

Hearing Aid Compatibility (HAC) T-Coil Test Report

: Doro AB
: GSM Tri-band Digital Mobile Telephone
: Doro
: Doro PhoneEasy 410gsm
: WS5DORO410G
: FCC 47 CFR §20.19
ANSI C63.19-2007
: T4

The product was completely tested on Oct. 31, 2012. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.

Table of Contents

Re۱		History	
1.	Stater	nent of Compliance	4
2.	Admir	nistration Data	5
	2.1	Testing Laboratory	5
	2.2	Applicant	
	2.3	Manufacturer	
	2.4	Application Details	5
3.	Gener	ral Information	
	3.1	Description of Device Under Test (DUT)	6
	3.2	Product Photos	6
	3.3	Applied Standards	
	3.4	Test Conditions	
		3.4.1 Ambient Condition	7
		3.4.2 Test Configuration	
4.	Hearin	ng Aid Compliance (HAC)	
	4.1	Introduction	
5.	HAC 1	Г-Coil Measurement Setup	
-	5.1	System Configuration	
	5.2	AM1D Probe	
		5.2.1 Probe Calibration in AMCC	
	5.3	AMCC	12
	5.4	AMMI	12
	5.5	DATA Acquisition Electronics (DAE)	
	5.6	Robot	
	5.7	Measurement Server	
	5.8	Phone Positioner	14
	5.9	Test Arch Phantom	
	5.10	Cabling of System	
	5.11	HAC Extension Software	
	5.12	Test Equipment List	16
	5.13	Reference Input of Audio Signal Spectrum	17
	5.14	Signal Verification	
6.		iption for DUT Testing Position	
7.		Test Procedure	
8.		Signal Quality Categories	
9.	HAC 1	T-Coil Test Results	23
	9.1	Magnitude Result	
	9.2	Frequency Response Plots	
	9.3	T-Coil Coupling Field Intensity	
		9.3.1 Axial Field Intensity	
		9.3.2 Radial Field Intensity	25
		9.3.3 Frequency Response at Axial Measurement Point	25
		9.3.4 Signal Quality	
		rtainty Assessment	
11.	Refere	ences	28

Appendix A. Plots of T-Coil Measurement Appendix B. DASY Calibration Certificate Appendix C. Product Photos Appendix D. Test Setup Photos

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
HA951903-04B	Rev. 01	Initial issue of report	Nov. 02, 2012

1. Statement of Compliance

The Hearing Aid Compliance (HAC) maximum results found during testing for the **Doro AB DUT: GSM Tri-band Digital Mobile Telephone, Brand Name: Doro, Model Name: Doro PhoneEasy 410gsm** are as follows (with expanded uncertainly ±8.1% for AMB1 and ±12.3% for AMB2):

Reference (63.19)	Description	Verdict	Section
7.3.1.1	Axial Field Intensity	Pass	9.3.1
7.3.1.2	Radial Field Intensity	Pass	9.3.2
7.3.2	Frequency Response	Pass	9.3.3
7.3.3	Signal Quality	T4	9.3.4

Band	(S+N)/N in dB	T Rating
GSM850	33.74	T4
GSM1900	34.24	Τ4

They are in compliance with HAC limits (HAC Rated category T3) specified in guidelines FCC 47CFR §20.19 and ANSI Standard ANSI C63.19.

Results Summary : T Category = T4 (ANSI C63.19-2007)

2. Administration Data

2.1 Testing Laboratory

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.
Test Site Location	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. TEL: +86-0512-5790-0158 FAX: +86-0512-5790-0958
Test Site No.	Sporton Site No. : SAR01-KS

2.2 Applicant

Company Name	Doro AB
Address	Magistratsvägen 10 SE-226 43 Lund Sweden

2.3 Manufacturer

Company Name	CK TELECOM LTD.
Address	Technology Road.High-Tech Development Zone. Heyuan, Guangdong, P.R.China.

2.4 Application Details

Date of Start during the Test	Oct. 31, 2012
Date of End during the Test	Oct. 31, 2012

3. General Information

3.1 Description of Device Under Test (DUT)

Product Feature & Specification		
DUT Type	GSM Tri-band Digital Mobile Telephone	
Brand Name	Doro	
Model Name	Doro PhoneEasy 410gsm	
FCC ID	WS5DORO410G	
IMEI Code	358426034163738	
Tx Frequency	GSM850 : 824.2 MHz ~ 848.8 MHz GSM1900 : 1850.2 MHz ~ 1909.8 MHz	
Rx Frequency	GSM850 : 869.2 MHz ~ 893.8 MHz GSM1900 : 1930.2 MHz ~ 1989.8 MHz	
Maximum Output Power to Antenna	GSM850 : 32.22 dBm GSM1900 : 30.32 dBm	
Antenna Type	Fixed Internal Antenna	
HW Version	SHELL-V1.0	
SW Version	SHELL_S02_2V8_DORO410_L14EN_215_091201_MCP12 8+32_BT_FM_TB	
Type of Modulation	GMSK	
DUT Stage	Identical Prototype	

List of air interfaces / frequency bands

Air Interface	Band (MHz)	Voice/Data	C 63.19-2007 Tested	Concurrent connections	Reduced Power 20.19 (c)(1)
GSM	850,1900	Voice	Yes	BT	No
BT	2450	Data (*)	No	GSM	No

Note:

1. (*): The voice function maybe be activated via 3^{rd} party software application.

2. Per KDB 285076 D01 7(a), during T-Coil test, concurrent transmission is disabled.

3.2 Product Photos

Refer to Appendix C.

