

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under Test	Bar phone
Brand Name	Doro
Model No.	DFB-0060
Company Name	Doro AB
Company Address	Doro AB Magistratsvägen 10, SE-22643 Lund, Sweden
Standards	IEEE /ANSI C95.1, C95.3, IEEE 1528, KDB865664D01v01r04, KDB865664D02v01r02, KDB941225D01v03r01, KDB447498D01v06,
Date of Receipt	Apr. 20, 2016
Date of Test(s)	Apr. 28, 2016
Date of Issue	Jun. 02, 2016

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on two sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS

Sr. Engineer

Mason Wu

Date: Jun. 02, 2016

Supervisor

John Yeh

Date: Jun. 02, 2016

Revision History

Report Number	Revision	Description	Issue Date
ES/2016/40007	Rev.00	Initial creation of document	May. 24, 2016
ES/2016/40007	Rev.01	1 st modification	Jun. 02, 2016

Contents

1. General Information.....	4
1.1 Testing Laboratory.....	4
1.2 Details of Applicant.....	4
1.3 Description of EUT	5
1.4 Test Environment	7
1.5 Operation Description	7
1.6 Positioning Procedure	9
1.7 Evaluation Procedures	10
1.8 Probe Calibration Procedures	12
1.9 The SAR Measurement System.....	15
1.10 System Components	17
1.11 SAR System Verification	19
1.12 Tissue Simulant Fluid for the Frequency Band	20
1.13 Test Standards and Limits	21
2. Summary of Results	23
3. Simultaneous Transmission Analysis.....	24
3.1 Estimated SAR calculation.....	24
3.2 SPLSR evaluation and analysis	25
4. Instruments List	26
5. Measurements.....	27
6. SAR System Performance Verification	29
7. DAE & Probe Calibration Certificate	31
8. Uncertainty Budget.....	47
9. Phantom Description.....	48
10. System Validation from Original Equipment Supplier.....	49
11. Product Change Description	57

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory	
No.134, Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan	
Tel	+886-2-2299-3279
Fax	+886-2-2298-0488
Internet	http://www.tw.sgs.com/

1.2 Details of Applicant

Company Name	Doro AB
Company Address	Doro AB Magistratsvägen 10, SE-22643 Lund, Sweden

1.3 Description of EUT

EUT Name	Bar phone		
Brand Name	Doro		
Model No.	DFB-0060		
IMEI	357088070003904		
FCC ID	WS5DFB0060		
Mode of Operation	<input checked="" type="checkbox"/> GSM <input checked="" type="checkbox"/> Bluetooth		
Duty Cycle	GSM		1/8.3
	Bluetooth		1
TX Frequency Range (MHz)	GSM 1900		1850.2 — 1909.8
	Bluetooth		2402 — 2480
Channel Number (ARFCN)	GSM 1900		512 — 810
	Bluetooth		0 — 78

Max. SAR (1 g) (Unit: W/Kg)				
Mode	Band	Measured	Reported	Position / Channel
Head	GSM 1900	0.624	0.813	<input checked="" type="checkbox"/> Left <input type="checkbox"/> Right <input checked="" type="checkbox"/> Cheek <input type="checkbox"/> Tilt 512 Channel

Max. SAR (1 g) (Unit: W/Kg)				
Mode	Band	Measured	Reported	Position / Channel
Body worn	GSM 1900	0.775	1.010	<input type="checkbox"/> Front <input checked="" type="checkbox"/> Back 512 Channel

GSM conducted power table:

EUT mode	Frequency (MHz)	CH	Max. Rated Avg. Power + Max. Tolerance (dBm)	Burst average power	Source -based time average power
				Avg. (dBm)	Avg. (dBm)
GSM1900 (GMSK)	1850.2	512	30.5	29.35	20.32
	1800	661	30.5	29.45	20.42
	1909.8	810	30.5	29.38	20.35
The division factor compared to the number of TX time slot					
Division factor			1 TX time slot		-9.03

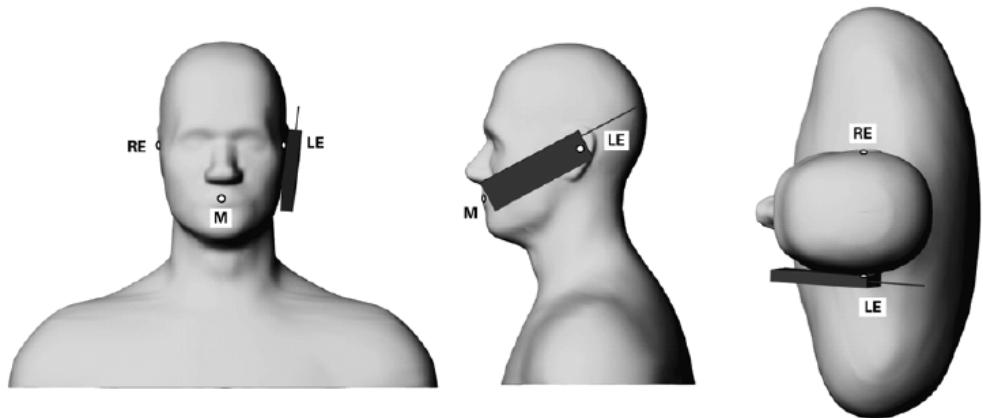
Bluetooth maximum power table:

Frequency (MHz)	Mode	Average	
		dBm	mW
2402	all	6	3.981
2441			
2480			
2402	2	-0.35	0.923
2441	2	-0.57	0.877
2480	2	0.47	1.114
2402	3	-0.27	0.940
2441	3	0.55	1.135
2480	3	0.45	1.109

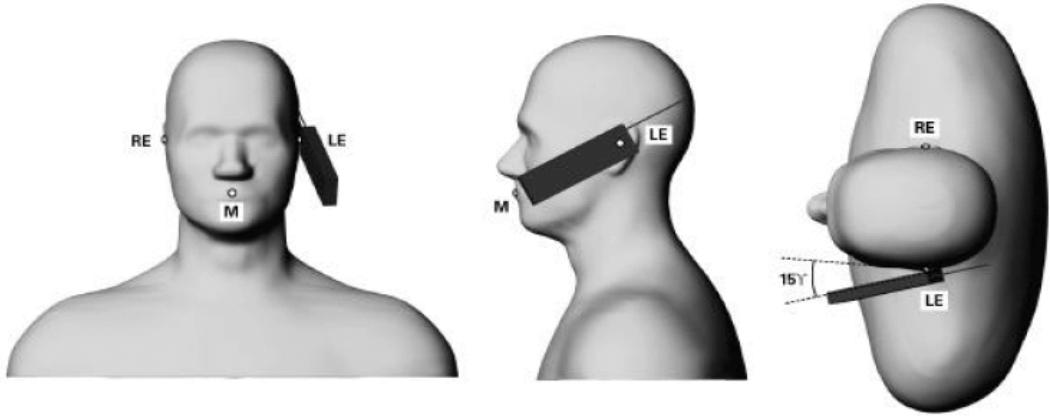
1.4 Test Environment

Ambient Temperature: $22 \pm 2^\circ \text{C}$
Tissue Simulating Liquid: $22 \pm 2^\circ \text{C}$

