

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents Pa	ge
1. CERTIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	10
3.3 DUTY CYCLE	11
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
3.5 DESCRIPTION OF SUPPORT UNITS	12
4. EMC EMISSION TEST	13
4.1 CONDUCTED EMISSION MEASUREMENT	13
4.1.1 POWER LINE CONDUCTED EMISSION Limits	13
4.1.2 TEST PROCEDURE	13
4.1.3 DEVIATION FROM TEST STANDARD	13
4.1.4 TEST SETUP	14
4.1.5 EUT OPERATING CONDITIONS	14
4.1.6 EUT TEST CONDITIONS	14
4.1.7 TEST RESULTS	14
4.2 RADIATED EMISSION MEASUREMENT	15
4.2.1 RADIATED EMISSION LIMITS	15
4.2.2 TEST PROCEDURE	16
4.2.3 DEVIATION FROM TEST STANDARD	16
	16
4.2.5 EUT OPERATING CONDITIONS	17
4.2.6 EUT TEST CONDITIONS	17
4.2.7 TEST RESULTS (9KHZ TO 30MHZ)	18
4.2.8 TEST RESULTS (30MHZ TO 1000MHZ) 4.2.8 TEST RESULTS (ABOVE 1000MHZ)	18 18
5 . MEASUREMENT INSTRUMENTS LIST	10
6. EUT TEST PHOTOS	20
APPENDIX A – CONDUCTED EMISSION	20 25
APPENDIX A - CONDUCTED EMISSION APPENDIX A - RADIATED EMISSION (9KHZ TO 30MHZ)	23 30
APPENDIX B - RADIATED EMISSION (30MHZ TO 1000MHZ)	30 39
APPENDIX C - RADIATED EMISSION (ABOVE 1000MHZ)	44
	109

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Oct. 11, 2018

1. CERTIFICATION

Equipment : Brand Name :	Wireless module Joriin
Test Model :	
Series Model :	
Applicant :	Jorjin Technologies INC.
Manufacturer :	Jorjin Technologies INC.
Address :	17F., No 239, Sec. 1, Datong Rd., Xizhi Dist., New Taipei City, 22161,
	TAIWAN, R.O.C.
Date of Test :	Sep. 04, 2018 ~ Oct. 08, 2018
Test Sample :	Engineering Sample
Standard(s) :	FCC Part15, Subpart E(15.407)
	ANSI C63.10-2013

The above equipment has been tested and found in compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-4-1806T107A) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test result included in this report is only for the 5GHz RLAN part.

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15, Subpart E (15.407)				
Standard(s) Section Test Item Judgment Remark				
15.207	Conducted Emission	PASS		
15.247(d) 15.209	Radiated emission	PASS		
15.203	Antenna Requirement	PASS		

Note:

- (1)" N/A" denotes test is not applicable in this test report
- (2) Accord to the EUT(Report Number: T150417W02-RP1 and model: WG7833-B0, WG7833BEM2A, WG7833BEM2B) has been certificated, Conducted and Radiated emission were criticized and reconfirmed in this report.
- (3) Compared with the previous report (T150417W02-RP1), added one PCB type antennas.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C05: (VCCI RN: C-14742; FCC RN:674415; FCC DN:TW0659) No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Radiated emission Test (Below 1 GHz):

CB15: (VCCI RN: R-20020; FCC RN:674415; FCC DN:TW0659; ISED Assigned Code:20088-5) No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

Radiated emission Test (Above 1 GHz):

CB15: (VCCI RN: G-20031; FCC RN:674415; FCC DN:TW0659; ISED Assigned Code:20088-5) No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted emission test:

Test Site	Method	Measurement Frequency Range	U,(dB)
C05	CISPR	150 kHz ~ 30MHz	2.68

B. Radiated emission test:

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	9kHz ~ 150kHz	2.82
(3m)	CISER	150kHz ~ 30MHz	2.58

Test Site	Method	Measurement Frequency Range		U,(dB)
	30MHz ~ 200MHz	V	4.20	
CB15	CISPR	30MHz ~ 200MHz	Н	3.64
(3m)	CISPR	200MHz ~ 1,000MHz	V	4.56
		200MHz ~ 1,000MHz	Н	3.90

Test Site	Method	Measurement Frequency Range		U,(dB)
		1GHz ~ 6GHz	V	4.46
CB15	CISPR	1GHz ~ 6GHz	Н	4.40
(3m)	CISER	6GHz ~ 18GHz	V	3.88
		6GHz ~ 18GHz	H	4.00

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	18 ~ 26.5 GHz	4.62
(1m)	CISER	26.5 ~ 40 GHz	5.12

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless module
Brand Name	Jorjin
Test Model	WG7833-B0
Series Model	N/A
Model Difference	N/A
Power Source	Powered from host device via USB Cable
Power Rating	DC 5V
Products Covered	N/A
Operation Frequency	UNII-1: 5150-5250MHz UNII-3: 5725-5850MHz
Modulation Type	OFDM
Bit Rate of Transmitter	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n : up to 300Mbps

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. Channel List:

802.11a, 802.11n (20 MHz)		802.11n (40 MHz)	
UNII-1		UN	II-1
Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190
40	5200	46	5230
44	5220		
48	5240		

802.11a, 802.11n (20 MHz)		802.11n	(40 MHz)
UNII-3		UN	II-3
Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755
153	5765	159	5795
157	5785		
161	5805		
165	5825		

