

A Test Lab Techno Corp.

Changan Lab : No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.

Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No.	:	1201FS16-01			
Applicant	:	Doro AB			
Product Type	:	GSM Mobile Telephone			
Trade Name	:	doro			
Model Number	:	Doro PhoneEasy 610			
Dates of Receive	:	Jan. 16, 2012			
Dates of Test	:	Feb. 06 ~ 21, 2012			
Date of Issued	:	Feb. 23, 2012			
Test Environment	:	Ambient Temperature : 22 \pm 2 ° C			
		Relative Humidity : 40 - 70 %			
Standard	:	ANSI/IEEE C95.1-1999			
		IEEE Std. 1528-2003			
		47 CFR Part §2.1093;			
		FCC/OET Bulletin 65 Supplement C [July 2001]			
Max. SAR	:	0.293 W/kg Head SAR			
		0.352 W/kg Body SAR			
Test Lab Location	:	Chang-an Lab			
 The test operations have to be performed with cautious behavior, the test results are as attached. The test results are under chamber environment of A Test Lab Technology. 					

- The test results are under chamber environment of A Test Lab Techno 2. Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full. This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. The test results in the report only 3. apply to the tested sample.

:

Approved By

: Juny - Tan Tan Tan (Yung Tan Tsai)

(Bill Hu)

Contents

	1.	Description of Equipment under Test (EUT)	
	2.	Introduction	4
		2.1 SAR Definition	4
	3.	SAR Measurement Setup	5
		3.1 DASY4 E-Field Probe System	6
		3.2 Data Acquisition Electronic (DAE) System	
		3.3 Robot	9
		3.4 Measurement Server	9
		3.5 Device Holder	
		3.6 Phantom - SAM v4.0	10
		3.7 Oval Flat Phantom - ELI 4.0	11
		3.8 Data Storage and Evaluation	11
	4.	Tissue Simulating Liquids	
		4.1 Ingredients	
		4.2 Recipes	
		4.3 Liquid Confirmation	
	5.	SAR Testing with RF Transmitters	
		5.1 Conducted Power	19
		5.2 Simultaneous Transmitting Evaluate	19
	6.	System Performance Check	
		6.1 Symmetric Dipoles for System Validation	
		6.2 Validation	
	7.	Test Equipment List	
	8.	Measurement Uncertainty	
	9.	Measurement Procedure	
		9.1 Spatial Peak SAR Evaluation	
		9.2 Area & Zoom Scan Procedures	
		9.3 Volume Scan Procedures	
		9.4 SAR Averaged Methods	
		9.5 Power Drift Monitoring	
	10	9. SAR Test Results Summary	
		10.1 Head SAR	
		10.2 Body SAR	
		10.3 Std. C95.1-1999 RF Exposure Limit	
	11	. Conclusion	
	12	References	
	Ap	ppendix A - System Performance Check	
	Ap	ppendix B - SAR Measurement Data	
	Ap	ppendix C - Calibration	
©2012 A	Test	Lab Techno Corp.	

1. <u>Description of Equipment under Test (EUT)</u>

Applicant	Doro AB				
Applicant Address	Magistratsvägen 10, SE-226 43 Lund, Sweden				
Manufacture	CK TELECOM LTD.				
Manufacture Address	Technology Road.High-Tech Developmer	nt Zone. Heyuan,			
	Guangdong,P.R.China.				
Product Type	GSM Mobile Telephone				
Trade Name	doro				
Model Number	Doro PhoneEasy 610				
FCC ID	WS5DORO610				
Tx Frequency	Band	Operate Frequency (MHz)			
	PCS 1900	1850.2 - 1909.8			
	Bluetooth	2402 - 2480			
RF Conducted Power	Band	Power (W / dBm)			
	PCS 1900	1.047 / 30.20			
	Bluetooth	0.010 / 9.98			
Max. SAR Measurement	0.293 W/kg Head SAR				
	0.352 W/kg Body SAR				
Antenna Type	PCS: Built-in PIFA Antenna, Bluetooth: PCB Antenna				
Hardware Version	SHELLFISH-V2.0				
Device Category	Portable Device				
RF Exposure Environment	General Population / Uncontrolled				
Battery Option	Standard				
EUT Type	Production Unit				
Application Type	Certification				

Note: This EUT support GSM only.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

2. <u>Introduction</u>

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **Doro AB Trade Name : doro Model(s) : Doro PhoneEasy 610.** The test procedures, as described in American National Standards, Institute C95.1-1999 [1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

2.1 SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (P). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 2).

SAR =
$$\frac{d}{dt} \left(\frac{dw}{dm} \right)$$
 = $\frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$

Figure 2. SAR Mathematical Equation

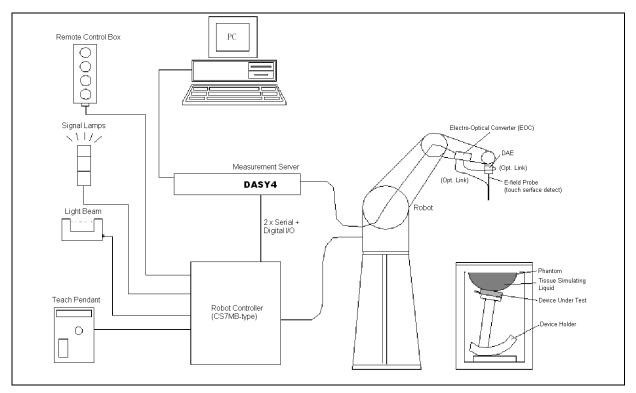
SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where :

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)


E = RMS electric field strength (V/m)

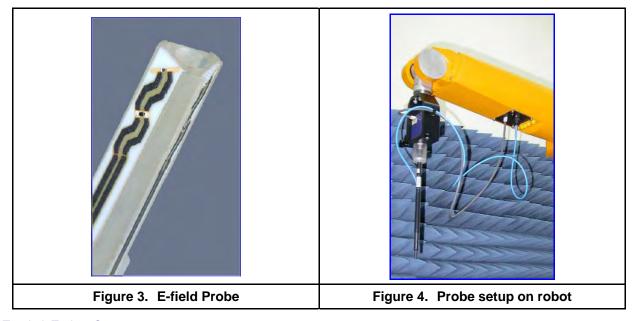
*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

3. <u>SAR Measurement Setup</u>

The DASY4 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 5. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 6. A computer operating Windows 2000 or Windows XP.
- 7. DASY4 software.
- 8. Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. Validation dipole kits allowing validating the proper functioning of the system.


3.1 DASY4 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 or ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

3.1.1 E-Field Probe Specification

Construction	Symmetrical design with triangular core
	Built-in optical fiber for surface detection System
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, e.q., glycol)
Calibration	In air from 10 MHz to 6 GHz
	In brain and muscle simulating tissue at frequencies of 2450MHz (accuracy $\pm 8\%$)
	Calibration for other liquids and frequencies upon request
Frequency	\pm 0.2 dB (30 MHz to 6 GHz) for EX3DV4
	\pm 0.2 dB (30 MHz to 4 GHz) for ES3DV3
Directivity	± 0.3 dB in brain tissue (rotation around probe axis)
	± 0.5 dB in brain tissue (rotation normal probe axis)
Dynamic Range	10 μ W/g to > 100mW/g; Linearity: ±0.2dB
Dimensions	Overall length: 337mm
	Tip length: 20mm
	Body diameter: 12mm
	Tip diameter: 2.5mm for EX3DV4, 3.9mm for ES3DV3
	Distance from probe tip to dipole centers: 1.0mm for EX3DV4, 2.0mm for
	ES3DV3
Application	General dosimetry up to 6GHz
	Compliance tests of mobile phones
	Fast automatic scanning in arbitrary phantoms

3.1.2 E-Field Probe Calibration process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm^2 .

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR =
$$C \frac{\Delta T}{\Delta t}$$

Where :

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

 ΔT = Temperature increase due to RF exposure.

Or SAR =
$$\frac{|E|^2 \sigma}{\rho}$$

Where :

 σ = Simulated tissue conductivity,

 $\boldsymbol{\rho}$ = Tissue density (kg/m³).

3.2 Data Acquisition Electronic (DAE) System

Cell Controller

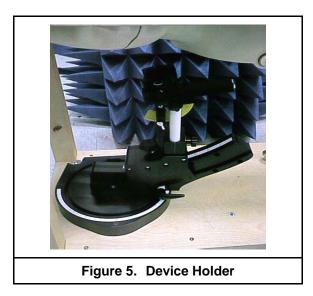
Processor :	Intel Pentium 4
Clock Speed :	2.4GHz
Operating System :	Windows XP Professional

Data Converter

Features :	Signal Amplifier, multiplexer, A/D converter, and control logic
Software :	DASY4 v4.7 (Build 80) & SEMCAD v1.8 (Build 186)
Connecting Lines :	Optical downlink for data and status info
	Optical uplink for commands and clock

3.3 Robot

Positioner :	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability :	±0.025 mm
No. of Axis:	6


3.4 Measurement Server

Processor :	PC/104 with a 166MHz low-power Pentium	
I/O-board :	Link to DAE4 (or DAE3)	
	16-bit A/D converter for surface detection system	
	Digital I/O interface	
	Serial link to robot	
	Direct emergency stop output for robot	

3.5 Device Holder

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness	2 ±0.2 mm		
Filling Volume	Approx. 25 liters		
Dimensions	1000×500 mm (L×W)		
Table 1. Specification of SAM v4.0			