1.5 Operation Description


1. The EUT is controlled by using a Radio Communication Tester (Antrisu MT8820C), and the communication between the EUT and the tester is established by air link.
2. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.
3. During the SAR testing, the DASY 5 system checks power drift by comparing the e-field strength of one specific location measured at the beginning with that measured at the end of the SAR testing.
4. Testing head SAR at lowest, middle and highest channel for all bands with Left Tilt /Left Cheek/Right Tilt/Right Cheek conditions.
5. Testing body-worn SAR for GSM1900 by separating the EUT and the phantom 10mm.
6. According to **KDB447498D01v06** – The 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances $\leq 50 \text{ mm}$ are determined by: $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR, SAR evaluation is not required.

Mode	Maximum power (dBm)	Maximum power(mW)	front/ back sides		
			test separation distance (mm)	Exclusion threshold	Require SAR testing?
BT	6	3.981	10	0.627	NO


7. GSM and BT share the different antenna path and GSM may transmit simultaneously with BT.
8. There are 2nd source for the receiver/headset and we have done the worst case check in each exposure/band.
9. According to KDB447498D01v05r02, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is $\leq 0.8 \text{ W/kg}$, when the transmission band is $\leq 100 \text{ MHz}$.

10. According to KDB865664D01v01r04, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit)

1.6 Positioning Procedure

Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.

Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.

Cheek/Touch Position:

The handset was brought toward the mouth of the head phantom by pivoting against the ear reference point until any point of the mouthpiece or keypad touched the phantom.

Ear/Tilt Position:

With the phone aligned in the Cheek/Touch position, the handset was tilted away from the mouth with respect to the test device reference point by 15 degrees.

1.7 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. The extraction of the measured data (grid and values) from the Zoom Scan.
2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
3. The generation of a high-resolution mesh within the measured volume.
4. The interpolation of all measured values from the measurement grid to the high-resolution grid.
5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface.
6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans.

The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D

interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.8.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

Whereby σ is the conductivity, ρ the density and c the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

1. The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the

liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

2. The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
3. The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c ; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed $\pm 5\%$.
4. Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about $\pm 10\%$ (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and $\pm 7\text{--}9\%$ (RSS) when not, which is in good agreement with the estimates given in [2].

1.8.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids.

When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

1. The setup must enable accurate determination of the incident power.
2. The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.
3. Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

References

- [1] N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- [2] K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, 'Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- [3] K. Jokela, P. Hyysalo, and L. Puranen, 'Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

1.9 The SAR Measurement System

A block diagram of the SAR measurement system is given in Fig. a. This SAR measurement system uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). Model EX3DV4 field probes are used to determine the internal electric fields. The SAR can be obtained from the equation $SAR = \sigma (|E_i|^2) / \rho$ where σ and ρ are the conductivity and mass density of the tissue-simulant.

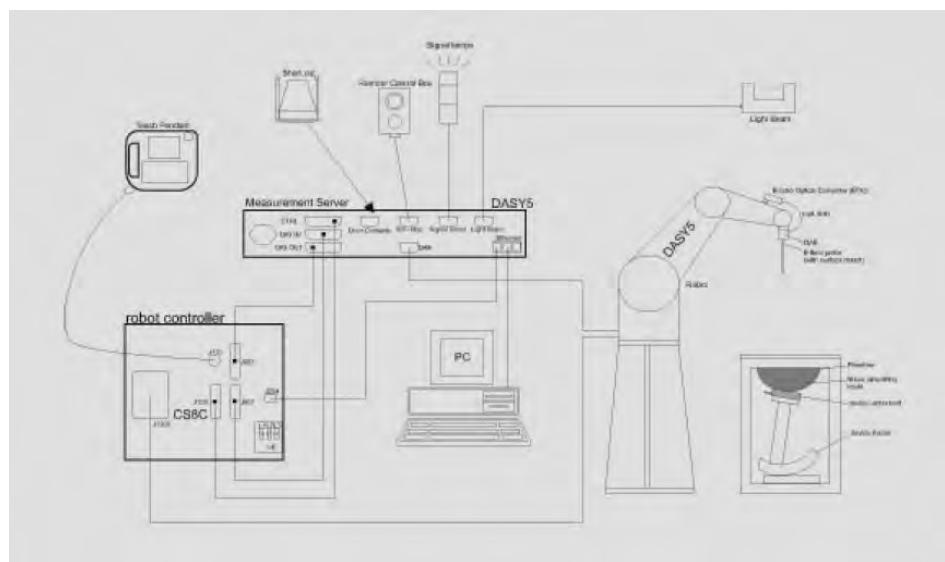


Fig. a A block diagram of the SAR measurement system

The DASY 5 system for performing compliance tests consists of the following items:

1. A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
3. Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
7. A computer operating Windows7
8. DASY 5 software.
9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
10. The SAM twin phantom enabling testing left-hand and right-hand usage.
11. The device holder for handheld mobile phones.
12. Tissue simulating liquid mixed according to the given recipes.
13. Validation dipole kits allowing to validate the proper functioning of the system.

1.10 System Components

EX3DV4 E-Field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL1900MHz Additional CF for other liquids and frequencies upon request	
Frequency	10 MHz to > 6 GHz, Linearity: ± 0.6 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)	
Dimensions	Tip diameter: 2.5 mm	
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.	

SAM PHANTOM V4.0C

Construction:	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.
Shell Thickness:	2 ± 0.2 mm
Filling Volume:	Approx. 25 liters
Dimensions:	Height: 850 mm; Length: 1000 mm; Width: 500 mm

DEVICE HOLDER

Construction	In combination with the Twin SAM Phantom V4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).	 Device Holder
--------------	---	--

1.11 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within $\pm 10\%$ (according to KDB865664D01v01r03) from the target SAR values. These tests were done at 1900 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was 21.7°C, the relative humidity was 62% and the liquid depth above the ear reference points was above 15 cm ($\leq 3G$) or 10 cm ($> 3G$) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

