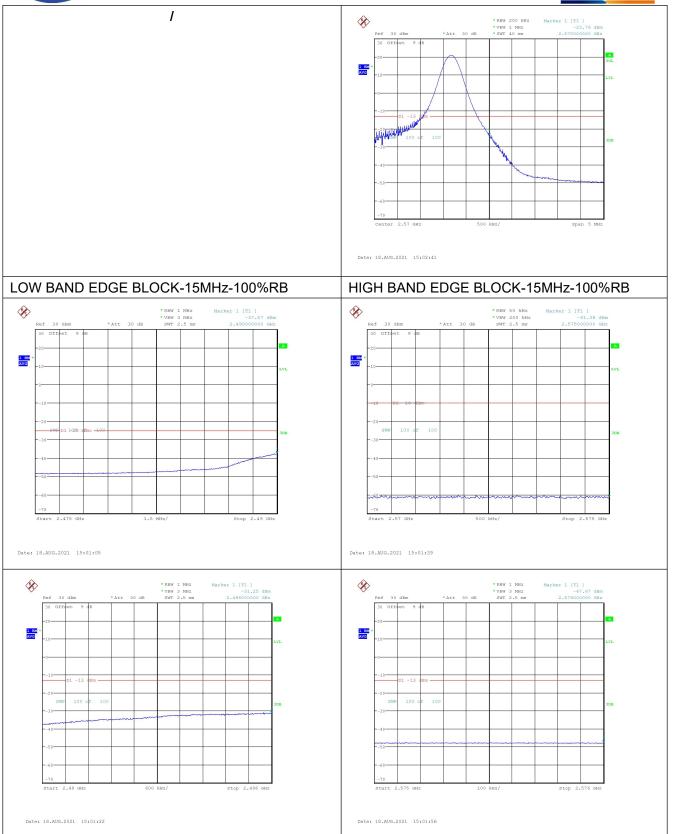
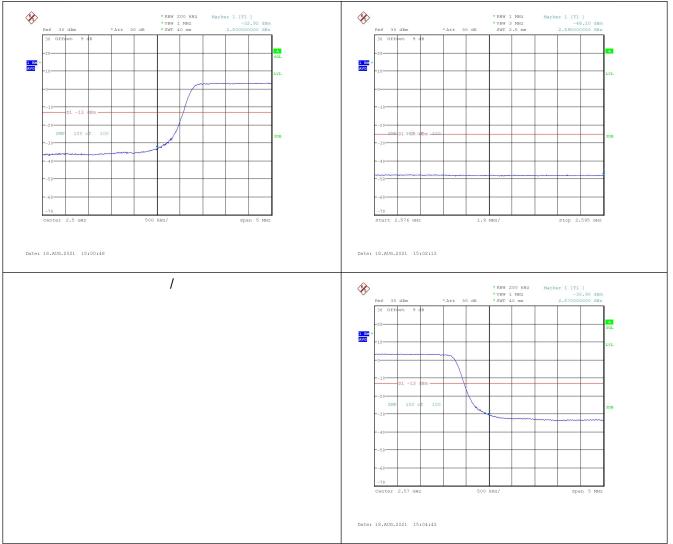