Figure 6. SAM Twin Phantom

3.7 Oval Flat Phantom - ELI 4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness	2 ±0.2 mm		
Filling Volume	Approx. 30 liters		
Dimensions	190×600×400 mm (H×L×W)		
Table 2. Specification of ELI 4.0			

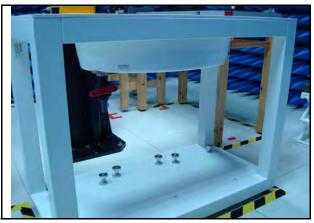


Figure 7. Oval Flat Phantom

3.8 Data Storage and Evaluation

3.8.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DA4. The post processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

3.8.2 Data Evaluation

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Normi,	ai0, ai1, ai2
	- Conversion factor		ConvFi
	- Diode compression	point	dcpi
Device parameters 3	- Frequency	f	
	- Crest factor		cf
Media parameters :	- Conductivity	σ	
	- Density		ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel *i* (*i* = x, y, z)

 U_i = input signal of channel *i* (*i* = x, y, z)

cf = crest factor of exciting field (DASY parameter)

*dcp*_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated :

$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

H-field probes :

with
$$V_i$$
 = compensated signal of channel *i* (*i* = x, y, z)

*Norm*_i = sensor sensitivity of channel i (*i* = x, y, z)
$$\mu V/(V/m)^2$$
 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel *i* in V/m

Hi = magnetic field strength of channel *i* in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

= local specific absorption rate in mW/g

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

- ρ = equivalent tissue density in g/cm³
- ***Note**: That the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

4. <u>Tissue Simulating Liquids</u>

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue. The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	Head		В	ody	
(MHz)	٤ _r	σ (S/m)	٤r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 - 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	
	(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m ³)				

Table 3.

Tissue dielectric parameters for head and body phantoms

4.1 Ingredients

The following ingredients are used:

- Water: deionized water (pure H_20), resistivity $\geq 16 \text{ M} \Omega$ -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops)
 -to reduce relative permittivity
- Salt: pure NaCI -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

4.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Note: The goal dielectric parameters (at 22 $^\circ\!C$) must be achieved within a tolerance of ±5% for <code>ɛ</code> and ±5% for <code>\sigma</code>.

Ingredients					Frequen	cy (MHz)				
(% by weight)	4	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99⁺% Pure Sodium Chloride

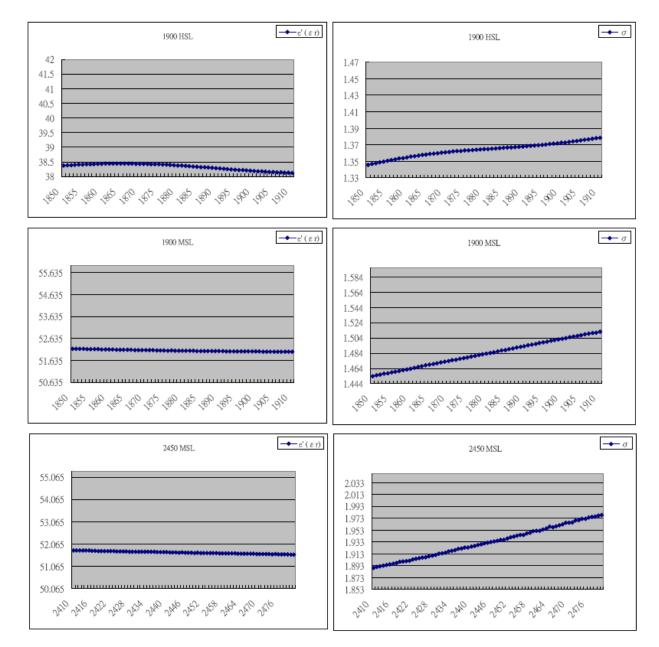
Sugar: 98⁺% Pure Sucrose

Water: De-ionized, 16 $M\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

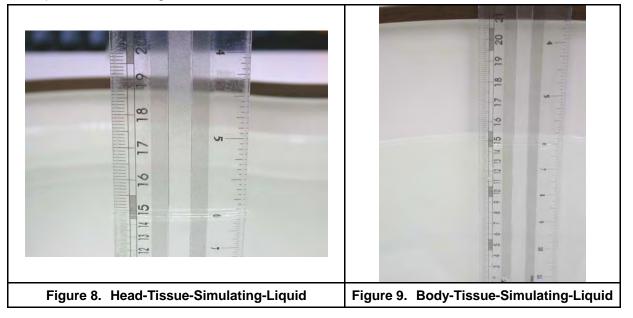
Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4.3 Liquid Confirmation


4.3.1 Parameters

Liquid Ver	ify												
Ambient Te	mperature :	22 ± 2	°C;Relative	Humidity :	40 -70%								
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date					
	1850MHz	22.0	٤r	40.0	38.37	-4.08 %	± 5						
	100010112	22.0	σ	1.40	1.35	-3.57 %	± 5						
1900MHz	1900MHz	22.0	٤r	40.0	38.19	-4.53 %	± 5	02/07/2012					
Head	190010112	22.0	σ	1.40	1.37	-2.14 %	± 5	02/07/2012					
	1930MHz	22.0	٤r	40.0	38.12	-4.70 %	± 5						
	193010112	22.0	σ	1.40	1.40	0.00 %	± 5						
	1850MHz	1850MHz	1850MHz	1850MHz	1850MHz	1850MHz	22.0	٤r	53.30	52.17	-2.12 %	± 5	
		22.0	σ	1.52	1.45	-4.61 %	± 5						
1900MHz	1900MHz	22.0	٤r	53.30	52.04	-2.36 %	± 5	02/20/2012					
Body	190010112	22.0	σ	1.52	1.50	-1.32 %	± 5	02/20/2012					
	1930MHz	22.0	٤r	53.30	52.01	-2.42 %	± 5						
	193010112	22.0	σ	1.52	1.53	0.66 %	± 5						
	2400MHz	22.0	٤r	52.70	51.81	-1.69 %	± 5						
	24000012	22.0	σ	1.95	1.88	-3.59 %	± 5						
2450MHz	2450MHz	22.0	٤r	52.70	51.67	-1.95 %	± 5	02/20/2012					
Body		22.0	σ	1.95	1.94	-0.51 %	± 5	02/20/2012					
	2500MHz	22.0	٤r	52.70	51.50	-2.28 %	± 5						
	20001011112	22.0	σ	1.95	2.00	2.56 %	± 5						

Table 4. Measured Tissue dielectric parameters for head and body phantoms


4.3.2 Test Plots

4.3.3 Liquid Depth

The liquid level was during measurement 15cm \pm 0.5cm.

5. SAR Testing with RF Transmitters

5.1 Conducted Power

Band	СН	Frequency (MHz)	RF Conducted Output Power (dBm)			
		(11112)	Time Average	Average burst		
	Lowest	1850.2	21.01	30.20		
PCS 1900	Middle	1880.0	20.91	30.10		
	Highest	1909.8	20.81	30.00		

Band	СН	Frequency (MHz)	RF Conducted Output Power (dBm)
		(11112)	Average
	Lowest	2402	9.09
Bluetooth	Middle	2441	9.61
	Highest	2480	9.98

5.2 Simultaneous Transmitting Evaluate

RF Conducted Pow	er		Antenna Distance	;
Band	dBm	W	Antenna Account	Distance (mm)
PCS 1900	21.01	0.13	BT to WWAN	3.63
BT 2.0	9.98	0.01		

BT and GSM simultaneously SAR Description

(1) Antenna Distance

1a.BT & WWAN 3.63 mm

(2) WWAN/BT

 Σ SAR=PCS1900+BT=0.362 mW/g < SAR limit: 1.6mW/g.,

Then simultaneous SAR of PCS1900/BT is not required.

(3) Highest Simultaneous SAR Evaluation:

Body SAR : Σ SAR= PCS1900+BT=0.362 mW/g < SAR limit: 1.6mW/g

Therefore, the Simultaneous SAR is not required.

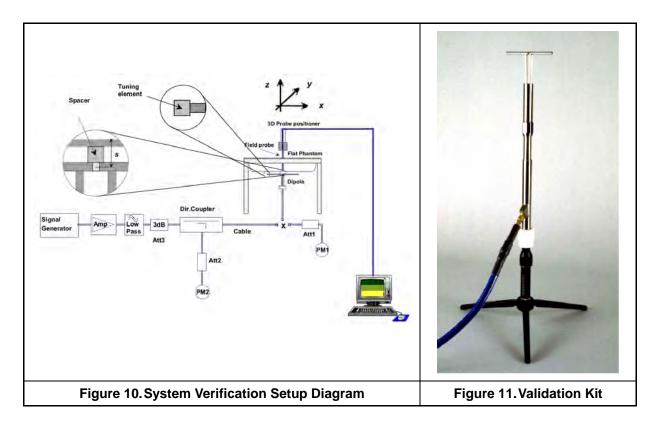
- Note: 1. Simultaneous Transmitting Summery of SAR, please find the table-5 as below.
 - 2. Simultaneous Transmission Summation of SAR, please find the table-6 as below.