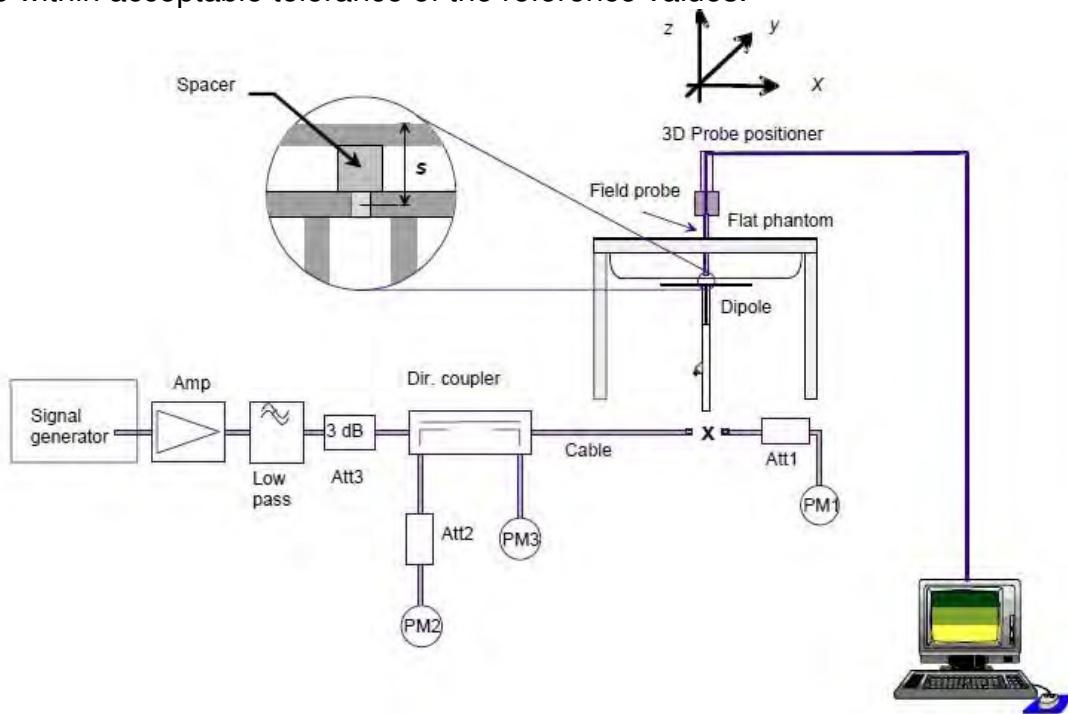


Fig. b The block diagram of system verification

Validation Kit	S/N	Frequency (MHz)		1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D1900V2	5d142	1900	Head	40.9	10.1	40.4	-1.22%	Apr. 28, 2016
			Body	40.9	9.96	39.84	-2.59%	Apr. 28, 2016

Table 1. Results of system validation

1.12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this Head-simulant fluid were measured by using the Agilent Model 85070E Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Network Analyzer.

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the flat section of the phantom was at least 15 cm ($\leq 3G$) or 10 cm ($> 3G$) during all tests. (Appendix Fig. 2)

Tissue Type	Measured Frequency (MHz)	Target Dielectric Constant, ϵ_r	Target Conductivity, σ (S/m)	Measured Dielectric Constant, ϵ_r	Measured Conductivity, σ (S/m)	% dev ϵ_r	% dev σ	Measurement Date
Head	1850.2	40.000	1.400	40.238	1.385	-0.59%	1.07%	Apr. 28, 2016
	1880	40.000	1.400	40.171	1.427	-0.43%	-1.93%	
	1900	40.000	1.400	40.106	1.449	-0.27%	-3.50%	
	1909.8	40.000	1.400	40.017	1.452	-0.04%	-3.71%	
Body	1850.2	53.300	1.52	53.112	1.486	0.35%	2.24%	Apr. 28, 2016
	1880	53.300	1.52	52.927	1.517	0.70%	0.20%	
	1900	53.300	1.52	52.824	1.548	0.89%	-1.84%	
	1909.8	53.300	1.52	52.773	1.554	0.99%	-2.24%	

Table 2. Dielectric Parameters of Tissue Simulant Fluid

The composition of the tissue simulating liquid:

Frequency (MHz)	Mode	Ingredient						Total amount
		DGMBE	Water	Salt	Preventol D-7	Cellulose	Sugar	
1900	Head	444.52 g	552.42 g	3.06 g	—	—	—	1.0L(Kg)
	Body	300.67 g	716.56 g	4.0 g	—	—	—	1.0L(Kg)

Table 3. Recipes for tissue simulating liquid

1.13 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017.

These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter.

Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

1. Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over a 10 grams of tissue (defined as a tissue volume in the shape of a cube).

Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

2. Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube).

Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube).

General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure.

Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .6)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table 4. RF exposure limits

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

2. Summary of Results

GSM 1900 MHz

Mode	Position	Distance (mm)	CH	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 1g (W/kg)		Plot page
								Measured	Reported	
GSM1900 (Head)	Re Cheek	-	661	1880	30.50	29.45	127.35%	0.490	0.624	-
	Re Tilt	-	661	1880	30.50	29.45	127.35%	0.194	0.247	-
	Le Cheek	-	512	1850.2	30.50	29.35	130.32%	0.624	0.813	27
	Le Cheek	-	661	1880	30.50	29.45	127.35%	0.539	0.686	-
	Le Cheek	-	810	1909.8	30.50	29.38	129.42%	0.485	0.628	-
	Le Tilt	-	661	1880	30.50	29.45	127.35%	0.173	0.220	-
GSM1900 (Body-Worn)	Front side	10	661	1880	30.50	29.45	127.35%	0.573	0.730	-
	Back side	10	512	1850.2	30.50	29.35	130.32%	0.775	1.010	28
	Back side-with headset	10	512	1850.2	30.50	29.35	130.32%	0.750	0.977	-
	Back side-with 2 nd	10	512	1850.2	30.50	29.35	130.32%	0.685	0.893	-
	Back side	10	661	1880	30.50	29.45	127.35%	0.616	0.784	-
	Back side	10	810	1909.8	30.50	29.38	129.42%	0.490	0.634	-

2nd source for receiver

Mode	Position	Distance (mm)	CH	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 1g (W/kg)		Plot page
								Measured	Reported	
GSM1900 (Head)	Le Cheek	-	512	1850.2	30.50	29.35	130.32%	0.515	0.671	-
GSM1900 (Body-Worn)	Back side	10	512	1850.2	30.50	29.35	130.32%	0.663	0.864	-

3. Simultaneous Transmission Analysis

Simultaneous Transmission Scenarios:

Simultaneous Transmit Configurations	Head	Body-Worn	Hotspot
GSM1900 + Bluetooth	No	Yes	No

Notes:

1. Bluetooth, and 2.4GHz WiFi share the same antenna path and cannot transmit simultaneously.

3.1 Estimated SAR calculation

According to KDB447498 D01v05 – When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

$$\text{Estimated SAR} = \frac{\text{Max tune up power(mW)}}{\text{Min. test separation distance(mm)}} \times \frac{\sqrt{f(\text{GHz})}}{7.5}$$

If the minimum test separation distance is < 5mm, a distance of 5mm is used for estimated SAR calculation. When the test separation distance is >50mm, the 0.4W/kg is used for SAR-1g.