6.6.2 Measurement result

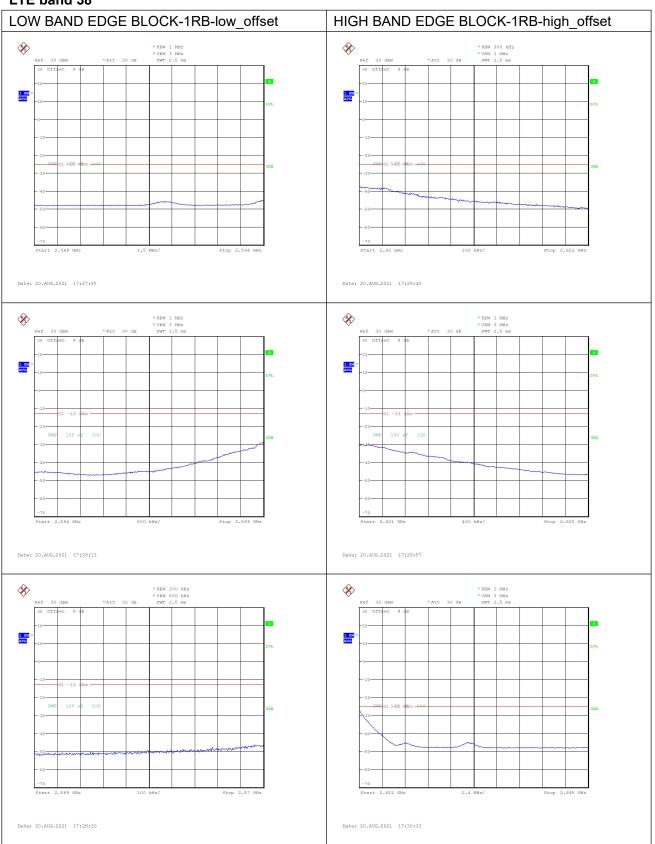
Only worst case result is given below

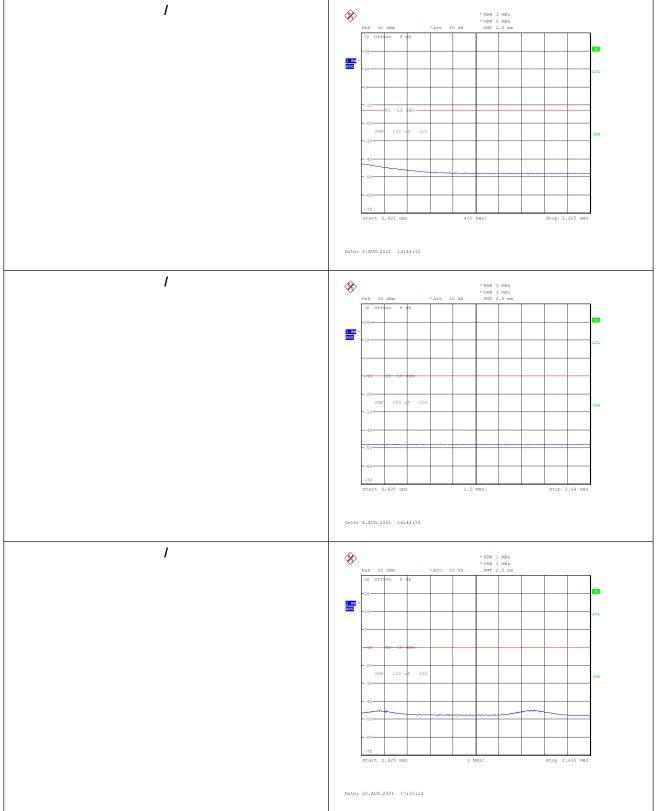

LTE band 7

Industrial Internet Innovation Center (Shanghai) Co., Ltd. Add: Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China Tel: +86 21 68866880 Page Number: 40 of 52 Report No.: C21T00079-RF02-V00



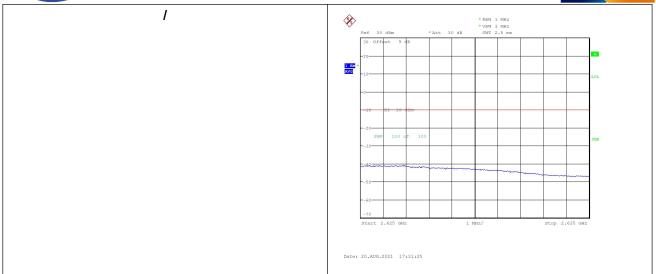
Industrial Internet Innovation Center (Shanghai) Co., Ltd. Add: Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China Tel: +86 21 68866880





Industrial Internet Innovation Center (Shanghai) Co., Ltd. Add: Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China Tel: +86 21 68866880

CAICT



Industrial Internet Innovation Center (Shanghai) Co., Ltd. Add: Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China Tel: +86 21 68866880

6.7. Conducted Spurious Emission

6.7.1 Measurement Method

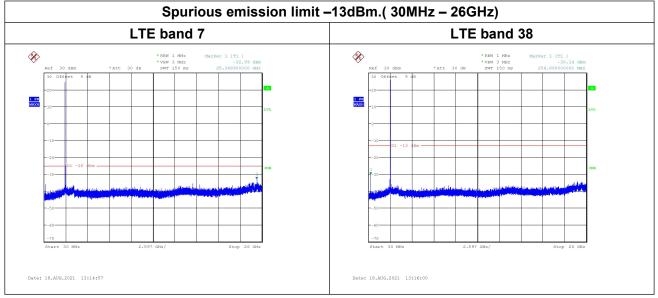
The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is set to 30001 which is greater than span/RBW.