3.3 Applied Standards

The Standard ANSI C63.19:2007 represents performance requirements for acceptable interoperability of hearing aids with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device.

3.4 Test Conditions

3.4.1 Ambient Condition

Ambient Temperature	20-24 °C
Humidity	<60%
Acoustic Ambient Noise	>10dB below the measurement level

3.4.2 Test Configuration

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by coaxial connection. The DUT was set from the emulator to radiate maximum output power during all testing.

4. <u>Hearing Aid Compliance (HAC)</u>

4.1 Introduction

In September 2006, the T-Coil requirements of ANSI C63.19 Standard went into effect. The federal communication commission (FCC) adopted ANSI C63.19 as HAC test standard.

5. HAC T-Coil Measurement Setup

5.1 System Configuration

Fig. 5.1 T-Coil setup with HAC Test Arch and AMCC

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- > A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- > DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- A device holder
- > Dipole for evaluating the proper functioning of the system
- Test Arch Phantom
- > The Audio Magnetic Calibration coil

Detail component information are described in the following sub-clauses.

5.2 AM1D Probe

The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6mm in diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degree from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards).

Specification:

Frequency Range 0.1 ~ 20 kHz (RF sensitivity <-100dB, fully RF shielded)			
Sensitivity <-50dB A/m @ 1 kHz			
Pre-amplifier	40 dB, symmetric		
Dimensions	Tip diameter/ length: 6/ 290 mm, sensor according to ANSI-PC63.19		

5.2.1 Probe Calibration in AMCC

The probe sensitivity at 1 kHz is 0.00742647 V/(A/m) (-21.29 dBV/(A/m)) was calibrated by AMCC coil for verification of setup performance. The evaluated probe sensitivity was able to be compared to the calibration of the AM1D probe. The frequency response and sensitivity was shown in Fig. 5.3. The probe signal is represented after application of an ideal integrator. The green curve represents the current though the AMCC, the blue curve the integrated probe signal. The DIFFERENCE between the two curves is equivalent to the frequency response of the probe system and shows the characteristics. The probe/system complies with the frequency response and linearity requirements in C63.19 according to the Speag's calibrated report as shown in Annex B (AM1D probe: SPAM100AF) (1)The frequency response has been tested within +/- 0.5 dB of ideal differentiator from 100 Hz to 10 kHz. (2)The linearity has also been tested within 0.1dB from 5 dB below limitation to 16 dB above noise level. The AMCC coil is qualified according to certificate report, SDHACPO02A as shown in Annex B.

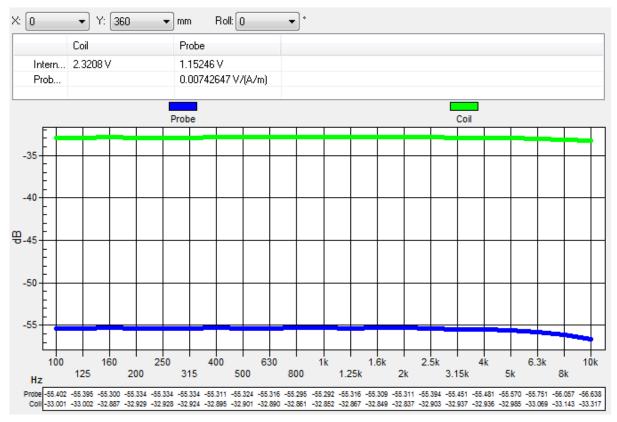


Fig. 5.3 The frequency response and sensitivity of AM1D probe

5.3<u>AMCC</u>

The Audio Magnetic Calibration coil is a Helmholtz Coil designed for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted by a series resistor to approximately 500hm, and a shunt resistor of 10 0hm permits monitoring the current with a scale of 1:10.

Port description:

Signal	Connector	Resistance
Coil In	BNC	typically 50 Ohm
Coil Monitor	BNO	10Ohm ±1%(100mV corresponding to 1 A/m)

Specification:

Dimensions	370 x 370 x 196 mm, according to ANSI C63.19
------------	--

5.4<u>AMMI</u>

Fig. 5.4 AMMI front panel

The Audio Magnetic Measuring Instrument (AMMI) is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface.

Specification:

Sampling rate	48 kHz/24 bit
Dynamic range	85 dB
Test signal generation	User selectable and predefined (vis PC)
Calibration	Auto-calibration/full system calibration using AMCC with monitor output
Dimensions	482 x 65 x 270 mm

5.5 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig. 5.5 Photo of DAE

5.6<u>Robot</u>

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- > High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)
- > 6-axis controller

Fig. 5.6 Photo of DASY5

5.7 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

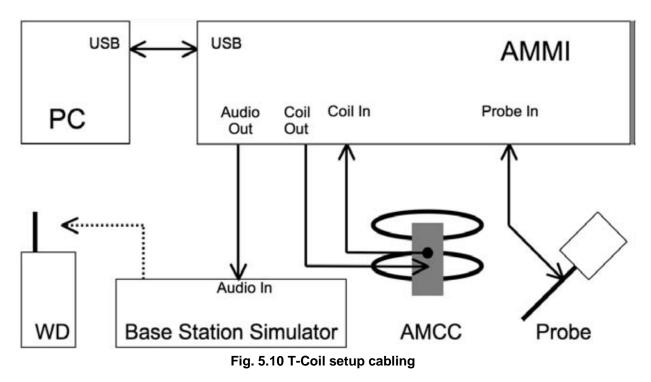
The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig. 5.7 Photo of Server for DASY5

5.8 Phone Positioner

The phone positioner shown in Fig. 5.10 is used to adjust DUT to the suitable position.