3. Table for Filed Antenna:

Ant	Prond	Madal	Tuno	Connector	Gain (dBi)		
Ant.	Brand	Model	Туре	Connector	2.4 GHz	Band 1	Band 4
1	Liteon	Locix	PCB	N/A	3.83	4.10	2.27

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

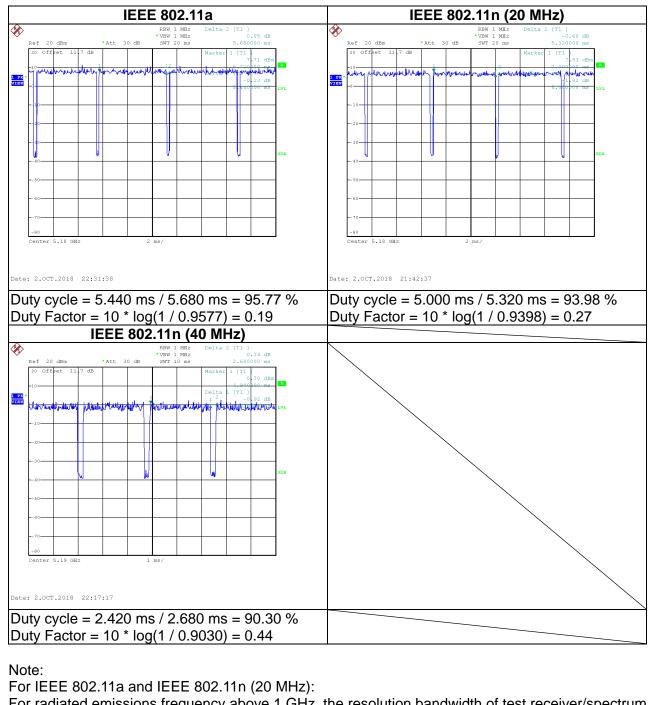
Pretest Mode	Description
Mode 1	TX A Mode / CH36, CH40, CH48 (UNII-1)
Mode 2	TX N20 Mode / CH36, CH40, CH48 (UNII-1)
Mode 3	TX N40 Mode / CH38, CH46 (UNII-1)
Mode 4	TX A Mode / CH149,CH157,CH165 (UNII-3)
Mode 5	TX N20 Mode / CH149,CH157,CH165 (UNII-3)
Mode 6	TX N40 Mode / CH151,CH159 (UNII-3)
Mode 7	TX A Mode / CH48 (UNII-1)
Mode 8	TX A Mode / CH149 (UNII-3)

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test				
Final Test Mode	Final Test Mode Description			
Mode 7	TX A Mode / CH48 (UNII-1)			
Mode 8 TX A Mode / CH149 (UNII-3)				

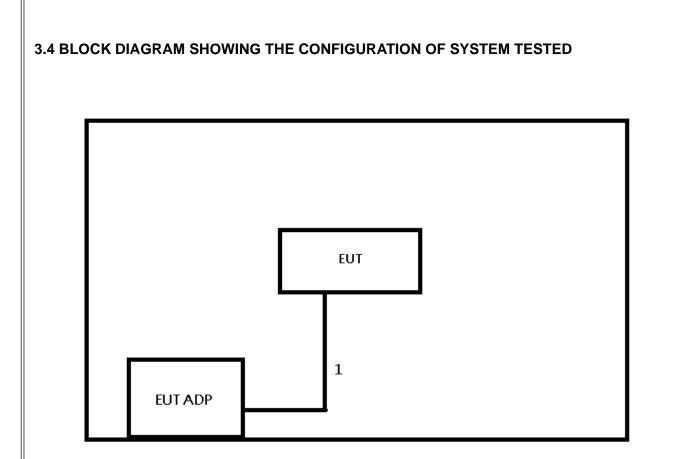
For Radiated Emission			
Final Test Mode	Description		
Mode 1	TX A Mode / CH36, CH40, CH48 (UNII-1)		
Mode 2	TX N20 Mode / CH36, CH40, CH48 (UNII-1)		
Mode 3	TX N40 Mode / CH38, CH46 (UNII-1)		
Mode 4	TX A Mode / CH149,CH157,CH165 (UNII-3)		
Mode 5	TX N20 Mode / CH149,CH157,CH165 (UNII-3)		
Mode 6	TX N40 Mode / CH151,CH159 (UNII-3)		

Note:


(1) For radiated emission below 1GHz test, only the worst case is recorded.

3.3 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz (Duty cycle < 98%).

For IEEE 802.11n (40 MHz):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 2 kHz (Duty cycle < 98%).

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	1.5m	Power Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 -0.50	66 to 56*	56 to 46*	
0.50 -5.0	56	46	
5.0 -30.0	60	50	

Note:

(1) The limit of " * " decreases with the logarithm of the frequency

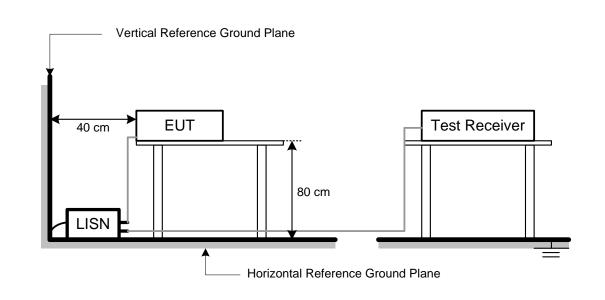
- (2) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.