6.7.2 Measurement Limit

Part 27.53(g),27.53(h), 27.53(m) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.


Part 27.53(m)(4) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees.

6.7.3 Measurement result

Only worst case result is given below

6.8. Peak-To-Average Power Ratio

Reference

CFR Part 24.232 (d), 27.50(a)

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission. According to KDB 971168 5.7:

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth \geq signal' s occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Set the measurement interval to 1 ms

e) Record the maximum PAPR level associated with a probability of 0.1%

6.8.1 Measurement results

LTE band 7, 20MHz

Frequency(MHz)	PAPR(dB)	
2535.0	QPSK	16QAM
	4.97	6.19

LTE band 38, 20MHz

Frequency(MHz)	PAPR(dB)	
2595.0	QPSK	16QAM
	9.52	8.81

6.9. Test Equipment List

Conducted Test System

Item	Equipment Name	Туре	Serial Number	Manufacturer	Cal. Date	Cal. interval
1	Universal Radio Communication Tester	CMW500	148874	R&S	2021-05-10	1 year
2	Vector Signal Analyzer	FSQ26	101091	R&S	2021-05-10	1 year
3	DC Power Supply	ZUP60-14	LOC-220Z006 -0007	TDL-Lambda	2021-05-09	1 year

							1
1	Eagle Test	Eagle V3.1	N/A	FOIT	NI/A	N/A	
4	Software	FCC BT/WIFI	IN/A	ECH	N/A	IN/A	ĺ

Radiated Emis9sion Test System

Item	Equipment Name	Туре	Serial Number	Manufacturer	Cal. Date	Cal. Interval
1	Universal Radio Communication Tester	CMW500	104178	R&S	2021-05-10	1 year
2	Test Receiver	ESU40	100307	R&S	2021-05-10	1 year
3	TRILOG Antenna	VULB9163	VULB9163-51 5	Schwarzbeck	2020-02-28	2 years
4	Double Ridged Guide Antenna	ETS-3117	135890	ETS	2020-02-28	2 years
5	2-Line V-Network	ENV216	101380	R&S	2021-05-10	1 year
6	RF Signal Generator	SMF100A	102314	R&S	2021-05-10	1 year
7	Amplifier	SCU08	10146	R&S	2021-05-10	1 year
8	EMI Test Software	EMC32 V9.15.00	NA	R&S	NA	NA

Anechoic chamber

Fully anechoic chamber by ETS.

CAICT

Annex A: Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in 3IN documents. The detailed measurement uncertainty to see the column, k=2

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Peak Output Power-Conducted	2412MHz-2462MHz	95%	0.544dB
Peak Power Spectral Density	2412MHz-2462MHz	95%	0.502dB
Occupied 6dB Bandwidth	2412MHz-2462MHz	95%	69.26kHz
Band Edges-Conducted	2412MHz-2462MHz	95%	0.544dB
Conducted Emission	30MHz-2GHz	95%	0.90dB
Conducted Emission	2GHz-3.6GHz	95%	0.88dB
Conducted Emission	3.6GHz-8GHz	95%	0.96dB
Conducted Emission	8GHz-20GHz	95%	0.94dB
Conducted Emission	20GHz-22GHz	95%	0.88dB
Conducted Emission	22GHz-26GHz	95%	0.86dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	5.20dB
AC Power line Conducted Emission	0.15MHz-30MHz	95%	3.66 dB

Annex B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

INDUSTRIAL INTERNET INNOVATION CENTER (SHANGHAI) CO., LTD.

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 12th day of April 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

************END OF REPORT*********