Mode	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (Body) (mm)	Estimated SAR 1g (Body) (W/kg)
Bluetooth	2480	6	10	0.084

3.2 SPLSR evaluation and analysis

Per KDB447498D01, when the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR sum to peak location separation ratio(SPLSR).

The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion.

The ratio is determined by $(\text{SAR1} + \text{SAR2})^{1.5}/\text{Ri}$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

SAR1 and SAR2 are the highest reported or estimated SAR for each antenna in the pair, and Ri is the separation distance between the peak SAR locations for the antenna pair in mm.

When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna.

Simultaneous Transmission Combination

reported SAR WWAN and Bluetooth, Σ SAR evaluation							
Frequency band	Position		reported SAR / W/kg		Σ SAR	Calculated distance (mm)	SPLSR (≤ 0.04)
			WWAN	Bluetooth	<1.6W/kg		
GSM 1900	Body-Worn	Front	0.730	0.084	0.814	-	-
		Back	1.010	0.084	1.094	-	-

4. Instruments List

Manufacturer	Device	Type	Serial number	Date of last calibration	Date of next calibration
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3938	Oct.01,2015	Sep.30,2016
Schmid & Partner Engineering AG	System Validation Dipole	D1900V2	5d142	Jun.23,2015	Jun.22,2016
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	1260	Sep.24,2015	Sep.23,2016
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required
Network Analyzer	Agilent	E5071C	MY46107530	Jan.07,2016	Jan.06,2017
Agilent	Dielectric Probe Kit	85070E	MY44300677	Calibration not required	Calibration not required
Agilent	Dual-directional coupler	778D	MY48220468	Jul.16,2015	Jul.15,2016
Agilent	RF Signal Generator	N5181A	MY50145142	Feb.19,2016	Feb.18,2017
Agilent	Power Meter	E4417A	MY52240003	Jul.15,2015	Jul.14,2016
Agilent	Power Sensor	E9301H	MY52200004	Jul.15,2015	Jul.14,2016
TECPEL	Digital thermometer	DTM-303A	TP130073	Feb.26,2016	Feb.25,2017
Anritsu	Radio Communication Test	MT8820C	6201061014	Oct.07,2015	Oct.06,2016

5. Measurements

Date: 2016/4/28

GSM 1900_Head_Le Cheek_CH 512

Communication System: GSM; Frequency: 1850.2 MHz

Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.385$ S/m; $\epsilon_r = 40.238$; $\rho = 1000$ kg/m³

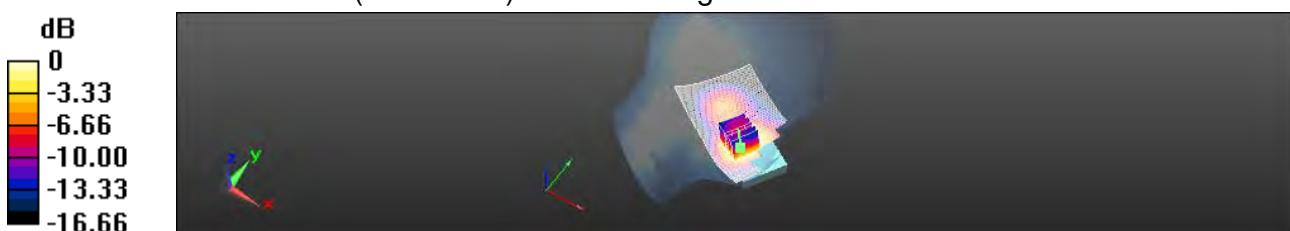
Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3938; ConvF(7.89, 7.89, 7.89); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (61x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.834 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.70 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.934 W/kg

SAR(1 g) = 0.624 W/kg; SAR(10 g) = 0.383 W/kg

Maximum value of SAR (measured) = 0.794 W/kg

Date: 2016/4/28

GSM 1900_Body-worn_Back side_CH 512

Communication System: GSM; Frequency: 1850.2 MHz

Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.486$ S/m; $\epsilon_r = 53.112$; $\rho = 1000$ kg/m³

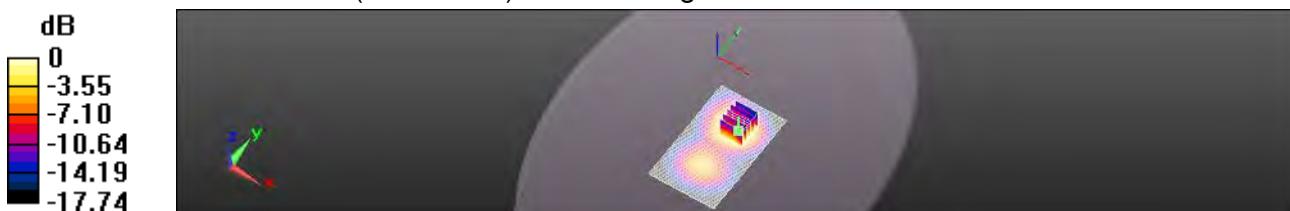
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3938; ConvF(7.41, 7.41, 7.41); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (61x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 1.04 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.06 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.775 W/kg; SAR(10 g) = 0.452 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

0 dB = 1.03 W/kg = 0.13 dBW/kg

6. SAR System Performance Verification

Date: 2016/4/28

Dipole 1900 MHz_SN:5d142_Head

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 40.106$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

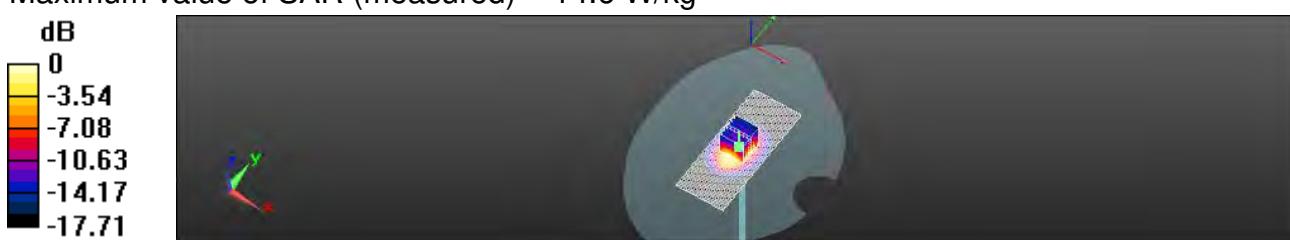
DASY5 Configuration:

- Probe: EX3DV4 - SN3938; ConvF(7.89, 7.89, 7.89); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (41x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 14.7 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.8 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.29 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

Date: 2016/4/28

Dipole 1900 MHz_SN:5d142_Body

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.548$ S/m; $\epsilon_r = 52.824$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3938; ConvF(7.41, 7.41, 7.41); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 14.2 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.96 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.39 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