4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting/receiving data or hopping on mode.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 45% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Appendix A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.
- (3) " N/A" denotes test is not applicable to this device.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note:

(1) The limit for radiated test was performed according to FCC Part 15, Subpart E.

(2) The tighter limit applies at the band edges.

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

Frequencies (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150-5250	-27	68.3
5250-5350	-27	68.3
5470-5725	-27	68.3
	-27(Note 2)	68.3
5725-5850	10(Note 2)	105.3
5725-5650	15.6(Note 2)	110.9
	27(Note 2)	122.3

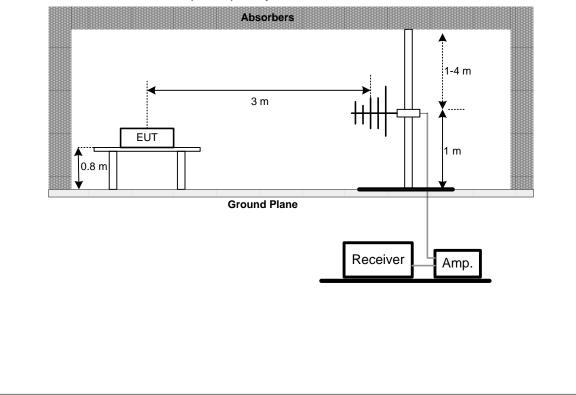
Note:

1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{1000000\sqrt{30P}}$

 $\mu\text{V/m},$ where P is the eirp (Watts)

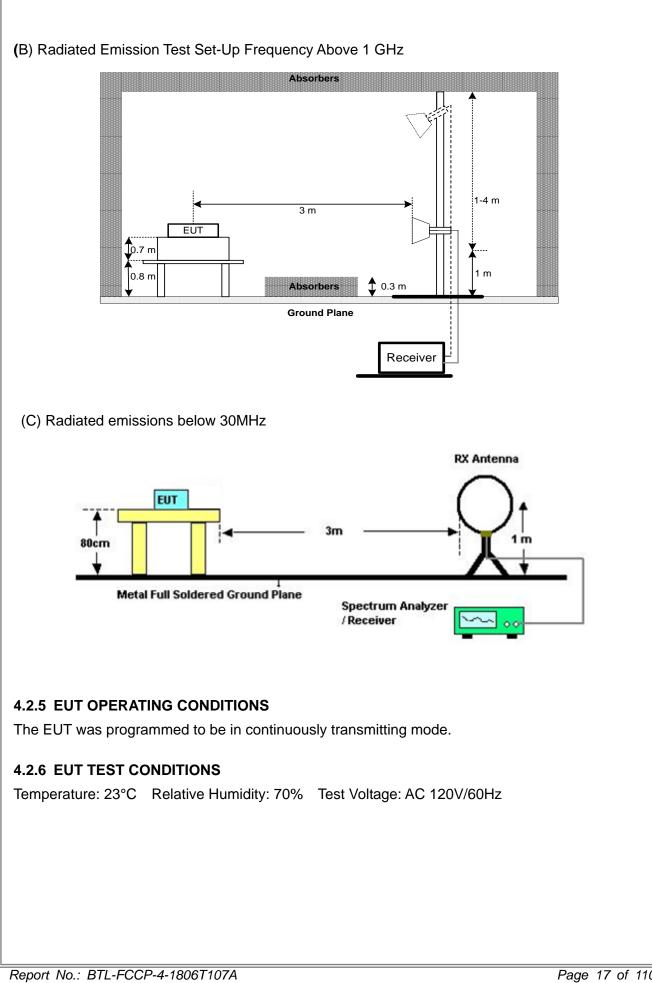
2. According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

4.2.2 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD

No deviation


4.2.4 TEST SETUP

(A)Radiated Emission Test Set-Up Frequency Below 1GHz

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Appendix B.

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (30MHZ TO 1000MHZ)

Please refer to the Appendix C.

4.2.8 TEST RESULTS (ABOVE 1000MHZ)

Please refer to the Appendix D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	Mar. 08, 2019		
2	Test Cable	EMCI	EMCCFD300-BM-B MR-6000	170715	Aug. 07, 2019		
3	EMI Test Receiver	R&S	ESR7	101433	Dec. 10, 2018		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A		

	Radiated Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Preamplifier	EMCI	012645B	980267	Feb. 27, 2019		
2	Preamplifier	EMCI	EMC02325	980217	Dec. 27, 2018		
3	Preamplifier	EMCI	EMC2654045	980030	Feb. 13, 2019		
4	Test Cable	EMCI	EMC104-SM-S M-8000	8m	Jan. 03, 2019		
5	Test Cable	EMCI	EMC104-SM-S M-800	150207	Jan. 03, 2019		
6	Test Cable	EMCI	EEMC104-SM-S M-3000	151205	Jan. 03, 2019		
7	MXE EMI Receiver	Agilent	N9038A	MY55420127	Jan. 08, 2019		
8	Signal Analyzer	Agilent	N9010A	MY52220990	Feb. 21, 2019		
9	Loop Ant	EMCI	LPA600	274	May 03, 2019		
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	Feb. 27, 2019		
11	Horn Ant	Schwarzbeck	BBHA 9170	187	Dec. 05, 2018		
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-548	Jan. 15, 2019		
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	Jan. 15, 2019		

