS)   |
| EMI Test<br>Receiver         | R&S          | ESCI      | 100534     | 9kHz~3GHz       | Nov. 08, 2012       | Feb. 05, 2013 | Nov. 07, 2013 | Radiation<br>(03CH01-KS) |
| Spectrum<br>Analyzer         | R&S          | FSP30     | 100400     | 9kHz~30GHz      | Jun. 01, 2012       | Feb. 05, 2013 | May 31, 2013  | Radiation<br>(03CH01-KS) |
| Bilog Antenna                | SCHAFFNER    | CBL6112D  | 23182      | 25MHz~2GHz      | Dec. 07, 2012       | Feb. 05, 2013 | Dec. 06, 2013 | Radiation<br>(03CH01-KS) |
| Double Ridge<br>Horn Antenna | EMCO         | 3117      | 00075959   | 1GHz~18GHz      | Jan. 06, 2013       | Feb. 05, 2013 | Jan. 05, 2014 | Radiation<br>(03CH01-KS) |
| Amplifier                    | com-power    | PA-103A   | 161069     | 1MHz~1GHz       | Jun. 01, 2012       | Feb. 05, 2013 | May 31, 2013  | Radiation<br>(03CH01-KS) |
| Amplifier                    | Agilent      | 8449B     | 3008A02370 | 1GHz~26.5GHz    | Dec. 29, 2012       | Feb. 05, 2013 | Dec. 28, 2013 | Radiation<br>(03CH01-KS) |
| SHF-EHF<br>Horn              | Schwarzbeck  | BBHA 9170 | 9170249    | 15GHz~40GHz     | Nov. 23, 2012       | Feb. 05, 2013 | Nov. 22, 2013 | Radiation<br>(03CH01-KS) |
| Loop Antenna                 | R&S          | HFH2-Z2   | 860004/001 | 9KHz ~ 30MHz    | Jul. 03, 2012       | Feb. 05, 2013 | Jul. 02, 2014 | Radiation<br>(03CH01-KS) |
| System<br>Simulator          | R&S          | CMU200    | 116456     | Full-Band       | Sep. 19, 2012       | Feb. 05, 2013 | Sep. 18, 2013 | Radiation<br>(03CH01-KS) |



# 5 Uncertainty of Evaluation

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of | 2.54 |
|--------------------------------------|------|
| Confidence of 95% (U = 2Uc(y))       | 2.54 |

#### Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

| Measuring Uncertainty for a Level of |      |
|--------------------------------------|------|
| Confidence of 95%                    | 4.72 |
| (U=2Uc(y))                           |      |



# Appendix A. Photographs of EUT

Please refer to Sporton report number EP222402-01 as below.



# Appendix C. Product Equality Declaration

# CK TELECOM LTD.

Technology Road.High-Tech Development Zone. Heyuan, Guangdong,P.R.China. Tel: +86-755-26739633; Fax: +86-755-26739500

Date: February 19, 2013

# **Product Equality Declaration**

We, **CK TELECOM LTD.**, declare on our sole responsibility for the product of **Doro PhoneEasy 615** below:

The differences between previous and current model of **Doro PhoneEasy 615** are as below:

- 1. Update the flash, FM, USB cable, T-flash card connector, WWAN Antenna and PCB
- 2. Change software version to "BOAT-S05B\_DORO615\_L18EN\_202\_130130"
- 3. LCD change from TFT1N5470-E to TFT1N5690-E

Except listings above, the others are all the same as previous version.

Should you have any questions or comments regarding this matter, please have my best attention.

Sincerely yours,

lixin

Contact Person: Xin Li Applicant: CK TELECOM LTD. Tel: +86-755-26739633 Fax: +86-755-26739500 E-Mail: xin.li@ck-telecom.com