7. DAE & Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeugmestrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client: SGS - TW (Auden)

Certificate No.: DAE4-1260_Sep15

CALIBRATION CERTIFICATE

Object: DAE4 - SD 000 D04 BM - SN: 1260

Calibration procedure(s): QA CAL-06.v29
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: September 24, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

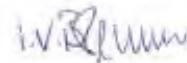
Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	09-Sep-15 (No.17153)	Sep-16
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002	06-Jan-15 (In house check) 06-Jan-15 (In house check)	In house check: Jan-16 In house check: Jan-16

Calibrated by:

Name: Eric Hainfeld

Function: Technician


Signature:

Approved by:

Name: Tim Bornhorst

Function: Deputy Technical Manager

Issued: September 24, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 42, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'ékalibrage
S Servizio svizzero di iscratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
The Swiss Accreditation Service is one of the signatories to the EU
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 0108

Glossary

DAE	data acquisition electronics
Connector angle	Information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at $\pm 10\%$ and $\pm 10\%$ of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage.
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information: Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100\ldots+300\text{ mV}$ Low Range: 1LSB = 61nV , full range = $-1\ldots+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$406.043 \pm 0.02\% \text{ (k=2)}$	$405.010 \pm 0.02\% \text{ (k=2)}$	$405.577 \pm 0.02\% \text{ (k=2)}$
Low Range	$3.95755 \pm 1.50\% \text{ (k=2)}$	$4.01958 \pm 1.50\% \text{ (k=2)}$	$4.00483 \pm 1.50\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$84.5^\circ \pm 1^\circ$
---	--------------------------

Appendix (Additional assessments outside the scope of SCS0108)**1. DC Voltage Linearity**

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199996.71	-0.71	-0.00
Channel X + Input	20003.42	1.97	0.01
Channel X - Input	-19997.29	3.64	-0.02
Channel Y + Input	199997.03	-0.74	-0.00
Channel Y + Input	20002.19	0.75	0.00
Channel Y - Input	-20000.85	-0.08	0.00
Channel Z + Input	199995.02	-2.52	-0.00
Channel Z + Input	20000.79	-0.63	-0.00
Channel Z - Input	-20001.97	-1.09	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.31	0.02	0.00
Channel X + Input	201.74	0.05	0.03
Channel X - Input	-197.79	0.49	-0.25
Channel Y + Input	2001.47	0.11	0.01
Channel Y + Input	201.57	-0.09	-0.04
Channel Y - Input	-198.16	0.02	-0.01
Channel Z + Input	2001.06	-0.19	-0.01
Channel Z + Input	200.35	-1.16	-0.58
Channel Z - Input	-199.72	-1.47	0.74

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	1.97	-0.02
	-200	0.99	-1.30
Channel Y	200	13.29	13.11
	-200	-13.69	-13.98
Channel Z	200	-0.48	-0.25
	-200	-1.06	-1.87

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	5.95	-2.35
Channel Y	200	9.12	-	6.99
Channel Z	200	9.45	7.26	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15911	14818
Channel Y	15818	16372
Channel Z	16044	16664

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MQ

	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	-0.60	-1.69	0.60	0.44
Channel Y	-0.89	-3.18	0.27	0.50
Channel Z	-1.05	-1.97	0.26	0.49

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.8

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zauggastrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client SGS-TW (Auden)

Certificate No.: EX3-3938_Oct15

CALIBRATION CERTIFICATE

Object EX3DW4 - SN:3938
Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes

Calibration date: October 1, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature $22 \pm 3^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44196	0841203874	01-Apr-15 (No. 217-02125)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02126)	Mar-16
Reference 3 dB Attenuator	SN: 65064 (3e)	01-Apr-15 (No. 217-02128)	Mar-16
Reference 20 dB Attenuator	SN: 55977 (20e)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 30 dB Attenuator	SN: 58120 (30e)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe E83DW2	SN: 3013	30-Dec-14 (No. ES3-3013, Dec-14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660, Jan-15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8940C	US3642U01700	4-Aug-15 (in house check: Apr-16)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-15 (in house check: Oct-14)	In house check: Oct-15

Calibrated by:	Name: <u>Janet Elizabet</u>	Function: <u>Laboratory Technician</u>	Signature: <u>Janet Elizabet</u>
Approved by:	Name: <u>Kaja Pekovic</u>	Function: <u>Technical Manager</u>	Signature: <u>Kaja Pekovic</u>

Issued: October 2, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeugmühlestrasse 40, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'kalibrierung
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 0108

Glossary:

TSL	issue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (τ_{duty_cycle}) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization η	rotation around probe axis
Polarization φ	a rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\eta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1526-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization, $\eta = 0$ ($f \leq 800$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainty of NORM_{x,y,z} does not affect the E-field uncertainty inside TSL (see below ConvF).
- NORM_{f(x,y,z)} = NORM_{x,y,z} * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCP_{x,y,z}: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}, B_{x,y,z}, C_{x,y,z}, D_{x,y,z}: VR_{x,y,z}, A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS-voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORM_{x,y,z} (no uncertainty required).

EX3DV4 – SN:3938

October 1, 2015

Probe EX3DV4

SN:3938

Manufactured: May 2, 2013
Calibrated: October 1, 2015

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3938

October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{Vm})^2$) ^A	0.52	0.57	0.34	$\pm 10.1\%$
DCP (mV) ^B	100.8	99.7	104.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^C (k=2)
0	CW	X	0.0	0.0	1.0	0.00	141.3	$\pm 2.7\%$
		Y	0.0	0.0	1.0		147.2	
		Z	0.0	0.0	1.0		128.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^h (mm)	Unc (k=2)
750	41.9	0.89	9.69	9.69	9.69	0.19	1.67	± 12.0 %
835	41.5	0.90	9.35	9.35	9.35	0.26	1.23	± 12.0 %
900	41.5	0.97	9.15	9.15	9.15	0.18	1.86	± 12.0 %
1450	40.5	1.20	7.86	7.86	7.86	0.13	2.63	± 12.0 %
1750	40.1	1.37	8.17	8.17	8.17	0.36	0.80	± 12.0 %
1900	40.0	1.40	7.89	7.89	7.89	0.32	0.80	± 12.0 %
2000	40.0	1.40	7.89	7.89	7.89	0.36	0.75	± 12.0 %
2300	39.5	1.67	7.46	7.46	7.46	0.34	0.88	± 12.0 %
2450	39.2	1.80	7.11	7.11	7.11	0.32	0.94	± 12.0 %
2600	39.0	1.96	6.79	6.79	6.79	0.24	1.23	± 12.0 %
5250	35.9	4.71	4.90	4.90	4.90	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.28	4.28	4.28	0.50	1.80	± 13.1 %
5750	35.4	5.22	4.41	4.41	4.41	0.50	1.80	± 13.1 %