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

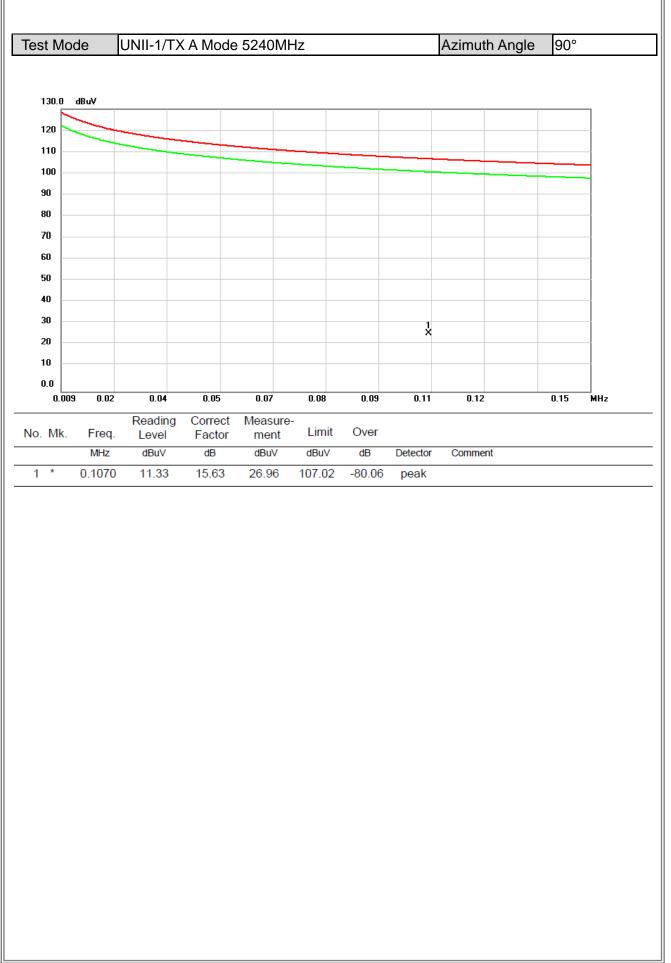
APPENDIX A – CONDUCTED EMISSION

est Mo	ode l	JNII-1/TX	(A Mode	95240MH	Z			Phase	Line
80.0	dBuV								
70									
60									
50									
40	N3 5 XXXX	9							
30	M	holon .							
2 20	4 6 8 X X X	×1 1 1 many	MMM.	HIMA WARN HER					X
				MARY MANAN WHERE	Am AN also	mann	Hundren hole of	Kopan and how and	12 Juline
					· • •	· · · · · · · · · · · · · · · · · · ·			×
10					· • •				×
10 0.0 0.15	50		0.5		(MHz)		5		X 30.000
0.0				Measure- ment	(MHz)	Over			
0.0		Reading	0.5 Correct	Measure-		Over		Comment	
0.0	Freq.	Reading Level	0.5 Correct Factor	Measure- ment	Limit		5	Comment	
0.0 0.15 Io. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBu∨	dB	5 Detector	Comment	
0.0 0.15	Freq. MHz 0.1590	Reading Level dBuV 33.00	0.5 Correct Factor dB 9.63	Measure- ment dBuV 42.63	Limit dBuV 65.52	dB -22.89	5 Detector QP	Comment	
0.0 0.15 10. Mk. 1 * 2	Freq. MHz 0.1590 0.1590	Reading Level dBuV 33.00 13.20	Correct Factor dB 9.63 9.63	Measure- ment dBuV 42.63 22.83	Limit dBuV 65.52 55.52	dB -22.89 -32.69	5 Detector QP AVG	Comment	
0.0 0.15 lo. Mk. 1 * 2 3	Freq. MHz 0.1590 0.1590 0.1815	Reading Level dBuV 33.00 13.20 31.40	0.5 Correct Factor dB 9.63 9.63 9.63	Measure- ment dBuV 42.63 22.83 41.03	Limit dBuV 65.52 55.52 64.42	dB -22.89 -32.69 -23.39	5 Detector QP AVG QP	Comment	
0.0 0.15 10. Mk. 1 * 2 3 4	Freq. MHz 0.1590 0.1590 0.1815 0.1815	Reading Level dBuV 33.00 13.20 31.40 13.90	0.5 Correct Factor dB 9.63 9.63 9.63 9.63	Measure- ment dBuV 42.63 22.83 41.03 23.53	Limit dBuV 65.52 55.52 64.42 54.42	dB -22.89 -32.69 -23.39 -30.89	5 Detector QP AVG QP AVG	Comment	
0.0 0.15 lo. Mk. 1 * 2 3 4 5	Freq. MHz 0.1590 0.1590 0.1815 0.1815 0.2040	Reading Level dBuV 33.00 13.20 31.40 13.90 29.80	0.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.63	Measure- ment dBuV 42.63 22.83 41.03 23.53 39.43	Limit dBuV 65.52 55.52 64.42 54.42 63.45	dB -22.89 -32.69 -23.39 -30.89 -24.02	5 Detector QP AVG QP AVG	Comment	