Fig. 5.8 Phone Positioner



5.9 Test Arch Phantom

Construction :	Enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot.	
Dimensions :	370 x 370 x 370 mm	Fig. 5.9 Photo of Arch Phantom

5.10 Cabling of System

The principal cabling of the T-Coil setup is shown in Fig. 5.6. All cables provided with the basic setup have a length of approximately 5 m.

5.11 HAC Extension Software

Specification:					
Precise teaching Easy teaching with adaptive distance verification					
Measurement area	Flexible selection of measurement area, predefined according to ANSI C63.19				
Evaluation	ABM: spectral processing, filtering, weighting and evaluation according to ANSI C63.19				
Report	Documentation ready for compliance report				

5.12 Test Equipment List

Manufacturer	Nows of Environment	Turne (Mandal	Carial Number	Calibration	
Manufacturer	er Name of Equipment Type/Model Serial Number		Last Cal.	Due Date	
SPEAG	Active Audio Magnetic Field Probe	AM1DV3	3093	Apr. 19, 2012	Apr. 18, 2013
SPEAG	Data Acquisition Electronics	DAE4	1210	Nov. 18, 2011	Nov. 17, 2012
SPEAG	Test Arch Phantom	Par phantom	1105	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
R&S	Universal Radio Communication Tester	CMU200	116456	Sep. 20, 2011	Sep. 19, 2013
SPEAG	Audio Magnetic Measuring Instrument	AMMI	1128	NA	NA
SPEAG	Helmholtz calibration coil	AMCC	NA	NA	NA

Table 5.1 Test Equipment List

5.13 Reference Input of Audio Signal Spectrum

With the reference job "use as reference" in the beginning of a procedure, measure the spectrum of the current when applied to the AMCC, i.e. the input magnetic field spectrum, as shown below Fig. 5.8 and Fig. 5.9. For this, the delay of the window shall be set to a multiple of the signal period and at least 2s. From the measurement on the device, using the same signal, the postprocessor deducts the input spectrum, so the result represents the net DUT response.

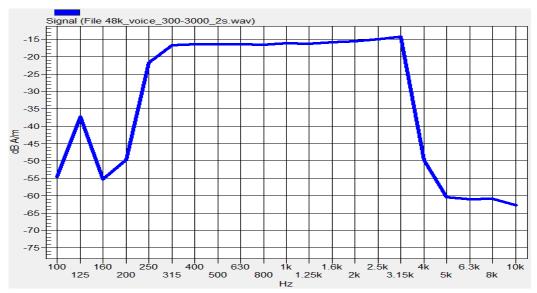


Fig. 5.8 Audio signal spectrum of the broadband signal (48kHz_voice_300Hz~3 kHz)

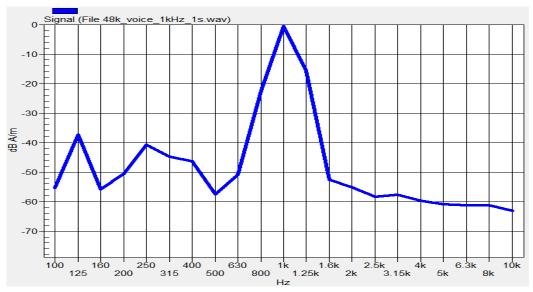


Fig. 5.9 Audio signal spectrum of the narrowband signal (48kHz_voice_1kHz)

5.14 Signal Verification

According to ANSI C63.19:2007 section 6.3.2.1, the normal speech input level for HAC T-coil tests shall be set to -16 dBm0 for GSM and UMTS (WCDMA). This technical note shows a possibility to evaluate and set the correct level with the HAC T-Coil setup with a Rohde&Schwarz communication tester CMU200 with audio option B52 and B85.

Establish a call from the CMU200 to a wireless device. Select CMU200 Network Bitstream "Decoder Cal" to have a 1 kHz signal with a level of 3.14 dBm0 at the speech output. Run the measurement job and read the voltage level at the multi-meter display "Coil signal". Read the RMS voltage corresponding to 3.14 dBm0 and note it. Calculate the desired signal levels of -16 dBm0:

3.14 dBm0 = -2.39 dBV -16 dBm0 = -21.53 dBV

Determine the 1 kHz input level to generate the desired signal level of -16 dBm0. Select CMU200 Network Bitstream "Codec Cal" to loop the input via the codec to the output. Run the measurement job (AMMI 1 kHz signal with gain 10 inserted) and read the voltage level at the multimeter display "Coil signal". Calculate the required gain setting for the above levels:

Gain 10 = -19.93 dBV Difference for -16 dBm0 = -21.53 - (-19.93) = -1.6 dB Gain factor = 10 ^ ((-1.6) / 20) = 0.832Resulting Gain = 10 x 0.832 = 8.32

The predefined signal types have the following differences / factors compared to the 1 kHz sine signal:

Signal Type	Duration (s)	Peak to RMS (dB)	RMS (dB)	Gain Factor	Gain Setting
1kHz	1	16.2	-12.7	4.33	36.02
300Hz ~ 3kHz	2	21.6	-18.6	8.48	70.53

6. Description for DUT Testing Position

Fig.6.1 illustrate the references and reference plane that shall be used in a typical DUT emissions measurement. The principle of this section is applied to DUT with similar geometry. Please refer to Appendix D for the setup photographs.

- > The area is 5 cm by 5 cm.
- > The area is centered on the audio frequency output transducer of the DUT.
- The area is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the DUT handset, which, in normal handset use, rest against the ear.
- > The measurement plane is parallel to, and 10 mm in front of, the reference plane.