Table 5. Simultaneous Transmitting Summery

Simultaneous Transmitting	Bluetooth
PCS 1900	V

Table 6. Simultaneous Transmission Summation

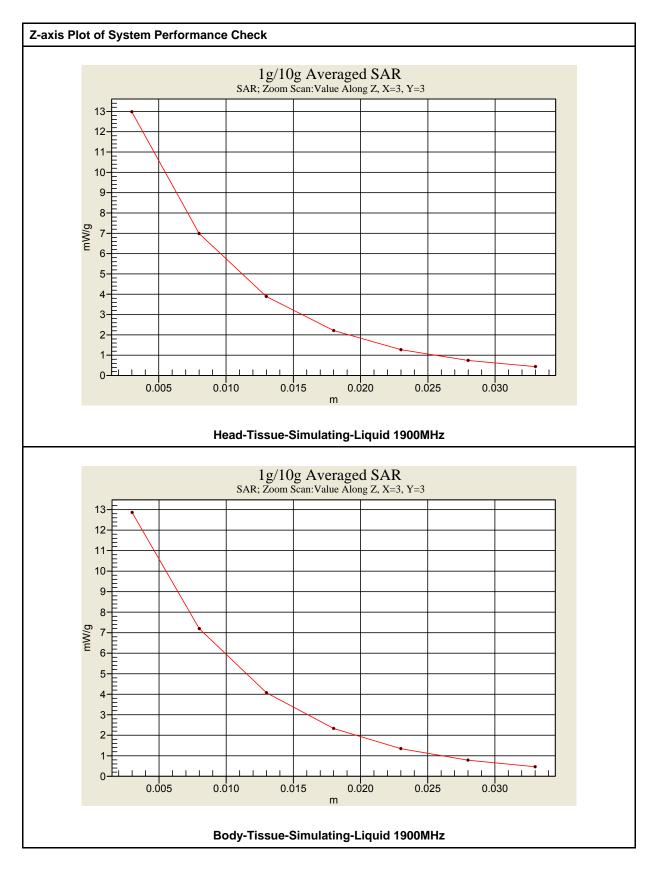
	Back Surface mode								
	The sum of the 1-g SAR								
Simult Tx	Configuration	GSM 1900 SAR mW/g	BT SAR mW/g	∑ SAR mW/g	∑ SAR				
Body SAR	Flat	0.352	0.010	0.362	<1.6				


	Front Surface mode								
	The sum of the 1-g SAR								
Simult Tx	Configuration	GSM 1900 SAR mW/g	BT SAR mW/g	∑ SAR mW/g	∑ SAR				
Body SAR	Flat	0.108	0.021	0.129	<1.6				

6. System Performance Check

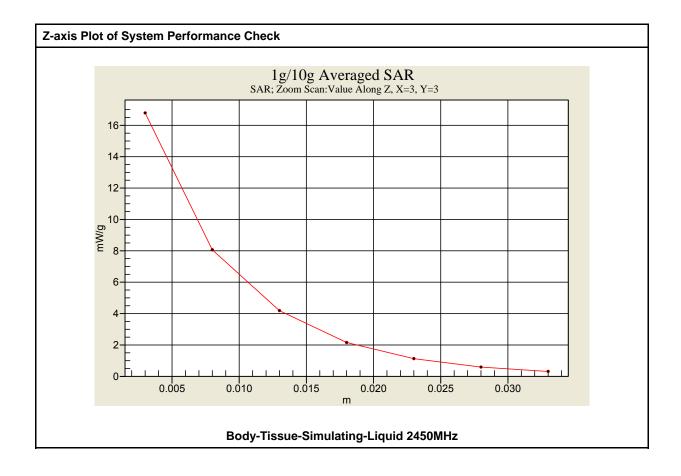
6.1 Symmetric Dipoles for System Validation

Construction	Symmetrical dipole with I/4 balun enables measurement of feed point impedance
	with NWA matched for use near flat phantoms filled with head simulating solutions
	Includes distance holder and tripod adaptor Calibration Calibrated SAR value for
	specified position and input power at the flat phantom in head simulating solutions.
Frequency	1900 MHz, 2450 MHz
Return Loss	> 20 dB at specified validation position
Power Capability	> 100 W (f < 1GHz); > 40 W (f > 1GHz)
Options	Dipoles for other frequencies or solutions and other calibration conditions are
	available upon request
Dimensions	D1900V2 : dipole length 67.5 mm; overall height 300 mm
	D2450V2:dipole length 51.5 mm; overall height 300 mm



6.2 Validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The validation was performed at 1900 MHz and 2450 MHz.


Valida	tion kit	Mixture Type	SAR _{1g} [mW/g]				SAI [mV	R _{10g} V/g]	Date of Calibration
D1000\/2	-SN5d111	Head	39	.9	20).8	07/22/2011		
D1900V2	SNJUTT	Body	40	.9	21	.5	07/22/2011		
D2450V	2-SN735	Body	51	.2	23	3.8	06/22/2011		
Frequency (MHz)	Power (dBm)	SAR _{1g}	SAR _{10g}	Drift (dB)	-	rence ntage	Date		
(11112)	(abiii)	(mW/g)	(mW/g)	(ub)	1g	10g			
1900	250mW	10.20	5.28						
(Head)	Normalize to 1 Watt	40.80	21.12	-0.016	2.3 %	1.5 %	02/07/2012		
1900	250mW	10.1	5.23						
(Body)	Normalize to 1 Watt	40.4	20.92	0.035	-1.2 %	-2.7 %	02/20/2012		
2450	250mW	12.7	5.78	-0.010	-0.8 %	-2.9 %	00/00/0040		
(Body)	Normalize to 1 Watt	50.8	23.12	-0.010	-0.0 %	-2.9 %	02/20/2012		

©2012 A Test Lab Techno Corp. Report Number: 1201FS16-01

7. <u>Test Equipment List</u>

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration
Manufacturer		Type/Woder		Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	EX3DV4	3831	01/04/2012	01/04/2013
SPEAG	Dosimetric E-Field Probe	ES3DV3	3270	09/12/2011	09/12/2012
SPEAG	1900MHz System Validation Kit	D1900V2	5d111	07/22/2011	07/22/2012
SPEAG	2450MHz System Validation Kit	D2450V2	735	06/22/2011	06/22/2012
SPEAG	Data Acquisition Electronics	DAE4	910	12/07/2011	12/07/2012
SPEAG	Data Acquisition Electronics	DAE4	779	01/23/2012	01/23/2013
SPEAG	Measurement Server	SE UMS 001 BA	1021	NC	CR
SPEAG	Device Holder	N/A	N/A	NC	CR
SPEAG	Phantom	SAM V4.0	1009	NC	CR
SPEAG	Robot	Staubli RX90L	F00/589B1/A/01	NC	CR
SPEAG	Software	DASY4 V4.7 Build 80	N/A	NC	CR
SPEAG	Software	SEMCAD V1.8 Build 186	N/A	NC	CR
Agilent	Dielectric Probe Kit	85070C	US99360094	NC	CR
Agilent	ENA Series Network Analyzer	E5071B	MY42404655	04/14/2010	04/14/2012
R&S	Power Sensor	NRP-Z22	100179	05/27/2011	05/27/2012
Agilent	MXG Vector Signal Generator	N5182A	MY47420962	05/24/2011	05/24/2013
Agilent	Dual Directional Coupler	778D	50334	NC	CR
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NC	CR
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	N	CR

 Table 7.
 Test Equipment List

8. <u>Measurement Uncertainty</u>

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 20.10 \%$ [8].

According to Std. C95.3[9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

According to CENELEC [10], typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

ltem	Uncertainty Component	Uncertainty Value	Prob. Dist	Div.	с _і (1g)	c _i (10g)	Std. Unc. (1-g)	Std. Unc. (10-g)	v _i or V _{eff}
Meas	urement System								
u1	Probe Calibration (<i>k</i> =1)	±5.5%	Normal	1	1	1	±5.5%	±5.5%	8
u2	Probe Isotropy	±7.6%	Rectangular	$\sqrt{3}$	0.7	0.7	±3.1%	±3.1%	8
u3	Boundary Effect	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
u4	Linearity	±4.7%	Rectangular	$\sqrt{3}$	1	1	±2.7%	±2.7%	8
u5	System Detection Limit	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.58%	±0.58%	8
u6	Readout Electronics	±0.3%	Normal	1	1	1	±0.3%	±0.3%	8
u7	Response Time	±0.8%	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%	8
u8	Integration Time	±2.6%	Rectangular	$\sqrt{3}$	1	1	±1.5%	±1.5%	8
u9	RF Ambient Conditions	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	80
u10	RF Ambient Reflections	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	∞
u11	Probe Positioner Mechanical Tolerance	±0.4%	Rectangular	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
u12	Probe Positioning with respect to Phantom Shell	±2.9%	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
u13	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Test s	sample Related	•	-			-			
u14	Test sample Positioning	±3.6%	Normal	1	1	1	±3.6%	±3.6%	89
u15	Device Holder Uncertainty	±3.5%	Normal	1	1	1	±3.5%	±3.5%	5
u16	Output Power Variation - SAR drift measurement	±5.0%	Rectangular	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
	tom and Tissue Parameters					-			
u17	Phantom Uncertainty (shape and thickness tolerances)	±4.0%	Rectangular	$\sqrt{3}$	1	1	±2.3%	±2.3%	8
u18	Liquid Conductivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	8
u19	Liquid Conductivity - measurement uncertainty	±1.93%	Normal	1	0.64	0.43	±1.24%	±0.83%	69
u20	Liquid Permittivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	8
u21	Liquid Permittivity - measurement uncertainty	±1.4%	Normal	1	0.6	0.49	±0.84%	±1.69%	69
	Combined standard uncertain	ity	RSS				±10.05%	±9.98%	313
	Expanded uncertainty (95% CONFIDENCE LEVEL))	<i>k</i> =2				±20.10%	±19.96%	

Table 8. Uncertainty Budget of DASY

9. <u>Measurement Procedure</u>

The measurement procedures are as follows:

- 1. For WLAN function, engineering testing software installed on Notebook can provide continuous transmitting signal.
- 2. Measure output power through RF cable and power meter
- 3. Set scan area, grid size and other setting on the DASY software
- 4. Find out the largest SAR result on these testing positions of each band
- 5. Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- 1. Power reference measurement
- 2. Area scan
- 3. Zoom scan
- 4. Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages

- 1. Extraction of the measured data (grid and values) from the Zoom Scan
- 2. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. Generation of a high-resolution mesh within the measured volume
- 4. Interpolation of all measured values form the measurement grid to the high-resolution grid
- 5. Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. Calculation of the averaged SAR within masses of 1g and 10g

9.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 7x7x9 points with step size 5, 5 and 3 mm for 300 MHz to 3 GHz, and 7x7x9 points with step size 5, 5 and 3 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

9.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

9.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

10. SAR Test Results Summary

10.1 Head SAR

Measurement Results									
Band	Frequency		Power	Test	Antenna	Spacing	SAR _{1g}	Power Drift	Remark
Dana	СН	MHz	(dBm)	Position	/ incline	(mm)	[mW/g]	(dB)	Kennark
PCS 1900	512	1850.2	30.20	Right-Cheek	Built-in PIFA	0	0.293	-0.022	
	512	1850.2	30.20	Right-Tilted	Built-in PIFA	0	0.162	0.023	
	512	1850.2	30.20	Left-Cheek	Built-in PIFA	0	0.246	0.141	
	512	1850.2	30.20	Left-Tilted	Built-in PIFA	0	0.210	0.039	
Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population							1.6 W/kg (mW/g) Averaged over 1 gram		

10.2 Body SAR

Measurement Results									
Band	Frequency		Power	Phantom	Spacing	Accessory	SAR _{1g}	Power Drift	Remark
Danu	CH MHz (dBm) Position (mm) Accesse	Accessory	[mW/g]	(dB)	Remark				
PCS 1900	512	1850.2	30.20	Flat	15	Headset	0.108	-0.007	Front Surface to Phantom
PC3 1900	512	1850.2	30.20	Flat	15	Headset	0.352	0.030	Back Surface to Phantom
Bluetooth	78	2480	9.98	Flat	15	N/A	0.021	-0.085	Front Surface to Phantom
	78	2480	9.98	Flat	15	N/A	0.010	-0.113	Back Surface to Phantom
	ty Limit S /General	1.6 W/kg (mW/g) Averaged over 1 gram							

Notes:

1. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.

10.3 Std. C95.1-1999 RF Exposure Limit

	Population Uncontrolled	Occupational Controlled Exposure (W/kg) or (mW/g)		
Human Exposure	Exposure			
	(W/kg) or (mW/g)			
Spatial Peak SAR*				
(head)	1.60	8.00		
Spatial Peak SAR**	0.08	0.40		
(Whole Body)	0.08	0.40		
Spatial Peak SAR***	1.60	8.00		
(Partial-Body)	1.00	0.00		
Spatial Peak SAR****	4.00	20.00		
(Hands / Feet / Ankle / Wrist)	4.00			

 Table 9.
 Safety Limits for Partial Body Exposure

Notes :

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / **Uncontrolled Environments** : are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

11. <u>Conclusion</u>

The SAR test values found for the portable mobile phone **Doro AB Trade Name : doro Model(s) : Doro PhoneEasy 610** is below the maximum recommended level of 1.6 W/kg (mW/g).

12. <u>References</u>

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "*Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields*", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Poković, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "*E-field probe with improved isotropy in brain simulating liquids*", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, *Dosimetric evaluation of mobile communications equipment with known precision*, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.
- [11] KDB248227 D01 SAR meas for 802 11 a b g v01r02.
- [12] KDB 447498 D01 v04
- [13] KDB 616217 D01 v01r01
- [14] KDB 616217 D03 v01

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp.

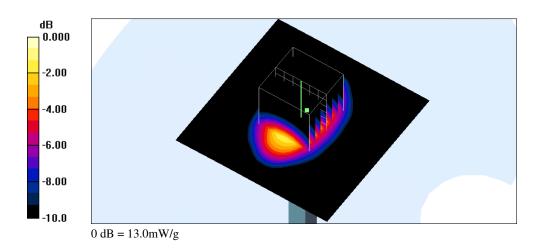
Date/Time: 2012/2/7 AM 01:37:19

System Performance Check at 1900MHz_20120207_Head

DUT: Dipole D1900V2_SN5d111; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.37 mho/m; ϵ_r = 38.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3831; ConvF(7.76, 7.76, 7.76); Calibrated: 2012/1/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2011/12/7
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

System Performance Check at 1900MHz/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.5 mW/g

System Performance Check at 1900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.8 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.28 mW/g Maximum value of SAR (measured) = 13.0 mW/g

©2012 A Test Lab Techno Corp. Report Number: 1201FS16-01

Test Laboratory: A Test Lab Techno Corp.

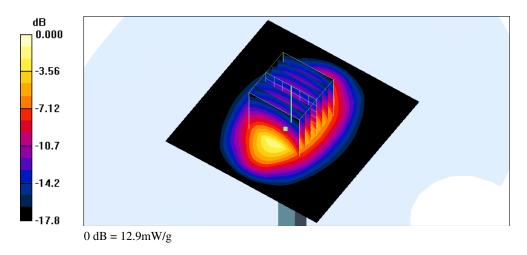
Date/Time: 2012/2/20 PM 07:23:02

System Performance Check at 1900MHz_20120220_Body

DUT: Dipole D1900V2_SN5d111; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: ES3DV3 SN3270; ConvF(4.64, 4.64, 4.64); Calibrated: 2011/9/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2012/1/23
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186


System Performance Check at 1900MHz/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.4 mW/g

System Performance Check at 1900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.4 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.23 mW/g Maximum value of SAR (measured) = 12.9 mW/g

Test Laboratory: A Test Lab Techno Corp.

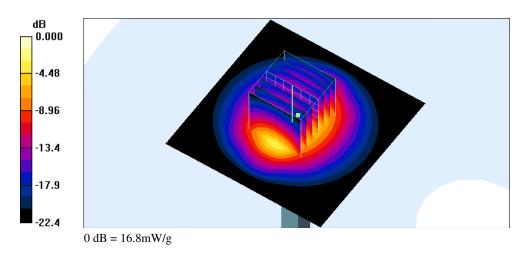
Date/Time: 2012/2/20 PM 06:09:58

System Performance Check at 2450MHz_20120220_Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:735

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: ES3DV3 SN3270; ConvF(4.28, 4.28, 4.28); Calibrated: 2011/9/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2012/1/23
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

System Performance Check at 2450MHz/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.0 mW/g

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.6 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.78 mW/g Maximum value of SAR (measured) = 16.8 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp.

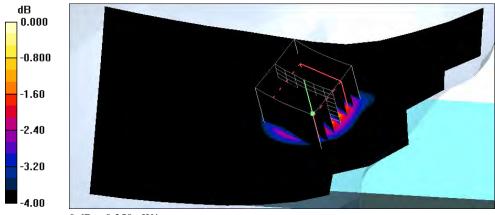
Date/Time: 2012/2/7 AM 02:05:53

RC_GSM PCS CH512

DUT: Doro PhoneEasy 610; Type: GSM Mobile Telephone; FCC ID: WS5DORO610

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY4 (High Precision Assessment)

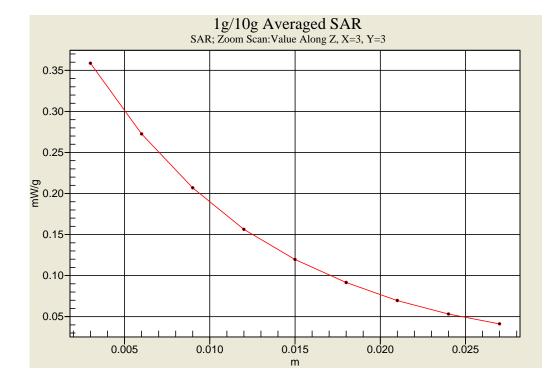
DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3831; ConvF(7.76, 7.76, 7.76); Calibrated: 2012/1/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2011/12/7
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Right Cheek/Area Scan (61x151x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.360 mW/g

Right Cheek/Zoom Scan (7x7x9)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 6.46 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 0.477 W/kg SAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.168 mW/g Maximum value of SAR (measured) = 0.359 mW/g

©2012 A Test Lab Techno Corp. Report Number: 1201FS16-01

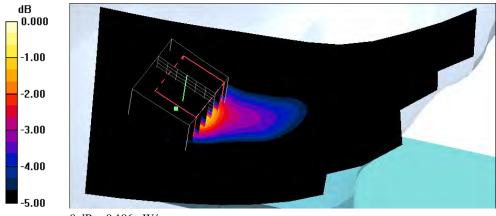
Date/Time: 2012/2/7 AM 02:32:46

RT_GSM PCS CH512

DUT: Doro PhoneEasy 610; Type: GSM Mobile Telephone; FCC ID: WS5DORO610

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35 \text{ mho/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3831; ConvF(7.76, 7.76, 7.76); Calibrated: 2012/1/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2011/12/7
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Right Tilted/Area Scan (61x151x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.236 mW/g

Right Tilted/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 10.4 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 0.268 W/kg SAR(1 g) = 0.162 mW/g; SAR(10 g) = 0.092 mW/g Maximum value of SAR (measured) = 0.196 mW/g