0.0 0.15 10. Mk. 1 * 2 3 4 5 6	Freq. MHz 0.1590 0.1590 0.1815 0.1815 0.2040 0.2040	Reading Level dBuV 33.00 13.20 31.40 13.90 29.80 14.50	0.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.63 9.63 9.63	Measure- ment dBuV 42.63 22.83 41.03 23.53 39.43 24.13	Limit dBuV 65.52 55.52 64.42 54.42 63.45 53.45	dB -22.89 -32.69 -23.39 -30.89 -24.02 -29.32	5 Detector QP AVG QP AVG QP AVG	Comment	
0.0 0.15 10. Mk. 1 * 2 3 4 5 6 7	Freq. MHz 0.1590 0.1590 0.1815 0.1815 0.2040 0.2040 0.2288	Reading Level dBuV 33.00 13.20 31.40 13.90 29.80 14.50 27.70	0.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63	Measure- ment dBuV 42.63 22.83 41.03 23.53 39.43 24.13 37.34	Limit dBuV 65.52 55.52 64.42 54.42 63.45 53.45 62.49	dB -22.89 -32.69 -23.39 -30.89 -24.02 -29.32 -25.15	5 Detector QP AVG QP AVG QP AVG	Comment	
0.0 0.15 10. Mk. 1 * 2 3 4 5 6 7 8	Freq. MHz 0.1590 0.1590 0.1815 0.1815 0.2040 0.2040 0.2288 0.2288	Reading Level dBuV 33.00 13.20 31.40 13.90 29.80 14.50 27.70 13.90	0.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.63 9.63 9.64 9.64	Measure- ment dBuV 42.63 22.83 41.03 23.53 39.43 24.13 37.34 23.54	Limit dBuV 65.52 55.52 64.42 54.42 63.45 53.45 62.49 52.49	dB -22.89 -32.69 -23.39 -30.89 -24.02 -29.32 -25.15 -28.95	5 Detector QP AVG QP AVG QP AVG QP AVG	Comment	
0.0 0.15 0.15 1 * 2 3 4 5 6 7 8 9	Freq. MHz 0.1590 0.1590 0.1815 0.1815 0.2040 0.2040 0.2288 0.2288 0.2288	Reading Level dBuV 33.00 13.20 31.40 13.90 29.80 14.50 27.70 13.90 27.30	Correct Factor dB 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63	Measure- ment dBuV 42.63 22.83 41.03 23.53 39.43 24.13 37.34 23.54 36.96	Limit dBuV 65.52 55.52 64.42 63.45 63.45 53.45 62.49 52.49 60.41	dB -22.89 -32.69 -23.39 -30.89 -24.02 -29.32 -25.15 -28.95 -23.45	5 Detector QP AVG QP AVG QP AVG QP AVG QP	Comment	