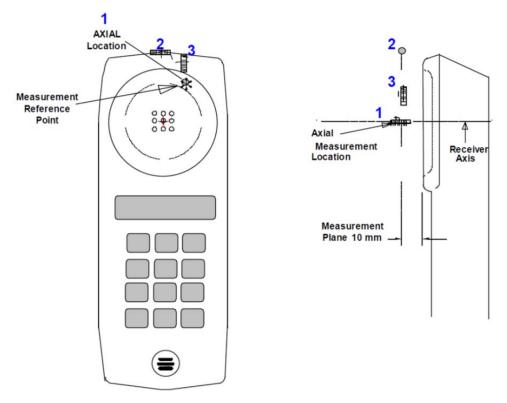


Fig 6.1 A typical DUT reference and plane for T-Coil measurements

7. <u>T-Coil Test Procedure</u>

The following illustrate a typical test scan over a wireless communications device:

- Geometry and signal check: system probe alignment, proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch.
- 2. Set the reference drive level of signal voice defined in C63.19 per 6.3.2.1, as shown in this report of section 5.12.
- 3. The ambient and test system background noise (dB A/m) was measured as well as ABM2 over the full measurement. The maximum noise level must be at least 10dB below the limit of C63.19 per 7.3.2.
- 4. The DUT was positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 5. The DUT operation for maximum rated RF output power was configured and connected by using of coaxial cable connection to the base station simulator at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The DUT audio output was positioned tangent (as physically possible) to the measurement plane.
- 6. The DUT's RF emission field was eliminated from T-coil results by using a well RF-shielding of the probe, AM1D, and by using of coaxial cable connection to a Base Station Simulator. One test channel was pre-measurement to avoid this possibility.
- 7. Determined the optimal measurement locations for the DUT by following the three steps, coarse resolution scan, fine resolution scans, and point measurement, as described in C63.19 per 6.3.4.4. At each measurement locations, samples in the measurement window duration were evaluated to get ABM1 and the signal spectrum. The noise measurement was performed after the scan with the signal, the same happened, just with the voice signal switched off. The ABM2 was calculated from this second scan.

(1) Coarse resolution scans (1 kHz signal at 50 x 50 mm grid area with 10 mm spacing). Only ABM1 was measured in order to find the location of T-Coil source.

(2) Fine resolution scans (1 kHz signal at 10 x 10 mm grid area with 2 mm spacing). The positioned appropriately based on optimal AMB1 of coarse resolution scan. Both ABM1 and ABM2 were measured in order to find the location of the SNR point.

(3) Point measurement (1 kHz signal) for ABM1 and ABM2 in axial, radial transverse and radial longitudinal. The positioned appropriately based on optimal SNR of fine resolution scan. The SNR was calculated for axial, radial transverse and radial longitudinal orientation.

(4) Point measurement (300Hz to 3 kHz signal) for frequency response in axial. The positioned appropriately based on optimal SNR of fine resolution axial scan.

FCC HAC T-Coil Test Report

- 8. All results resulting from a measurement point in a T-Coil job were calculated from the signal samples during this window interval. ABM values were averaged over the sequence of these samples.
- 9. At an optimal point measurement, the SNR (ABM1/ABM2) was calculated for axial, radial transverse and radial longitudinal orientation, and the frequency response was measured in axial axis.
- 10. Corrected for the frequency response after the DUT measurement since the DASY system had known the spectrum of the input signal by using a reference job, as shown in this report of section 5.12.
- 11. In SEMCAD post-processing, the spectral points are in addition scaled with the high-pass (half-band) and the A-weighting, bandwidth compensated factor (BWC) and those results are final as shown in this report.
- 12. Classified the signal quality based on the table 8.1: T-Coil Signal Quality Categories.

8. T-Coil Signal Quality Categories

This section provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. A device is assessed beginning by determining the category of the RF environment in the area of the T-Coil source.

The RF measurements made for the T-Coil evaluation are used to assign the category T1 through T4. The limitation is given in Table 8.1. This establishes the RF environment presented by the WD to a hearing aid.

Category	Telephone parameters WD signal quality ((signal + noise) to noise ratio in dB)
Category T1	0 to 10 dB
Category T2	10 to 20 dB
Category T3	20 to 30 dB
Category T4	> 30 dB

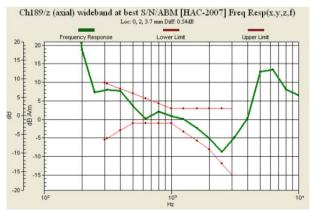
Table 8.1 T-Coil Signal Quality Categories

9. HAC T-Coil Test Results

9.1 <u>Magnitude Result</u>

The Table 9.1 shows testing result in position coordinates which are defined as deviation from earpiece center in millimeters. Axial measurement location was defined by the manufacture of the device. Signal strength measurement scans are presented in appendix A.