Date/Time: 2012/2/7 AM 03:32:08

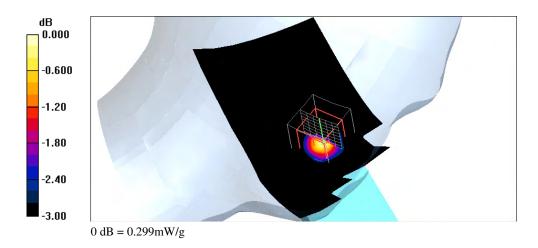
LC_GSM PCS CH512

DUT: Doro PhoneEasy 610; Type: GSM Mobile Telephone; FCC ID: WS5DORO610

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3831; ConvF(7.76, 7.76, 7.76); Calibrated: 2012/1/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2011/12/7
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Left Cheek/Area Scan (61x151x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.293 mW/g

Left Cheek/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 6.93 V/m; Power Drift = 0.141 dB Peak SAR (extrapolated) = 0.407 W/kg SAR(1 g) = 0.246 mW/g; SAR(10 g) = 0.139 mW/g Maximum value of SAR (measured) = 0.299 mW/g

Date/Time: 2012/2/7 AM 03:58:22

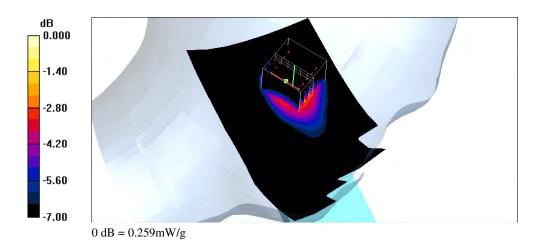
LT_GSM PCS CH512

DUT: Doro PhoneEasy 610; Type: GSM Mobile Telephone; FCC ID: WS5DORO610

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.35$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3831; ConvF(7.76, 7.76, 7.76); Calibrated: 2012/1/4
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2011/12/7
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Left Tilted/Area Scan (61x151x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.282 mW/g

Left Tilted/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 9.47 V/m; Power Drift = 0.039 dB Peak SAR (extrapolated) = 0.356 W/kg SAR(1 g) = 0.210 mW/g; SAR(10 g) = 0.115 mW/g Maximum value of SAR (measured) = 0.259 mW/g

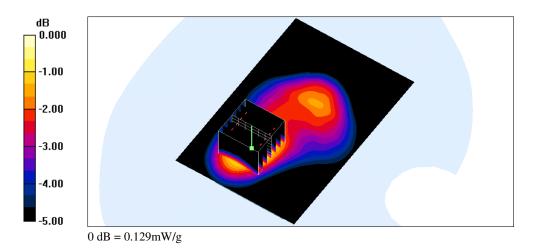
Date/Time: 2012/2/20 PM 08:32:46

Flat_PCS CH512_Front Surface to phantom 15mm_headset

DUT: Doro 610; Type: Mobile Phone; Serial: 357597031105491

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: ES3DV3 SN3270; ConvF(4.64, 4.64, 4.64); Calibrated: 2011/9/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2012/1/23
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (61x91x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.130 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 7.32 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 0.162 W/kg SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.066 mW/g Maximum value of SAR (measured) = 0.129 mW/g

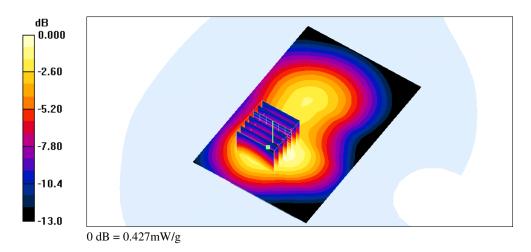
Date/Time: 2012/2/20 PM 08:05:28

Flat_PCS CH512_Back Surface to phantom 15mm_headset

DUT: Doro 610; Type: Mobile Phone; Serial: 357597031105491

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: ES3DV3 SN3270; ConvF(4.64, 4.64, 4.64); Calibrated: 2011/9/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2012/1/23
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (61x91x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.442 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 12.6 V/m; Power Drift = 0.030 dB Peak SAR (extrapolated) = 0.560 W/kg SAR(1 g) = 0.352 mW/g; SAR(10 g) = 0.212 mW/g Maximum value of SAR (measured) = 0.427 mW/g

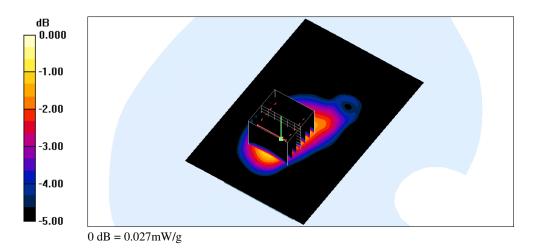
Date/Time: 2012/2/21 AM 01:28:48

Flat_BT CH78_Front Surface to phantom 15mm

DUT: Doro 610; Type: Mobile Phone; Serial: 357597031105491

Communication System: Bluetooth; Frequency: 2480 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; σ = 1.98 mho/m; ε_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: ES3DV3 SN3270; ConvF(4.28, 4.28, 4.28); Calibrated: 2011/9/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2012/1/23
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (61x91x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.026 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 3.34 V/m; Power Drift = -0.085 dB Peak SAR (extrapolated) = 0.045 W/kg SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.012 mW/g Maximum value of SAR (measured) = 0.027 mW/g

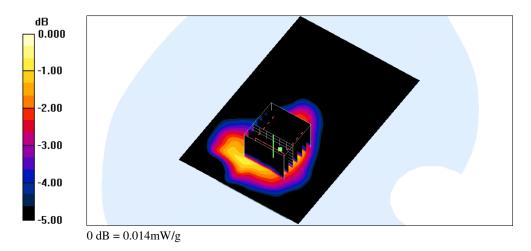
Date/Time: 2012/2/21 AM 12:00:12

Flat_BT CH78_Back Surface to phantom 15mm

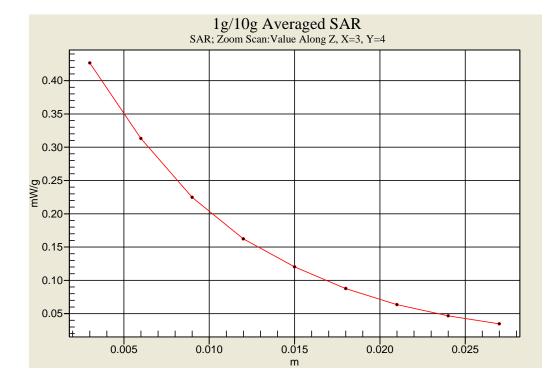
DUT: Doro 610; Type: Mobile Phone; Serial: 357597031105491

Communication System: Bluetooth; Frequency: 2480 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; σ = 1.98 mho/m; ε_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: ES3DV3 SN3270; ConvF(4.28, 4.28, 4.28); Calibrated: 2011/9/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2012/1/23
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flat/Area Scan (61x91x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.013 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mmReference Value = 2.16 V/m; Power Drift = -0.113 dB Peak SAR (extrapolated) = 0.025 W/kg SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.00546 mW/g Maximum value of SAR (measured) = 0.014 mW/g

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D1900V2 SN:5d111 Calibration No.D1900V2-5d111_Jul11
- Dipole _ D2450V2 SN:735 Calibration No.D2450V2-735_Jun11
- Probe _ EX3DV4 SN:3831 Calibration No.EX3-3831_Jan12
- Probe _ ES3DV3 SN:3270 Calibration No.ES3-3270_Sep11
- DAE _ DAE4 SN:910 Calibration No.DAE4-910_Dec11
- DAE _ DAE4 SN:779 Calibration No.DAE4-779_Jan11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS S S CRUDEN SNISS S S CRUDEN S S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client ATL (Auden)

Certificate No: D1900V2-5d111_Jul11

	D1900V2 - SN: 5d111		
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits abo	ove 700 MHz
Calibration date:	July 22, 2011		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages an ny facility: environment temperature (22 ± 3)°(d are part of the certificate.
	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	ID # GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Oct-11 Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: S5086 (20b)	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	Oct-11 Oct-11 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Oct-11 Oct-11 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Oct-11 Oct-11 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-1
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-1 In house check: Oct-1 In house check: Oct-1
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-1 In house check: Oct-1
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-1 In house check: Oct-1 In house check: Oct-1
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-1 In house check: Oct-1 In house check: Oct-1

Certificate No: D1900V2-5d111_Jul11

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS CR Z Z RP/BRATO

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura Suiss Calibration Service
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d111_Jul11

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.9 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.25 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.39 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.5 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d111_Jul11

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω + 6.7 jΩ	
Return Loss	- 23.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.9 Ω + 6.6 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
Liberindar Delay (one ancesterity	1.20

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

Certificate No: D1900V2-5d111_Jul11

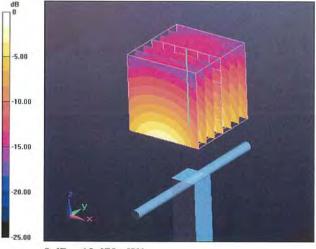
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 20.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d111

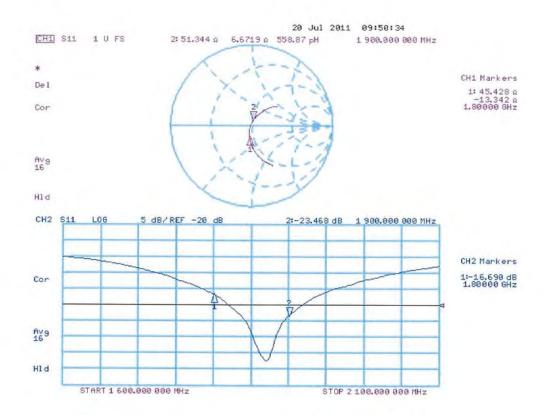

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 98.068 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.391 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 12.667 mW/g