st Mode	UNII-1/T	K A Mode	5240MH	z			Phase	Neutral
80.0 dBuV								
70								
60								
50								
40 × ×								
30								
20		MMMMMMMM	W				un management of 1	a comment
10	× ×		Mun Marthumber	woodentradinism	water and the second of the	with the and the second	1 X	2
0.0								
0.150		0.5		(MHz)		5		30.000
	Deeding	Correct	Measure-					
. Mk. Fre		Factor	ment	Limit	Over			
MH	q. Level z dBuV	Factor dB	ment dBu∨	dBuV	dB	Detector	Comment	
MH: * 0.159	q. Level z dBuV 00 32.80	Factor dB 9.62	ment dBuV 42.42	dBu∨ 65.52	dB -23.10	QP	Comment	
MH2 * 0.159 0.159	q. Level z dBuV 00 32.80 00 13.10	Factor dB 9.62 9.62	ment dBuV 42.42 22.72	dBuV 65.52 55.52	dB -23.10 -32.80	QP AVG	Comment	
MH2 * 0.159 0.159 0.181	q. Level z dBuV 00 32.80 00 13.10 15 31.30	Factor dB 9.62 9.62 9.61	ment dBuV 42.42 22.72 40.91	dBuV 65.52 55.52 64.42	dB -23.10 -32.80 -23.51	QP AVG QP	Comment	
MH2 * 0.159 0.159 0.181 0.181	q. Level z dBuV 00 32.80 00 13.10 15 31.30 15 11.70	Factor dB 9.62 9.62 9.61 9.61	ment dBuV 42.42 22.72 40.91 21.31	dBuV 65.52 55.52 64.42 54.42	dB -23.10 -32.80 -23.51 -33.11	QP AVG QP AVG	Comment	
MH: * 0.159 0.159 0.181 0.181 0.204	q. Level z dBuV 00 32.80 00 13.10 15 31.30 15 11.70 40 29.70	Factor dB 9.62 9.61 9.61 9.61	ment dBuV 42.42 22.72 40.91 21.31 39.31	dBuV 65.52 55.52 64.42 54.42 63.45	dB -23.10 -32.80 -23.51 -33.11 -24.14	QP AVG QP AVG QP	Comment	
MH: * 0.159 0.159 0.181 0.181 0.204 0.204	q. Level z dBuV 00 32.80 00 13.10 15 31.30 15 11.70 40 29.70 40 12.00	Factor dB 9.62 9.61 9.61 9.61 9.61 9.61	ment dBuV 42.42 22.72 40.91 21.31 39.31 21.61	dBuV 65.52 55.52 64.42 54.42 63.45 53.45	dB -23.10 -32.80 -23.51 -33.11 -24.14 -31.84	QP AVG QP AVG QP AVG	Comment	
MH: * 0.159 0.181 0.181 0.204 0.204 0.204	q. Level dBuV 00 32.80 00 13.10 15 15 31.30 15 15 11.70 10 10 29.70 12.00 23 23.00 12.00	Factor dB 9.62 9.61 9.61 9.61 9.61 9.61 9.62	ment dBuV 42.42 22.72 40.91 21.31 39.31 21.61 32.62	dBu∨ 65.52 55.52 64.42 54.42 63.45 53.45 62.02	dB -23.10 -32.80 -23.51 -33.11 -24.14 -31.84 -29.40	QP AVG QP AVG QP AVG QP	Comment	
MH: * 0.159 0.159 0.181 0.204 0.204 0.204 0.242	q. Level z dBuV 00 32.80 00 13.10 15 31.30 15 11.70 40 29.70 40 12.00 23 23.00	Factor dB 9.62 9.61 9.61 9.61 9.61 9.61 9.62 9.62	ment dBuV 42.42 22.72 40.91 21.31 39.31 21.61 32.62 13.82	dBuV 65.52 55.52 64.42 54.42 63.45 53.45 62.02 52.02	dB -23.10 -32.80 -23.51 -33.11 -24.14 -31.84 -29.40 -38.20	QP AVG QP AVG QP AVG QP AVG	Comment	
MH: * 0.159 0.181 0.181 0.204 0.204 0.204 0.242 0.242 0.242	q. Level z dBuV 00 32.80 00 13.10 15 31.30 15 11.70 40 29.70 40 12.00 23 23.00 23 4.20 95 22.90	Factor dB 9.62 9.61 9.61 9.61 9.61 9.61 9.62 9.62 9.64	ment dBuV 42.42 22.72 40.91 21.31 39.31 21.61 32.62 13.82 32.54	dBu∨ 65.52 55.52 64.42 54.42 63.45 53.45 62.02 52.02 60.54	dB -23.10 -32.80 -23.51 -33.11 -24.14 -31.84 -29.40 -38.20 -28.00	QP AVG QP AVG QP AVG QP AVG QP	Comment	
MH: * 0.159 0.159 0.181 0.204 0.204 0.204 0.204 0.242	q. Level z dBuV 00 32.80 00 13.10 15 31.30 15 11.70 40 29.70 40 12.00 23 23.00 23 4.20 25 22.90 25 6.20	Factor dB 9.62 9.61 9.61 9.61 9.61 9.61 9.62 9.62	ment dBuV 42.42 22.72 40.91 21.31 39.31 21.61 32.62 13.82	dBuV 65.52 55.52 64.42 54.42 63.45 53.45 62.02 52.02	dB -23.10 -32.80 -23.51 -33.11 -24.14 -31.84 -29.40 -38.20	QP AVG QP AVG QP AVG QP AVG	Comment	