Plot No.	Band	Channel	Probe Position	Coordinates (mm)	Ambient Noise (dB A/m)	ABM2 (dB A/m)	ABM1 (dB A/m)	SNR (dB)	T Rating
			Axial (Z)	0,2	-57.37	-42.21	0.55	42.76	T4
1	GSM850	189	Radial 1 (X)	-8.3,0	-64.13	-40.07	-6.33	33.74	T4
		Radial 2 (Y)	0,-5.3	-60.20	-45.24	-7.49	37.75	T4	
			Axial (Z)	2,-2	-57.52	-43.00	0.18	43.18	T4
2	GSM1900	661	Radial 1 (X)	-8.3,0	-64.18	-40.42	-6.18	34.24	T4
			Radial 2 (Y)	0,-5.3	-60.31	-45.67	-7.46	38.21	T4


Table 9.1 Test Result for Various Positions

Remark:

- 1. The special HAC mode software on this DUT was turned on during the testing..
- 2. The volume was adjusted to maximum level and the backlight turned off during T-Coil testing.
- 3. Test Engineer : <u>Fulu Hu</u>

9.2 Frequency Response Plots

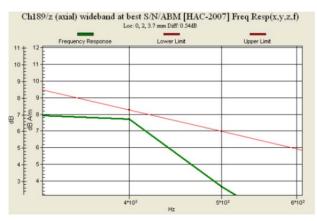


Fig. 9.1 GSM850 Ch189

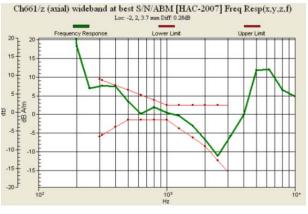


Fig. 9.3 GSM1900 Ch661

Fig. 9.2 GSM850 Ch189

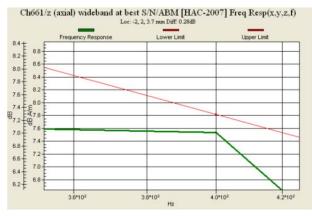


Fig. 9.4 GSM1900 Ch661

9.3 T-Coil Coupling Field Intensity

9.3.1 Axial Field Intensity

Cell Phone Mode	Cell Phone Mode Minimum limit (dB A/m)		Verdict
GSM850	-18	0.55	Pass
GSM1900	-18	0.18	Pass

9.3.2 Radial Field Intensity

Cell Phone Mode	Minimum limit (dB A/m)	Result (dB A/m)	Verdict
GSM850	-18	-7.49	Pass
GSM1900	-18	-7.46	Pass

9.3.3 <u>Frequency Response at Axial Measurement Point</u>

Cell Phone Mode	Verdict
GSM850	Pass
GSM1900	Pass

9.3.4 Signal Quality

	Minimum limit (dB)				Minimum	
Cell Phone Mode	T1	Т2	Т3	T4	Result (dB)	Verdict
GSM850	0	10	20	>30	33.74	T4
GSM1900	0	10	20	>30	34.24	T4

10. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 10.1.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

Table 10.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 10.2.

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (ABM1)	Ci (ABM2)	Standard Uncertainty (ABM1)	Standard Uncertainty (ABM2)
Probe Sensitivity							
Reference Level	3.0	Normal	1	1	1	± 3.0 %	± 3.0 %
AMCC Geometry	0.4	Rectangular	√3	1	1	± 0.2 %	± 0.2 %
AMCC Current	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Probe Positioning During Calibrate	0.1	Rectangular	√3	1	1	± 0.1 %	± 0.1 %
Noise Contribution	0.7	Rectangular	√3	0.0143	1	± 0.0 %	± 0.4 %
Frequency Slope	5.9	Rectangular	√3	0.1	1	± 0.3 %	± 3.5 %
Probe System							
Repeatability / Drift	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Linearity / Dynamic Range	0.6	Rectangular	√3	1	1	± 0.4 %	± 0.4 %
Acoustic Noise	1.0	Rectangular	√3	0.1	1	± 0.1 %	± 0.6 %
Probe Angle	2.3	Rectangular	√3	1	1	± 1.4 %	± 1.4 %
Spectral Processing	0.9	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	0.6	Normal	1	1	5	± 0.6 %	± 3.0 %
Field Disturbation	0.2	Rectangular	√3	1	1	± 0.1 %	± 0.1 %
Test Signal			I	1	1	1	
Reference Signal Spectral Response	0.6	Rectangular	√3	0	1	± 0.0 %	± 0.4 %
Positioning					-		
Probe Positioning	1.9	Rectangular	√3	1	1	± 1.1 %	± 1.1 %
Phantom Thickness	0.9	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
DUT Positioning	1.9	Rectangular	√3	1	1	± 1.1 %	± 1.1 %
External Contributions							
RF Interference	0.0	Rectangular	√3	1	0.3	± 0.0 %	± 0.0 %
Test Signal Variation	2.0	Rectangular	√3	1	1	± 1.2 %	± 1.2 %
Combined Standard Uncerta	inty					± 4.1 %	± 6.1 %
Coverage Factor for 95 %						K	= 2
Expanded Uncertainty						± 8.1 %	± 12.3 %

Table 10.2 Uncertainty Budget of DASY

11. References

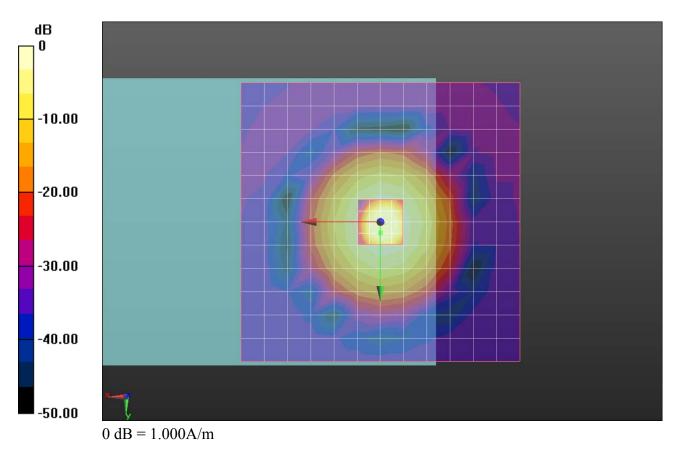
- [1] ANSI C63.19 2007, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 8 June 2007
- [2] SPEAG DASY System Handbook