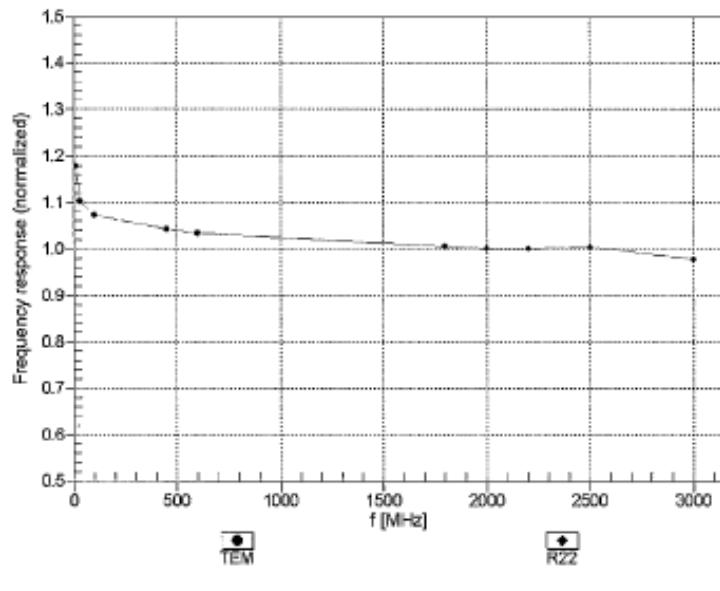
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 156 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-8 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^r	Conductivity (S/m) ^r	ConvF X	ConvF Y	ConvF Z	Alpha ^d	Depth ^e (mm)	Unc (k=2)
750	55.5	0.96	9.50	9.50	9.50	0.31	1.13	± 12.0 %
835	55.2	0.97	9.30	9.30	9.30	0.28	1.26	± 12.0 %
900	55.0	1.05	9.22	9.22	9.22	0.34	1.05	± 12.0 %
1450	54.0	1.30	7.96	7.96	7.96	0.16	2.05	± 12.0 %
1750	53.4	1.49	7.73	7.73	7.73	0.42	0.80	± 12.0 %
1900	53.3	1.52	7.41	7.41	7.41	0.32	0.90	± 12.0 %
2000	53.3	1.52	7.55	7.55	7.55	0.28	1.05	± 12.0 %
2300	52.9	1.81	7.27	7.27	7.27	0.36	0.84	± 12.0 %
2450	52.7	1.95	7.17	7.17	7.17	0.37	0.85	± 12.0 %
2600	52.5	2.16	6.90	6.90	6.90	0.33	0.90	± 12.0 %
5250	48.9	5.36	4.19	4.19	4.19	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.09	4.09	4.09	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.66	3.66	3.66	0.55	1.90	± 13.1 %
5750	48.3	5.94	3.87	3.87	3.87	0.55	1.90	± 13.1 %


^c Frequency validity above 300 MHz or ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^d At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

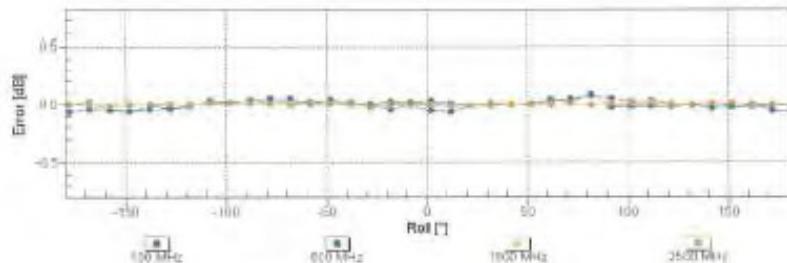
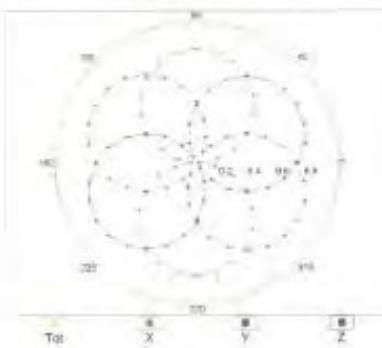
^e Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

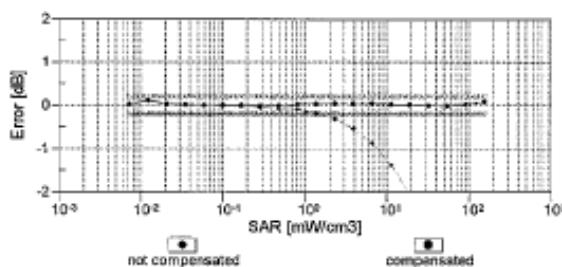
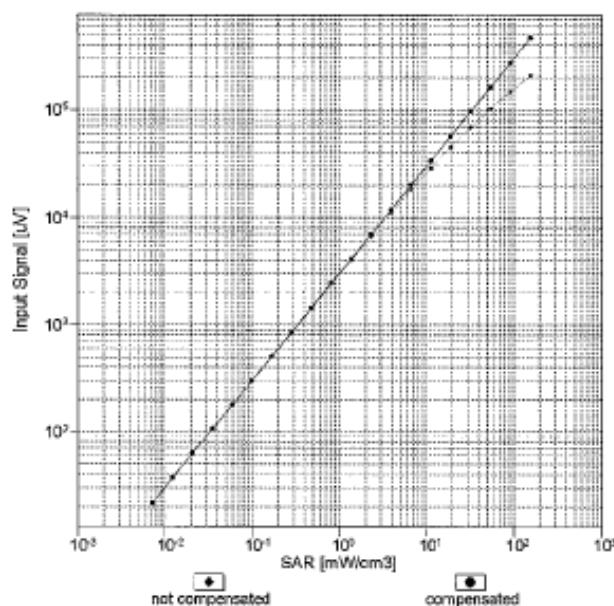
EX3DV4- SN:3938