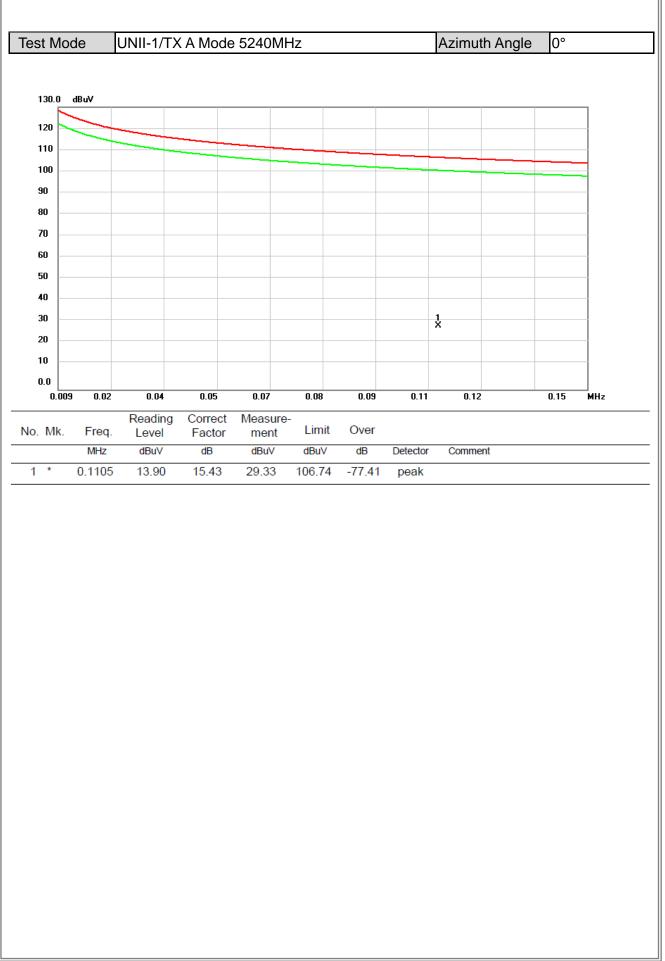
est ivio	ode l	JNII-3/TX	(A Mode	5745MH	z			Phase	Line
80.0	dBuV								
70									
60									
50									
40	Man 5	9							
30	12	1900							
20 2 20	246 XXX	A M MANANA AND	white work					what have	11 ×
20	8		Ween the	YPOTAL AND THE ALL					
10	8 ×		. Mercelle	alan de Naamer Heg	"hy Lord Margathy	to manual	e-herrelestretations	-standard from the state	12 X
			. walk	and hand h	Maylow All Margan	h-yramin	in her delen to have a	eren and a second a	12 Yawyw X
10	×		0.5	alana Masan Ma	(MHz)	horphysical	s-hundelsydrikasiaa 5		12 Yawawa 30.000
10 0.0	50			Measure- ment	(MHz)	Over			×
10 0.0 0.1!	50 Freq. MHz	Reading Level dBuV	0.5 Correct Factor dB	Measure- ment dBuV	Limit dBu∨	dB	5 Detector	Comment	×
10 0.0 0.1!	50 Freq. MHz 0.1590	Reading Level dBuV 32.70	Correct Factor dB 9.63	Measure- ment dBuV 42.33	Limit dBuV 65.52	dB -23.19	5 Detector QP		×
10 0.0 0.1!	50 Freq. MHz 0.1590 0.1590	Reading Level dBuV 32.70 13.90	0.5 Correct Factor dB 9.63 9.63	Measure- ment dBuV 42.33 23.53	Limit dBuV 65.52 55.52	dB -23.19 -31.99	5 Detector QP AVG		×
10 0.0 0.1! 0. Mk.	50 Freq. MHz 0.1590 0.1590 0.1815	Reading Level dBuV 32.70 13.90 31.10	0.5 Correct Factor dB 9.63 9.63 9.63	Measure- ment dBuV 42.33 23.53 40.73	Limit dBuV 65.52 55.52 64.42	dB -23.19 -31.99 -23.69	5 Detector QP AVG QP		×
10	50 Freq. MHz 0.1590 0.1590 0.1815 0.1815	Reading Level dBuV 32.70 13.90 31.10 13.60	0.5 Correct Factor dB 9.63 9.63 9.63 9.63	Measure- ment dBuV 42.33 23.53 40.73 23.23	Limit dBuV 65.52 55.52 64.42 54.42	dB -23.19 -31.99 -23.69 -31.19	5 Detector QP AVG QP AVG		×
10 0.0 0.19	50 Freq. MHz 0.1590 0.1590 0.1815 0.1815 0.2265	Reading Level dBuV 32.70 13.90 31.10 13.60 27.80	0.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.63 9.64	Measure- ment dBuV 42.33 23.53 40.73 23.23 37.44	Limit dBuV 65.52 55.52 64.42 54.42 62.58	dB -23.19 -31.99 -23.69 -31.19 -25.14	5 Detector QP AVG QP AVG QP		×
10 - 0.0 0.19 0. Mk. 1 * 2 3 4 5 5	50 Freq. MHz 0.1590 0.1590 0.1815 0.1815 0.2265 0.2265	Reading Level dBuV 32.70 13.90 31.10 13.60 27.80 14.00	0.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.63 9.64 9.64	Measure- ment dBuV 42.33 23.53 40.73 23.23 37.44 23.64	Limit dBuV 65.52 55.52 64.42 54.42 62.58 52.58	dB -23.19 -31.99 -23.69 -31.19 -25.14 -28.94	5 Detector QP AVG QP AVG QP AVG		×
10 0.0 0.19 0. Mk. 1 * 2 3 4 5 5 7	x 50 Freq. 0.1590 0.1590 0.1815 0.2265 0.2265 0.2245	Reading Level dBuV 32.70 13.90 31.10 13.60 27.80 14.00 21.00	D.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.64 9.64 9.64	Measure- ment dBuV 42.33 23.53 40.73 23.23 37.44 23.64 30.64	Limit dBuV 65.52 55.52 64.42 54.42 62.58 52.58 61.94	dB -23.19 -31.99 -23.69 -31.19 -25.14 -28.94 -31.30	5 Detector QP AVG QP AVG QP AVG		×
10 0.0 0.19 0.18 0.19 0.1	x 50 Freq. MHz 0.1590 0.1590 0.1815 0.2265 0.2265 0.2245 0.2445 0.2445	Reading Level dBuV 32.70 13.90 31.10 13.60 27.80 14.00 21.00 5.80	0.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.64 9.64 9.64 9.64	Measure- ment dBuV 42.33 23.53 40.73 23.23 37.44 23.64 30.64 15.44	Limit dBuV 65.52 55.52 64.42 54.42 62.58 52.58 61.94 51.94	dB -23.19 -31.99 -23.69 -31.19 -25.14 -28.94 -31.30 -36.50	5 Detector QP AVG QP AVG QP AVG QP AVG		×
10 0.0 0.19 0. Mk.	x 50 Freq. 0.1590 0.1590 0.1815 0.2265 0.2265 0.2245	Reading Level dBuV 32.70 13.90 31.10 13.60 27.80 14.00 21.00	D.5 Correct Factor dB 9.63 9.63 9.63 9.63 9.64 9.64 9.64	Measure- ment dBuV 42.33 23.53 40.73 23.23 37.44 23.64 30.64	Limit dBuV 65.52 55.52 64.42 54.42 62.58 52.58 61.94	dB -23.19 -31.99 -23.69 -31.19 -25.14 -28.94 -31.30	5 Detector QP AVG QP AVG QP AVG		×