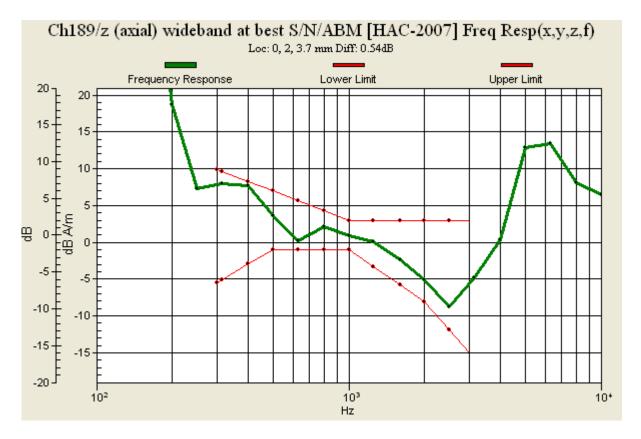
Appendix A. Plots of T-Coil Measurement

The plots are shown as follows.

#01 HAC T-Coil_GSM850_GSM_Ch189(Z)

DUT: 951903-04B


Communication System: General GSM; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.6 °C


DASY5 Configuration:

- Probe: AM1DV3 3093; ; Calibrated: 2012-4-19
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch189/z (axial) fine 2mm 8 x 8/ABM [HAC-2007] SNR(x,y,z) (5x5x1):

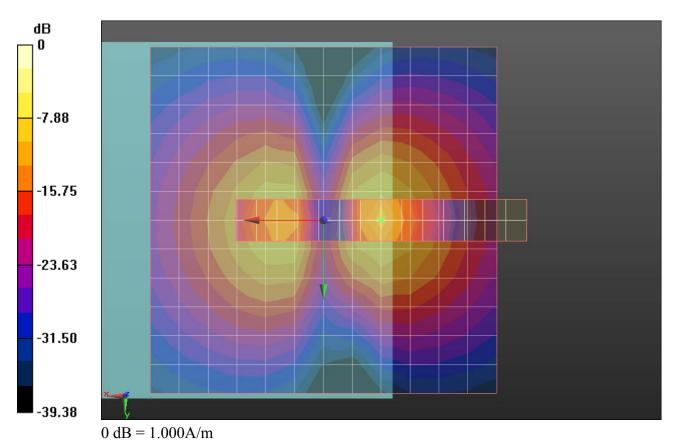
ABM1/ABM2 = 42.76 dB ABM1 comp = 0.55 dB A/m Location: 0, 2, 3.7 mm

Ch189/z (axial) wideband at best S/N/ABM [HAC-2007] Freq Resp(x,y,z,f) Loc: 0, 2, 3.7 mm Diff: 0.54dB

Date: 2012-10-31

#01 HAC T-Coil_GSM850_GSM_Ch189(X)

DUT: 951903-04B


Communication System: General GSM; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.6 °C

DASY5 Configuration:

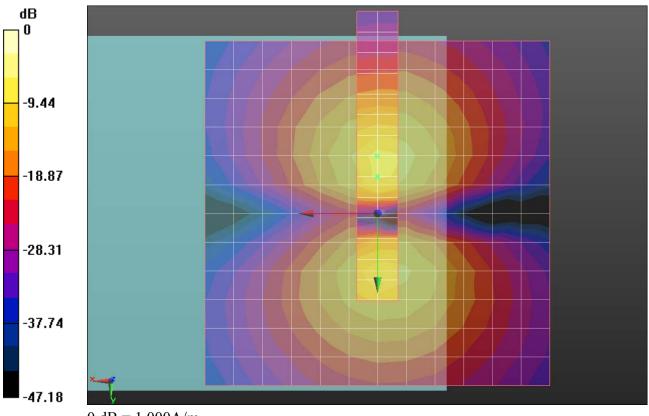
- Probe: AM1DV3 3093; ; Calibrated: 2012-4-19
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch189/x (longitudinal) fine 3mm 42 x 6/ABM [HAC-2007] SNR(x,y,z) (15x3x1):

ABM1/ABM2 = 33.74 dB ABM1 comp = -6.33 dB A/m Location: -8.3, 0, 3.7 mm

#01 HAC T-Coil_GSM850_GSM_Ch189(Y)

DUT: 951903-04B


Communication System: General GSM; Frequency: 836.4 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.6 °C

DASY5 Configuration:

- Probe: AM1DV3 3093; ; Calibrated: 2012-4-19
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

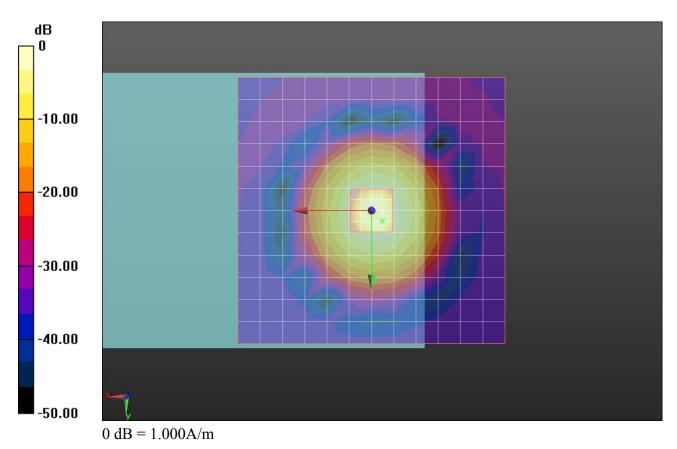
Ch189/y (transversal) fine 3mm 6 x 42/ABM [HAC-2007] SNR(x,y,z) (3x15x1):