October 1, 2015

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

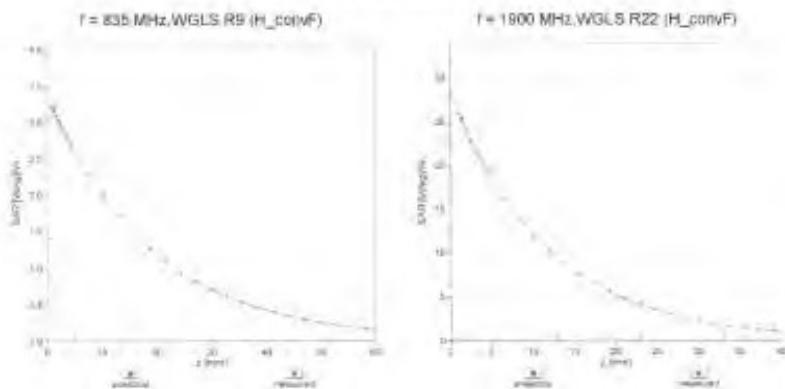
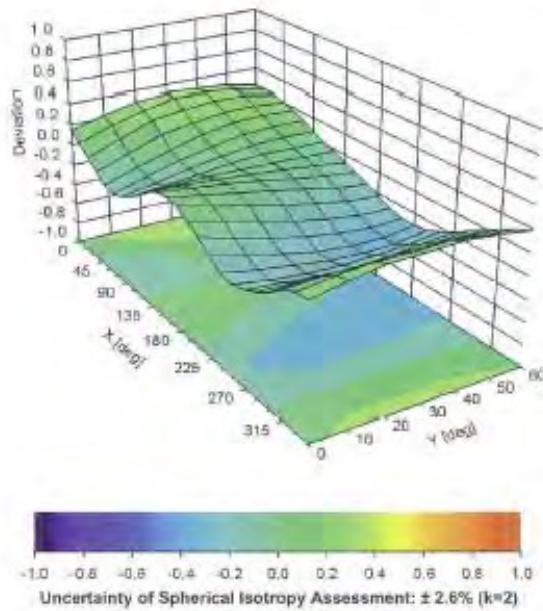
EX30V4- SN:3938



October 1, 2015



Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22



Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range f(SAR_{head})
(TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

EX3DVI-SN.3938

October 1, 2015

Conversion Factor Assessment**Deviation from Isotropy in Liquid**
Error (ϕ, θ), $f = 900$ MHz

EX3DV4- SN:3938

October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-28.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

8. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

A	c	D	e	f	g	$h=c * f / e$	$i=c * g / e$	k
Source of Uncertainty	Tolerance/ Uncertainty	Probability	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty vi, or Veff
Measurement system								
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00% ∞
<i>Isotropy, Axial</i>	3.50%	R	$\sqrt{3}$	1.732	1	1	2.02%	2.02% ∞
<i>Isotropy, Hemispherical</i>	9.60%	R	$\sqrt{3}$	1.732	1	1	5.54%	5.54% ∞
Modulation Response	2.40%	R	$\sqrt{3}$	1.732	1	1	1.40%	1.40% ∞
Boundary Effect	1.00%	R	$\sqrt{3}$	1.732	1	1	0.58%	0.58% ∞
Linearity	4.70%	R	$\sqrt{3}$	1.732	1	1	2.71%	2.71% ∞
Detection Limits	1.00%	R	$\sqrt{3}$	1.732	1	1	0.58%	0.58% ∞
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30% ∞
Response time	0.80%	R	$\sqrt{3}$	1.732	1	1	0.46%	0.46% ∞
Integration Time	2.60%	R	$\sqrt{3}$	1.732	1	1	1.50%	1.50% ∞
<i>Measurement drift (class A evaluation)</i>	1.75%	R	$\sqrt{3}$	1.732	1	1	1.01%	1.01% ∞
RF ambient condition - noise	3.00%	R	$\sqrt{3}$	1.732	1	1	1.73%	1.73% ∞
RF ambient conditions - reflections	3.00%	R	$\sqrt{3}$	1.732	1	1	1.73%	1.73% ∞
Probe positioner Mechanical restrictions	0.40%	R	$\sqrt{3}$	1.732	1	1	0.23%	0.23% ∞
Probe Positioning with respect to phantom	2.90%	R	$\sqrt{3}$	1.732	1	1	1.67%	1.67% ∞
Post-processing	1.00%	R	$\sqrt{3}$	1.732	1	1	0.58%	0.58% ∞
Max SAR Eval	1.00%	R	$\sqrt{3}$	1.732	1	1	0.58%	0.58% ∞
Test Sample related								
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90% M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60% M-1
Drift of output power	5.00%	R	$\sqrt{3}$	1.732	1	1	2.89%	2.89% ∞
Phantom and Setup								
Phantom Uncertainty	4.00%	R	$\sqrt{3}$	1.732	1	1	2.31%	2.31% ∞
Liquid permittivity (mea.)	0.99%	N	1	1	0.64	0.43	0.63%	0.43% M
Liquid Conductivity (mea.)	3.71%	N	1	1	0.6	0.49	2.23%	1.82% M
Combined standard uncertainty		RSS					11.65%	11.56%
Explant uncertainty (95% confidence)							23.30%	23.12%

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明，此報告結果僅對測試之樣品負責，同時此樣品僅保留90天。本報告未經本公司書面許可，不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

9. Phantom Description

Schmid & Partner Engineering AG

s p e a gZeughausstrasse 43, 8004 Zurich, Switzerland.
Phone +41 1 245 9700, Fax +41 1 245 9779
info@speag.com, http://www.speag.com**Certificate of Conformity / First Article Inspection**

Item	SAM Twin Phantom V4.0
Type No.	QD 000 P40 C
Series No.	TP-1150 and higher
Manufacturer	SPEAG Zeughausstrasse 43 CH-8004 Zürich Switzerland

Tests

The series production process used allows the limitation to test of first articles.
Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the
series first article Type No. QD 000 P40 BA, Serial No. TP-1000. Certain parameters have been retested
using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0.2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff.
Material thickness at ERP	Compliant with the requirements according to the standards	8mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz – 8 GHz: Relative permittivity < 5. Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material compatibility.	DEGMIBE based simulating liquids	Pre-series, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid	< 1% typical < 0.8% if filled with 155mm of HSL900 and without DUT below	Prototypes, Sample testing

Standards

- [1] CENELEC EN 50361
- [2] IEEE Std 1528-2003
- [3] IEC 62209 Part 1
- [4] FCC OET Bulletin 65, Supplement C, Edition 01-01

(*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

Date

07.07.2006

s p e a g**Signature / Stamp**Schmid & Partner Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 1 245 9700, Fax +41 1 245 9779
info@speag.com, http://www.speag.com

10. System Validation from Original Equipment Supplier

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di misura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 0108

Client **Auden**

Certificate No: D1900V2-5d142_Jun15

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d142

Calibration procedure(s) QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date June 23, 2015

This calibration certificate documents the traceability to national standards, which relate the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given in the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY410982517	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe E83DV3	SN: 3205	30-Dec-14 (No. E83-0206_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-05	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	16-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by: Name Michael Weber Function Laboratory Technician Signature

Approved by: Name Kalja Pešković Function Technical Manager Signature

Issued: June 23, 2015

This calibration certificate shall not be reproduced except in full without written approval of this laboratory.