 $0 \, dB = 12.670 \, mW/g$

Certificate No: D1900V2-5d111_Jul11

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d111_Jul11

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 22.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d111

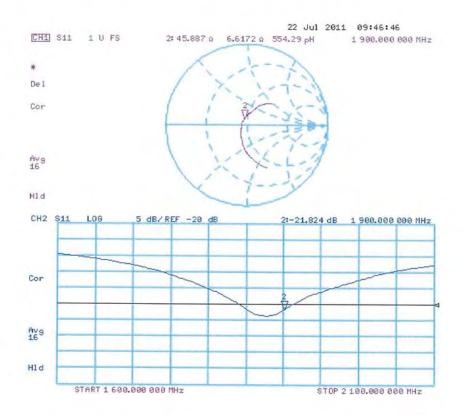
Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.53 mho/m; ϵ_r = 52.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.720 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.122 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.39 mW/g Maximum value of SAR (measured) = 12.882 mW/g


0 dB = 12.880 mW/g

Certificate No: D1900V2-5d111_Jul11

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d111_Jul11

Page 8 of 8

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Auden

Client

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-735_Jun11

Accreditation No.: SCS 108

Object	D2450V2 - SN: 7	35	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	June 22, 2011		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°(nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power meter EPM-442A	GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	**************************************
Power meter EPM-442A Power sensor HP 8481A			Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	US37292783	06-Oct-10 (No. 217-01266)	Oct-11 Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	US37292783 SN: S5086 (20b)	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	Oct-11 Oct-11 Apr-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Oct-11 Oct-11 Apr-12 Apr-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jun-12
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11) Check Date (in house)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jun-12 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Oct-11 Oct-11 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura Suiss Calibration Servico

5 Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-735_Jun11

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	· <u></u>

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.16 mW / g

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.2 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.96 mW / g

Certificate No: D2450V2-735_Jun11

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 2.8 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0 Ω + 5.2 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 07, 2003

Certificate No: D2450V2-735_Jun11

Page 4 of 8

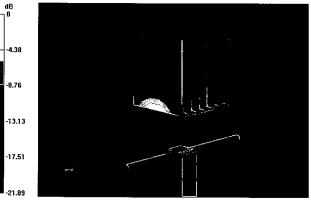
DASY5 Validation Report for Head TSL

Date: 22.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

D2450_735_H_110622_CL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 735

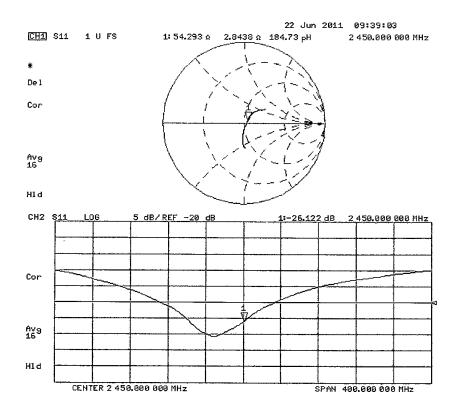

Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.72 mho/m; ϵ_r = 38.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 08.06.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 101.6 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.579 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.16 mW/g Maximum value of SAR (measured) = 16.533 mW/g


 $0 \, dB = 16.530 \, mW/g$

Certificate No: D2450V2-735_Jun11

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-735_Jun11

Page 6 of 8

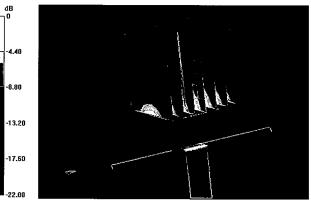
DASY5 Validation Report for Body TSL

Date: 22.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

D2450_735_M_110622_CL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 735

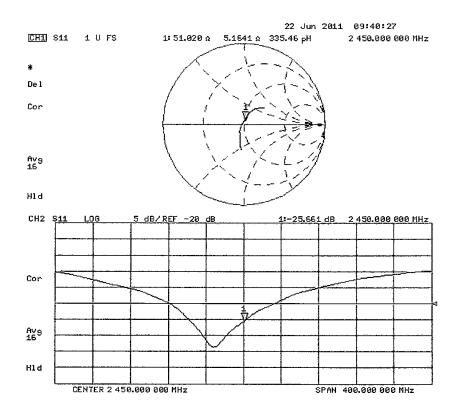

Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.93$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 08.06.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 96.438 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.018 W/kg SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.96 mW/g Maximum value of SAR (measured) = 16.446 mW/g


 $0 \, dB = 16.450 \, mW/g$

Certificate No: D2450V2-735_Jun11

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-735_Jun11

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdlenst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Callbration Service

Accreditation No.: SCS 108

S

С

S

Client SGS-TW (Auden) Certificate No: EX3-3831_Jan12 GALBRATIONEERTICOAT Object EX3DV4 - SN:3831 Calibration procedure(s) QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes January 4, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards ID Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 31-Mar-11 (No. 217-01372) Apr-12 Power sensor E4412A MY41498087 31-Mar-11 (No. 217-01372) Apr-12 Reference 3 dB Attenuator SN: \$5054 (3c) 29-Mar-11 (No. 217-01369) Apr-12 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Reference 30 dB Attenuator SN: S5129 (30b) 29-Mar-11 (No. 217-01370) Apr-12 Reference Probe ES3DV2 SN: 3013 29-Dec-11 (No. ES3-3013_Dec11) Dec-12 DAE4 SN: 654 3-May-11 (No. DAE4-654_May11) May-12 Secondary Standards ID Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Apr-11) In house check: Apr-13 Network Analyzer HP 8753E U\$37390585 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Name Function Signature Jeton Kastrati Calibrated by: Laboratory Technici Katja Pokovic Approved by: Technical Manag - Here - Annak - Kon Issued: January 5, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3831_Jan12

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

NIS

ΆRΙ

S

S Schwelzerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3831_Jan12

Page 2 of 11

January 4, 2012

Probe EX3DV4

SN:3831

Manufactured: Calibrated: September 6, 2011 January 4, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3831_Jan12

Page 3 of 11

January 4, 2012

EX3DV4- SN:3831

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.44	0.41	0.43	± 10.1 %
DCP (mV) ^B	101.7	101.4	99.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	111.7	±3.0 %
			Y	0.00	0.00	1.00	96.2	
			Z	0.00	0.00	1.00	106.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁶ Numerical linearization parameter: uncertainty not required. ^e Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Certificate No: EX3-3831_Jan12

Page 4 of 11

January 4, 2012

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.32	9.32	9.32	0.44	0.84	± 12.0 9
835	41.5	0.90	8.82	8.82	8.82	0.19	1.48	± 12.0 9
900	41.5	0.97	8.71	8.71	8.71	0.22	1.38	± 12.0 %
1750	40.1	1.37	8.03	8.03	8.03	0.39	0.81	± 12.0 9
1900	40.0	1.40	7.76	7.76	7.76	0.44	0.77	± 12.0 9
2000	40.0	1.40	7.65	7.65	7.65	0.61	0.63	± 12.0 9
2300	39.5	1.67	7.44	7.44	7.44	0.41	0.83	± 12.0 9
2450	39.2	1.80	6.84	6.84	6.84	0.49	0.73	± 12.0 %
2600	39.0	1.96	6.67	6.67	6.67	0.33	0.96	± 12.0 %
5200	36.0	4.66	4.64	4.64	4.64	0.42	1.80	± 13.1 %
5300	35.9	4.76	4.37	4.37	4.37	0.44	1.80	± 13.1 9
5600	35.5	5.07	4.10	4.10	4.10	0.48	1.80	± 13.1 %
5800	35.3	5.27	4,12	4.12	4.12	0.45	1.80	± 13.1 %

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

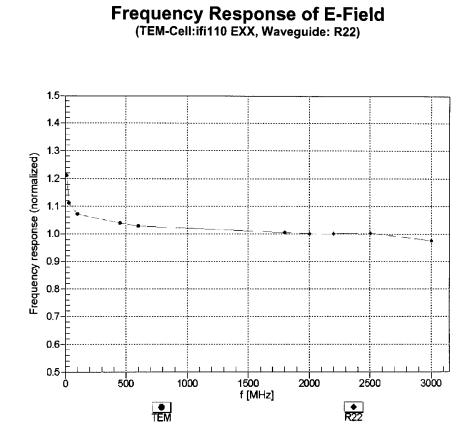
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