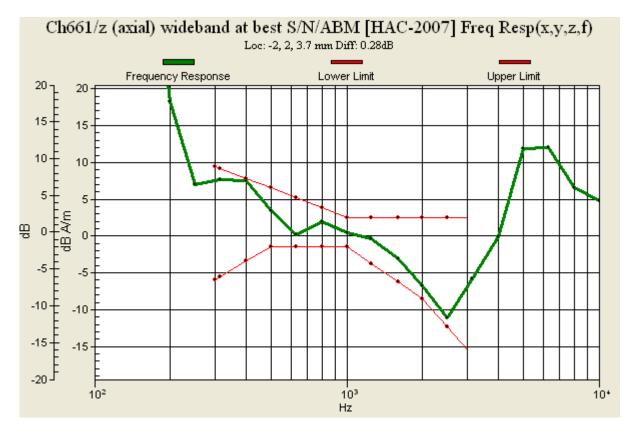
ABM1/ABM2 = 37.75 dB ABM1 comp = -7.49 dB A/m Location: 0, -5.3, 3.7 mm

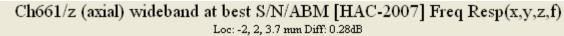
0 dB = 1.000 A/m

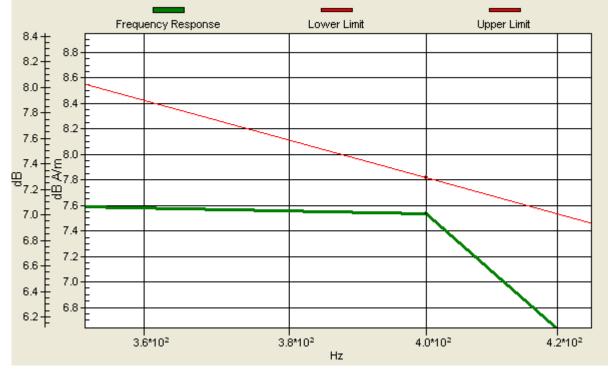
#02 HAC T-Coil_GSM1900_GSM_Ch661(Z)

DUT: 951903-04B


Communication System: General GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.6 °C


DASY5 Configuration:


- Probe: AM1DV3 3093; ; Calibrated: 2012-4-19
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

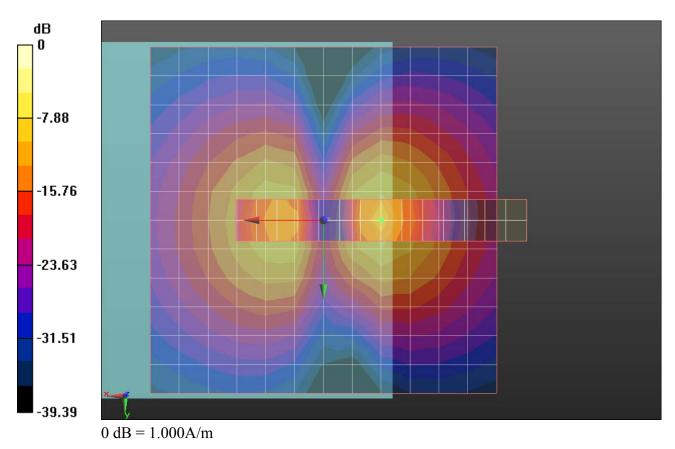

Ch661/z (axial) fine 2mm 8 x 8/ABM [HAC-2007] SNR(x,y,z) (5x5x1):

ABM1/ABM2 = 43.18 dB ABM1 comp = 0.18 dB A/m Location: -2, 2, 3.7 mm

Date: 2012-10-31

#02 HAC T-Coil_GSM1900_GSM_Ch661(X)

DUT: 951903-04B


Communication System: General GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.6 °C

DASY5 Configuration:

- Probe: AM1DV3 3093; ; Calibrated: 2012-4-19
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

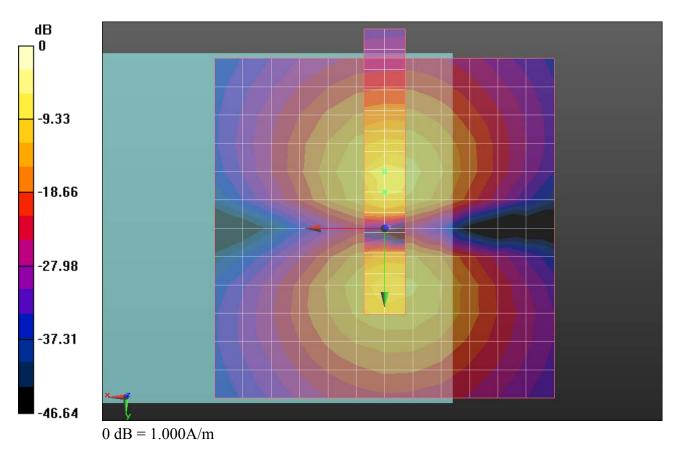
Ch661/x (longitudinal) fine 3mm 42 x 6/ABM [HAC-2007] SNR(x,y,z) (15x3x1):

ABM1/ABM2 = 34.24 dB ABM1 comp = -6.18 dB A/m Location: -8.3, 0, 3.7 mm

Date: 2012-10-31

#02 HAC T-Coil_GSM1900_GSM_Ch661(Y)