Certificate No: D1900V2-5d142_Jun15

Page 1 of 8

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明，此報告結果僅對測試之樣品負責，同時此樣品僅保留90天。本報告未經本公司書面許可，不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 45, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'établissage
S Servizio svizzero di laurema
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 010B

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	52.7 Ω + 6.0 $j\Omega$
Return Loss	-23.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.6 Ω + 6.9 $j\Omega$
Return Loss	-22.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

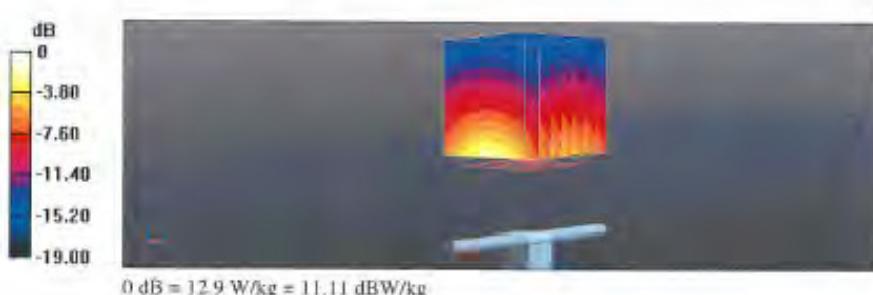
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142

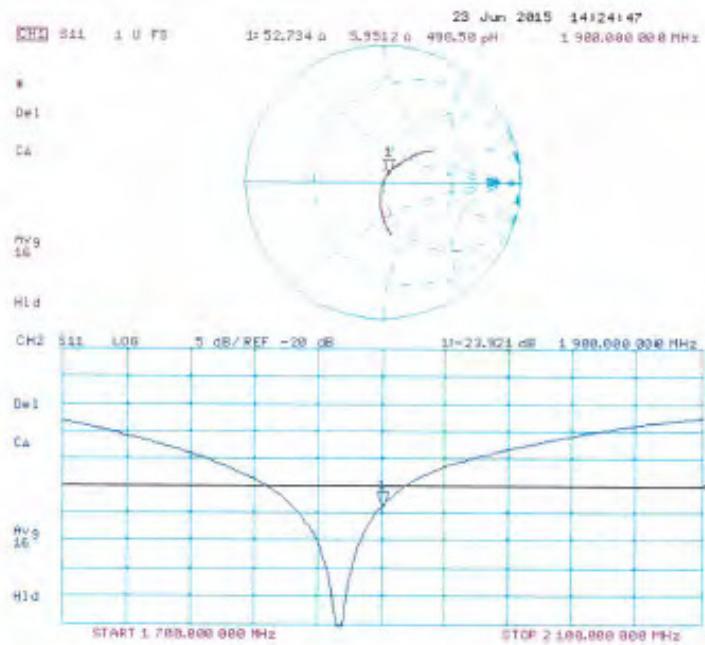
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $f = 1900$ MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 99.41 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.36 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

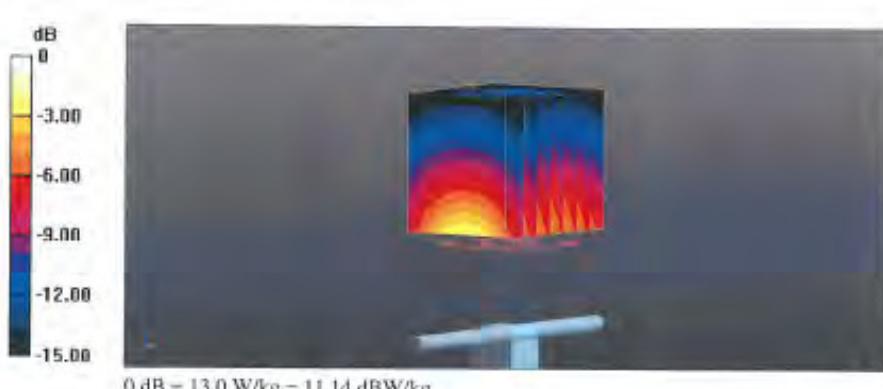
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142

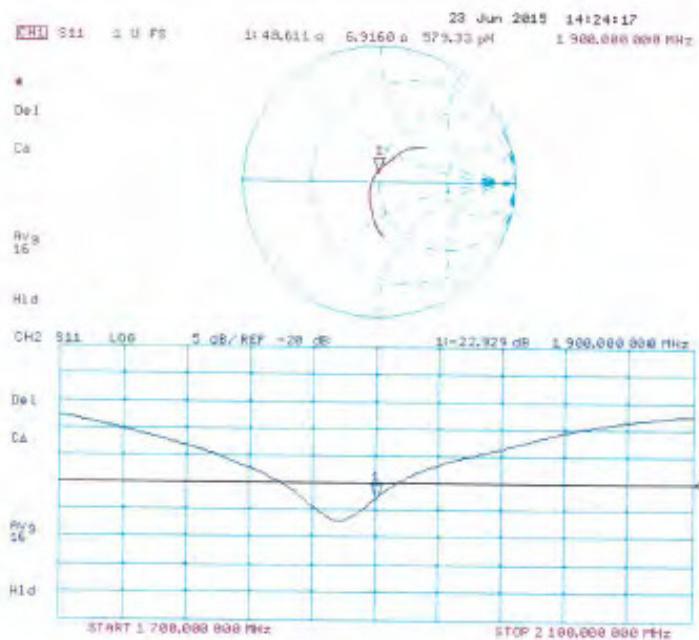
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\epsilon = 1.53$ S/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 96.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.48 W/kg

Maximum value of SAR (measured) = 13.0 W/kg

Impedance Measurement Plot for Body TSL

11. Product Change Description

As the applicant of the below model, [Doro AB] declares that the product,

[DFB-0060]
HW:V02
SW:5030_DL08_S01A_V03_M0160122_GCF

is the variant of the initial certified product,

[DFB-0060]
HW:V02
SW:5030_DL08_S01A_V03_M0160122_GCF

SOFTWARE MODIFICATIONS:

Protocol Stack changes: No change
MMS/STK changes: No change
JAVA changes: No change
Other changes detailed: No change

HARDWARE MODIFICATION:

Band changes: No change
Power Amplifier changes: No change
Antenna changes: No change
PCB Layout changes: No change
Components on PCB changes: No change
LCD changes: No change
Speaker changes: No change
Receiver changes: [change from Knowles \(Model :RECEIVER-615-2-SC-FRANKLIN\)](#) to Gettop (Model: RR150620LM08)
Camera changes: No change
Vibrator changes: No change
Bluetooth changes: No change
FM changes: No change
Other changes: No change

MECHANICAL MODIFICATIONS:

Use new metal front/back cover or keypad: No change
Mechanical shell changes: No change
Other changes detailed: No change

ACCESSORY MODIFICATIONS:

Battery changes:No change
AC Adaptor changes:No change
Earphone changes:No change

APPROVED BY:

Quality Director: Per Carlenhag

Date: 2016-4-30

Company: Doro AB

Address: Doro AB Magistratsvägen 10, SE-22643 Lund, Sweden

Tel: +46 46 280 50 00

Fax: +46 46 280 50 01

- End of 1st part of report -