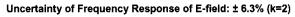
Page 5 of 11

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

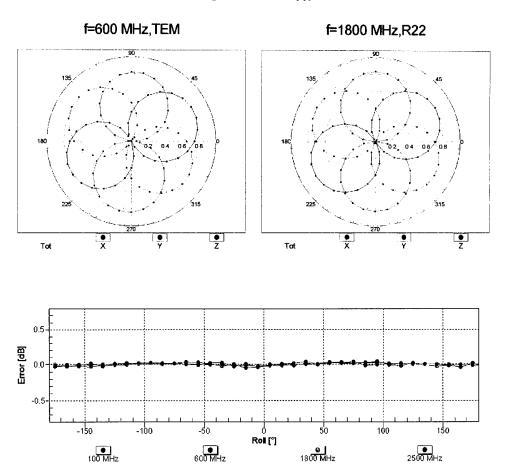
alibration Parameter Determined in Body Tissue Simulating Media									
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)	
750	55.5	0.96	9.24	9.24	9.24	0.23	1.25	± 12.0 %	
835	55.2	0.97	9.02	9.02	9.02	0.28	1.13	± 12.0 %	
900	55.0	1.05	8.93	8.93	8.93	0.25	1.28	± 12.0 %	
1750	53.4	1.49	7.67	7.67	7.67	0.38	0.87	± 12.0 %	
1900	53.3	1.52	7.25	7.25	7.25	0.57	0.70	<u>± 12.0 %</u>	
2000	53.3	1.52	<u>7.3</u> 1	7.31	7.31	0.27	1.09	± 12.0 %	
2300	52.9	1.81	7.26	7.26	7.26	0.71	0.66	± 12.0 %	
2450	52.7	1.95	6.82	6.82	6.82	0.74	0.62	± 12.0 %	
2600	52.5	2.16	6.63	6.63	6.63	0.80	0.50	± 12.0 %	
5200	49.0	5.30	4.12	4.12	4.12	0.50	1.90	± 13.1 %	
5300	48.9	5.42	3.92	3.92	3.92	0.50	1.90	_ ± 13 .1 %	
5600	48.5	5.77	3.30	3.30	3.30	0.65	1.90	_ ± 13.1 %	
5800	48.2	6.00	3.77	3.77	3.77	0.60	1.90	± 13.1 %	


Calibration Parameter Determined in Body Tissu Simulating Madi


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^f At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

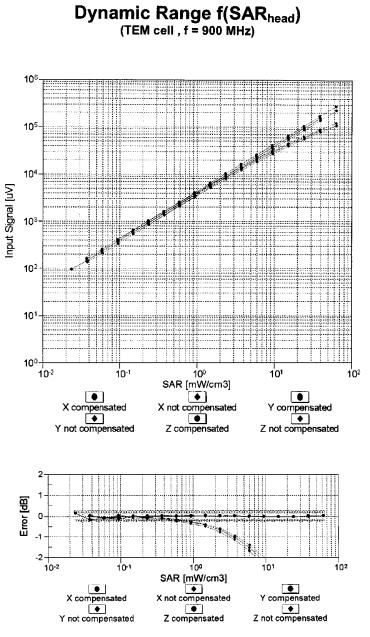
Page 6 of 11

January 4, 2012



Page 7 of 11

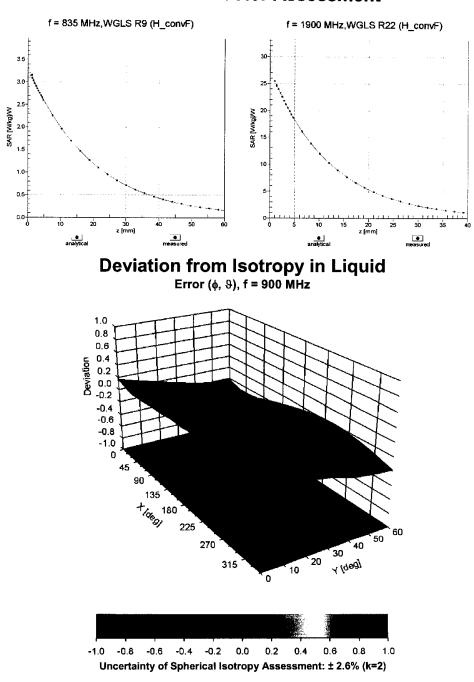
January 4, 2012


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page 8 of 11

January 4, 2012


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3831_Jan12

Page 9 of 11

January 4, 2012

Conversion Factor Assessment

Certificate No: EX3-3831_Jan12

Page 10 of 11

EX3DV4- SN:3831

January 4, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3831

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3831_Jan12

Page 11 of 11

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object	ES3DV3 - SN:32	70	and the second			
Calibration procedure(s)	QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes					
Calibration date:	September 12, 20	011				
The measurements and the unc	ertainties with confidence pr ucted in the closed laborator	onal standards, which realize the physical units robability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a	are part of the certificate.			
Drimon : Standarda	ID	Cal Date (Certificate No.)	Scheduled Calibration			
Primary Standards						
	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12			
Power meter E4419B	GB41293874 MY41498087	31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372)	Apr-12 Apr-12			
Power meter E4419B Power sensor E4412A						
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12			
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	MY41498087 SN: S5054 (3c)	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369)	Apr-12 Apr-12			
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	MY41498087 SN: S5054 (3c) SN: S5086 (20b)	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	Apr-12 Apr-12 Apr-12			
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370)	Apr-12 Apr-12 Apr-12 Apr-12			
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11			
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12			
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check			
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11			
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11			
Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11			

SNIS

BRP

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

oroodary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $9 = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3270_Sep11

Page 2 of 11

September 12, 2011

Probe ES3DV3

SN:3270

Manufactured: Calibrated:

February 25, 2010 September 12, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3270_Sep11

Page 3 of 11

©2012 A Test Lab Techno Corp. Report Number: 1201FS16-01

September 12, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.11	1.20	1.22	
DCP (mV) ^B	100.4	98.9	101.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	102.9	±2.7 %
			Y	0.00	0.00	1.00	111.6	
			Z	0.00	0.00	1.00	108.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3270_Sep11

Page 4 of 11

September 12, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270

Calibration	Parameter	Determined	in Head	Tissue Sir	nulating Med	ia
						10

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	6.04	6.04	6.04	0.80	1.00	± 12.0 %
900	41.5	0.97	5.95	5.95	5.95	0.80	1.00	± 12.0 %
1750	40.1	1.37	5.32	5.32	5.32	0.80	1.24	± 12.0 %
1900	40.0	1.40	5.14	5.14	5.14	0.80	1.25	± 12.0 %
2000	40.0	1.40	5.12	5.12	5.12	0.80	1.24	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.80	1.23	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3270_Sep11

Page 5 of 11

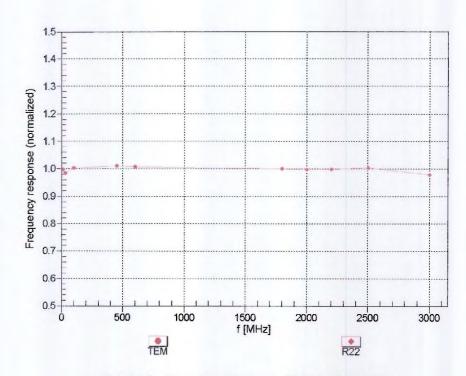
September 12, 2011

DASY/EASY - Parameters of Probe: ES3DV3- SN:3270

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	6.16	6.16	6.16	0.80	1.00	± 12.0 %
900	55.0	1.05	6.07	6.07	6.07	0.80	1.00	± 12.0 %
1750	53.4	1.49	4.87	4.87	4.87	0.80	1.31	± 12.0 %
1900	53.3	1.52	4.64	4.64	4.64	0.80	1.31	± 12.0 %
2000	53.3	1.52	4.71	4.71	4.71	0.80	1.31	± 12.0 %
2450	52.7	1.95	4.28	4.28	4.28	0.80	1.00	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

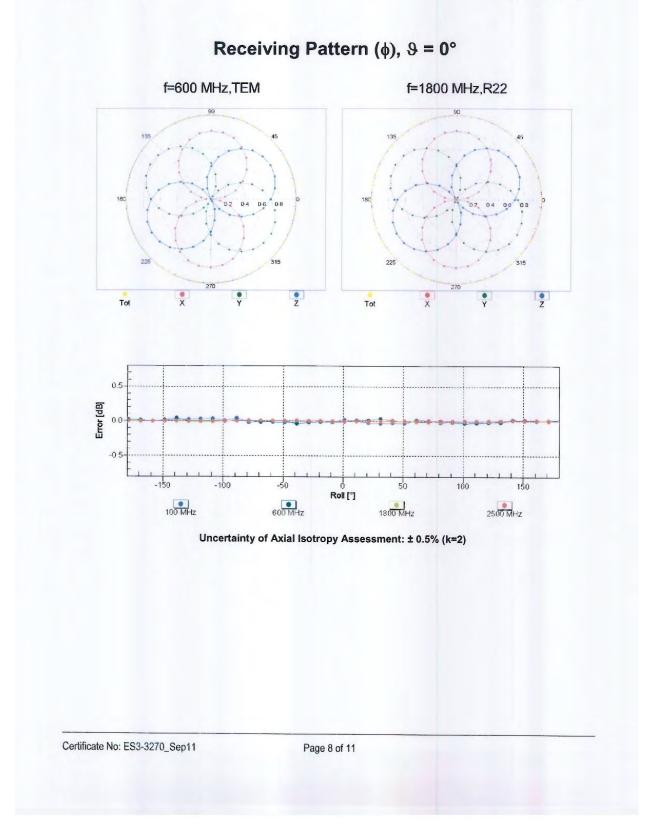
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Certificate No: ES3-3270_Sep11