DUT: 951903-04B


Communication System: General GSM; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Ambient Temperature : 23.6 °C

DASY5 Configuration:

- Probe: AM1DV3 3093; ; Calibrated: 2012-4-19
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch661/y (transversal) fine 3mm 6 x 42/ABM [HAC-2007] SNR(x,y,z) (3x15x1):

ABM1/ABM2 = 38.21 dB ABM1 comp = -7.46 dB A/m Location: 0, -5.3, 3.7 mm

Appendix B. Calibration Data

The DASY calibration certificates are shown as follows.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accredited by the Swiss Accreditation Service (SAS)

Client	Sporton-CN	(Auden)
--------	------------	---------

Certificate No: AM1DV3-3093_Apr12

CALIBRATION C	ERTIFICAT	E	
Dbject	AM1DV3 - SN:	3093	all a said a tag
Calibration procedure(s)	QA CAL-24.v3 Calibration proc audio range	edure for AM1D magnetic field pr	obes and TMFS in the
Calibration date:	April 19, 2012		
The measurements and the unce	rtainties with confidence	trional standards, which realize the physical up probability are given on the following pages a ory facility: environment temperature (22 \pm 3)	nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Reference Probe AM1DV3 DAE4	SN: 3000 SN: 781	17-Aug-11 (No. AM1D-3000_Aug11) 20-Apr-11 (No. DAE4-781_Apr11)	Aug-12 Apr-12
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
AMCC	1050	12-Oct-11 (in house check Oct-11)	Oct-13
	Name	Function	Signature \
Calibrated by:	Claudio Leubler	Laboratory Technician	URh
Approved by:	Katja Pokovic	Technical Manager	delle.
			Issued: April 20, 2012

References

- ANSI C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below.

The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to "southwest" orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and -120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane.
- Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil.

AM1D probe identification and configuration data

Item	AM1DV3 Audio Magnetic 1D Field Probe
Type No	SP AM1 001 BB
Type No Serial No	3093

Overall length	296 mm
Tip diameter	6.0 mm (at the tip)
Sensor offset	3.0 mm (centre of sensor from tip)
Internal Amplifier	20 dB

Manufacturer / Origin	Schmid & Partner Engineering AG, Zürich, Switzerland
Manufacturing date	March 03, 2011
Last calibration date	April 13, 2011

Calibration data

Connector rotation angle	(in DASY system)	168.6 °	+/- 3.6 ° (k=2)
Sensor angle	(in DASY system)	0.96 °	+/- 0.5 ° (k=2)
Sensitivity at 1 kHz	(in DASY system)	0.00727 V / (A/m)	+/- 2.2 % (k=2)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: AM1D-3093_Apr12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdlenst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Client Sporton CN (Auden)

Certificate No: DAE4-1210_Nov11

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

DAE4 - SD 000) D04 BJ - SN: 1210	
QA CAL-06.v23 Calibration pro	3 cedure for the data acquisition	electronics (DAE)
November 18,	2011	
tainties with confidence	national standards, which realize the physi e probability are given on the following par atory facility: environment temperature (22)	ges and are part of the certificate.
ID #	Cal Date (Certificate No.)	Scheduled Calibration
SN: 0810278	28-Sep-11 (No:11450)	Sep-12
ID #	Check Date (in house)	Scheduled Check
SE UMS 006 AB 10	04 08-Jun-11 (in house check)	In house check: Jun-12
Name	Function	Signature
Andrea Guntli	Technician	Autolo
Fin Bomholt	R&D Director	i.v. Referent
		Issued: November 18, 2011
		holt R&D Director

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by • comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery . alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Au	to Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.131 ± 0.1% (k=2)	404.957 ± 0.1% (k=2)	405.070 ± 0.1% (k=2)
Low Range	3.99774 ± 0.7% (k=2)	3.98274 ± 0.7% (k=2)	3.99864 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	68.0 ° ± 1 °
---	--------------

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Inp	ut 200005.7	-6.32	-0.00
Channel X + Inp	ut 20001.20	1.40	0.01
Channel X - Inpu	t -19997.25	2.05	-0.01
Channel Y + Inp	ut 199993.7	-8.34	-0.00
Channel Y + Inp	ut 19998.85	-0.85	-0.00
Channel Y - Inpu	t -19999.24	0.86	-0.00
Channel Z + Inp	ut 199997.0	-3.96	-0.00
Channel Z + Inp	ut 19999.03	-0.47	-0.00
Channel Z - Inpu	t -19998.10	1.00	-0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.9	-0.19	-0.01
Channel X + Input	201.19	1.19	0.59
Channel X - Input	-199.00	1.20	-0.60
Channel Y + Input	1999.7	-0.22	-0.01
Channel Y + Input	200.05	0.15	0.07
Channel Y - Input	-200.98	-0.68	0.34
Channel Z + Input	1999.9	-0.10	-0.00
Channel Z + Input	199.80	-0.10	-0.05
Channel Z - Input	-199.54	0.26	-0.13

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-5.74	-7.76
	- 200	9.09	7.53
Channel Y	200	-5.73	-4.92
	- 200	7.43	6.93
Channel Z	200	12.31	12.18
	- 200	-13.75	-14.25

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	- 19	2.68	0.40
Channel Y	200	1.60	-	4.29
Channel Z	200	2.18	0.10	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15945	17150
Channel Y	15956	16019
Channel Z	15867	16444

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.50	-1.63	0.38	0.33
Channel Y	-0.92	-1.95	-0.17	0.36
Channel Z	-2.02	-4.12	-0.96	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

alaint Lunita.	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9