Page 6 of 11

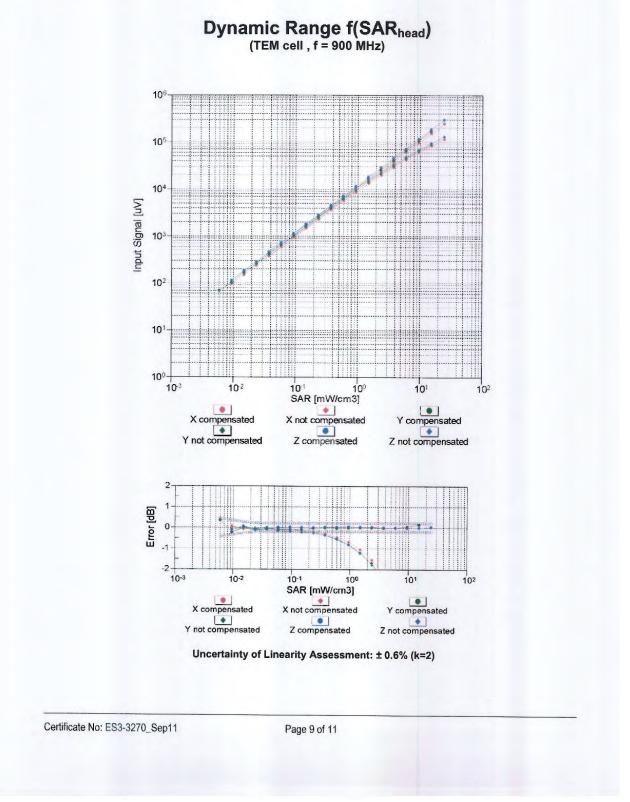
September 12, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

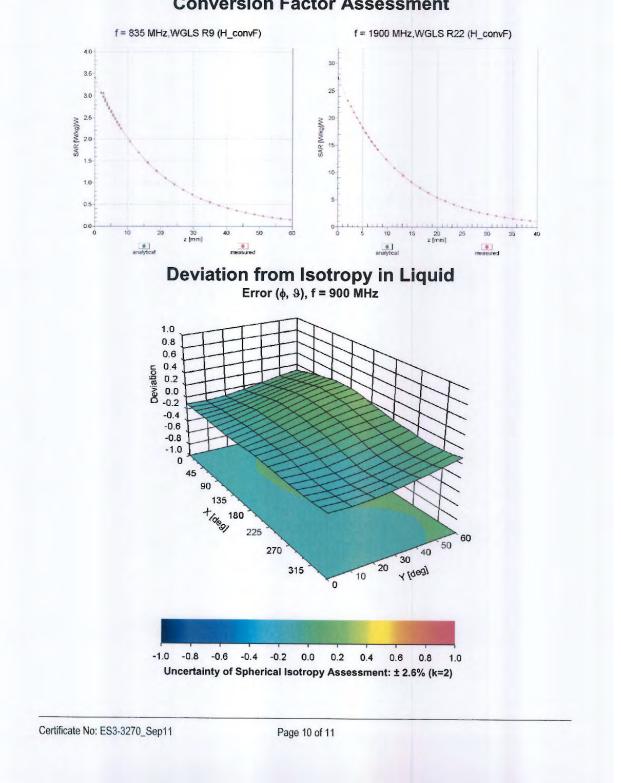


Certificate No: ES3-3270_Sep11

Page 7 of 11



September 12, 2011



September 12, 2011

September 12, 2011

September 12, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3270

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3270_Sep11

Page 11 of 11

SWISS RIBRE С S

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client Auden			Certificate No: DAE-910_Dec11
GALEBRAY (G)XY	itel 10% als		
Object	DAE4 - SD 000 B	04 BJ - SN: 910	
Calibration procedure(s)	CA CAL-06 v23 Calibration proces	dure for the data acq	uisition electronics (DAE)
Calibration date:	December 7, 201	1	
The measurements and the unce	rtainties with confidence pr	obability are given on the fol	the physical units of measurements (SI). lowing pages and are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	y facility: environment tempe	rature (22 \pm 3)°C and humidity < 70%.
Calibration Equipment used (M&	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	08-Jun-11 (in house check) In house check: Jun-12
Calibrated by:	Name Andrea Gunti	Function Technician	Signature
Approved by:	Fin Bomhólt	R&D Director	W. B. Juliuns
This calibration certificate shall n	ot be reproduced except in	full without written approval	Issued: December 7, 2011 of the laboratory.
L	·····		

Certificate No: DAE4-910_Dec11

Page 1 of 5

S

С

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Callbration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of callbration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-910_Dec11

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	lution nominal			
High Range:	1LSB =	6.1μV ,	full range =	-100…+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV

Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	403.325 ± 0.1% (k=2)	402.752 ± 0.1% (k=2)	403.238 ± 0.1% (k=2)
Low Range	3.97822 ± 0.7% (k=2)	3.94399 ± 0.7% (k=2)	3.94960 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	333.5 ° ± 1 °

Certificate No: DAE4-910_Dec11

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199996.1	-6.01	-0.00
Channel X	+ Input	19999.82	-0.48	-0.00
Channel X	- Input	-19996.16	2.84	-0.01
Channel Y	+ Input	200007.4	-2.06	-0.00
Channel Y	+ Input	19997.70	-1.80	-0.01
Channel Y	- Input	-20001.15	-1.65	0.01
Channel Z	+ Input	200013.7	5.36	0.00
Channel Z	+ Input	19998.37	-1.13	-0.01
Channel Z	- Input	-20000.19	-0.69	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.3	0.16	0.01
Channel X + Input	200.69	0.69	0.34
Channel X - Input	-199.56	0.54	-0.27
Channel Y + Input	1999.8	-0.39	-0.02
Channel Y + Input	199.31	-0.79	-0.39
Channel Y - Input	-201.42	-1.52	0.76
Channel Z + Input	2000.0	-0.02	-0.00
Channel Z + Input	199.94	-0.16	-0.08
Channel Z - Input	-201.86	-1.76	0.88

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average ReadIng (μV)	Low Range Average Reading (µV)
Channel X	200	-14.72	-16.45
	- 200	17.91	16.16
Channel Y	200	6.03	6.34
	- 200	-7.74	-7.70
Channel Z	200	-11.62	-11.77
	- 200	10.09	10.07

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	-	4.09	0.09
Channel Y	200	2.15	-	3.32
Channel Z	200	3.04	-0.20	-

Certificate No: DAE4-910_Dec11

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16180	17156
Channel Y	15382	16553
Channel Z	16716	16311

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.39	-1.52	1.94	0.67
Channel Y	-0.86	-2.31	0.23	0.54
Channel Z	-1.32	-2.89	0.44	0.59

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS C Z Z REFORMATION S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client ATL (Auden)

Certificate No: DAE4-779_Jan12

Object	DAE4 - SD 000 D	04 BJ - SN: 779	
Calibration procedure(s)	QA CAL-06.v24 Calibration procee	dure for the data acquisition e	lectronics (DAE)
Calibration date:	January 23, 2012		
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physica obability are given on the following pages r facility: environment temperature (22 ±	s and are part of the certificate.
Calibration Equipment used (M&1	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	1	Cal Date (Certificate No.) 28-Sep-11 (No:11450)	Scheduled Calibration Sep-12
Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278	28-Sep-11 (No:11450) Check Date (in house)	
Calibration Equipment used (M&T Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V2.1	ID # SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278	28-Sep-11 (No:11450) Check Date (in house)	Sep-12 Scheduled Check
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278	28-Sep-11 (No:11450) Check Date (in house)	Sep-12 Scheduled Check
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001	28-Sep-11 (No:11450) Check Date (in house) 05-Jan-12 (in house check)	Sep-12 Scheduled Check In house check: Jan-13
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278 ID # SE UWS 053 AA 1001	28-Sep-11 (No:11450) Check Date (in house) 05-Jan-12 (in house check) Function	Sep-12 Scheduled Check In house check: Jan-13

Certificate No: DAE4-779_Jan12

Page 1 of 5

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-779_Jan12

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

full range = -100...+300 mV full range = -1.....+3mV High Range: 1LSB = 6.1µV, Low Range: 1LSB = 61nV , DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.578 ± 0.1% (k=2)	403.737 ± 0.1% (k=2)	403.961 ± 0.1% (k=2)
Low Range	3.96952 ± 0.7% (k=2)	3.97827 ± 0.7% (k=2)	3.99341 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	156.5 ° ± 1 °
Connector Angle to be used in DAOT system	100.0 11

Certificate No: DAE4-779_Jan12

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.36	-2.42	-0.00
Channel X + Input	20002.90	2.80	0.01
Channel X - Input	-19995.39	5.40	-0.03
Channel Y + Input	199995.92	1.48	0.00
Channel Y + Input	20002.78	2.85	0.01
Channel Y - Input	-19998.45	2.56	-0.01
Channel Z + Input	199992.89	-1.72	-0.00
Channel Z + Input	19998.87	-1.11	-0.01
Channel Z - Input	-20000.07	0.90	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1998.52	-1.94	-0.10
Channel X + Input	200.77	-0.18	-0.09
Channel X - Input	-199.69	-0.83	0.42
Channel Y + Input	1999.48	-0.80	-0.04
Channel Y + Input	200.34	-0.55	-0.27
Channel Y - Input	-198.10	0.97	-0.49
Channel Z + Input	1998.95	-1.37	-0.07
Channel Z + Input	199.48	-1.44	-0.71
Channel Z - Input	-199.41	-0.31	0.16

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-4.09	-4.76
	- 200	6.36	4.04
Channel Y	200	14.06	13.41
	- 200	-14.67	-14.92
Channel Z	200	3.23	1.98
	- 200	-5.02	-4.73

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-1.52	-1.21
Channel Y	200	12.10	-	-1.51
Channel Z	200	0.25	12.60	-

Certificate No: DAE4-779_Jan12

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15627	16393
Channel Y	15845	15908
Channel Z	16157	16150

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 M $\!\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-1.27	-2.39	-0.17	0.45
Channel Y	0.05	-1.36	2.93	0.64
Channel Z	-1.16	-2.45	-0.25	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-779_Jan12

Page 5 of 5