st Mo	ode	UNII-3/TX	(A Mode	5745MH	z			Phase	Neutral
80.0	dBu¥								
70									
60									
50									
40 1 ×	X NO.								
30	×	×							
20 ×	4 × 6 ×	8 ×10 ×	MMM-www	ha			والمراجع والمراجع	When marked and a second stored	11 ×
10				Mynus Mary Martin	manhythadyth	man aline	CONTRACTOR OF A		12
									×
0.0									
0.0	50		1.5		(MHz)		5		X 30.000
	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
0.15	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBu∨	dB	Detector	Comment	
0.15 o. Mk. 1 *	Freq. MHz 0.1568	Reading Level dBuV 31.80	Correct Factor dB 9.62	Measure- ment dBuV 41.42	Limit dBuV 65.63	dB -24.21	Detector	Comment	
0.15 o. Mk. 1 * 2	Freq. MHz 0.1568 0.1568	Reading Level dBuV 31.80 11.20	Correct Factor dB 9.62 9.62	Measure- ment dBuV 41.42 20.82	Limit dBuV 65.63 55.63	dB -24.21 -34.81	Detector QP AVG	Comment	
0.15 o. Mk. 1 * 2 3	Freq. MHz 0.1568 0.1568 0.1793	Reading Level dBuV 31.80 11.20 30.20	.5 Correct Factor dB 9.62 9.62 9.61	Measure- ment dBuV 41.42 20.82 39.81	Limit dBuV 65.63 55.63 64.52	dB -24.21 -34.81 -24.71	Detector QP AVG QP	Comment	
0.15 o. Mk.	Freq. MHz 0.1568 0.1568 0.1793 0.1793	Reading Level dBuV 31.80 11.20 30.20 11.30	2.5 Correct Factor dB 9.62 9.62 9.61 9.61	Measure- ment dBuV 41.42 20.82 39.81 20.91	Limit dBuV 65.63 55.63 64.52 54.52	dB -24.21 -34.81 -24.71 -33.61	Detector QP AVG QP AVG	Comment	
0.15	Freq. MHz 0.1568 0.1568 0.1793 0.1793 0.2243	Reading Level dBuV 31.80 11.20 30.20 11.30 26.80	Correct Factor dB 9.62 9.61 9.61 9.62	Measure- ment dBuV 41.42 20.82 39.81 20.91 36.42	Limit dBuV 65.63 55.63 64.52 54.52 62.66	dB -24.21 -34.81 -24.71 -33.61 -26.24	Detector QP AVG QP AVG QP	Comment	
0.15 . Mk. *	Freq. MHz 0.1568 0.1568 0.1793 0.1793 0.2243 0.2243	Reading Level dBuV 31.80 11.20 30.20 11.30 26.80 9.10	1.5 Correct Factor dB 9.62 9.62 9.61 9.61 9.62 9.62 9.62	Measure- ment dBuV 41.42 20.82 39.81 20.91 36.42 18.72	Limit dBuV 65.63 55.63 64.52 54.52 62.66 52.66	dB -24.21 -34.81 -24.71 -33.61 -26.24 -33.94	Detector QP AVG QP AVG QP AVG	Comment	
0.15	Freq. MHz 0.1568 0.1568 0.1793 0.1793 0.2243 0.2243 0.22917	Reading Level dBuV 31.80 11.20 30.20 11.30 26.80 9.10 25.00	Correct Factor dB 9.62 9.61 9.61 9.62 9.62 9.62 9.64	Measure- ment dBuV 41.42 20.82 39.81 20.91 36.42 18.72 34.64	Limit dBuV 65.63 55.63 64.52 54.52 62.66 52.66 60.48	dB -24.21 -34.81 -24.71 -33.61 -26.24 -33.94 -25.84	Detector QP AVG QP AVG QP AVG QP	Comment	
0.15 . Mk. *	Freq. MHz 0.1568 0.1568 0.1793 0.1793 0.2243 0.2243 0.2243 0.2917	Reading Level dBuV 31.80 11.20 30.20 11.30 26.80 9.10 25.00 10.10	L5 Correct Factor dB 9.62 9.62 9.61 9.61 9.62 9.62 9.62 9.62 9.64	Measure- ment dBuV 41.42 20.82 39.81 20.91 36.42 18.72 34.64 19.74	Limit dBuV 65.63 55.63 64.52 54.52 62.66 52.66 60.48 50.48	dB -24.21 -34.81 -24.71 -33.61 -26.24 -33.94 -25.84 -30.74	Detector QP AVG QP AVG QP AVG QP AVG	Comment	
0.15 0. Mk. 1 * 2 3 4 5 5 7 3 9	Freq. MHz 0.1568 0.1568 0.1793 0.1793 0.2243 0.2243 0.22917	Reading Level dBuV 31.80 11.20 30.20 11.30 26.80 9.10 25.00 10.10 19.30	Correct Factor dB 9.62 9.61 9.61 9.62 9.62 9.62 9.64	Measure- ment dBuV 41.42 20.82 39.81 20.91 36.42 18.72 34.64 19.74 28.94	Limit dBuV 65.63 55.63 64.52 54.52 62.66 52.66 60.48	dB -24.21 -34.81 -24.71 -33.61 -26.24 -33.94 -25.84	Detector QP AVG QP AVG QP AVG QP	Comment	
0.15 D. Mk. 1 * 2 3 4	Freq. MHz 0.1568 0.1568 0.1793 0.1793 0.2243 0.2243 0.22917 0.2917 0.3141	Reading Level dBuV 31.80 11.20 30.20 11.30 26.80 9.10 25.00 10.10	2.5 Correct Factor dB 9.62 9.62 9.61 9.61 9.62 9.62 9.62 9.64 9.64	Measure- ment dBuV 41.42 20.82 39.81 20.91 36.42 18.72 34.64 19.74	Limit dBuV 65.63 55.63 64.52 54.52 62.66 52.66 60.48 50.48 59.86	dB -24.21 -34.81 -24.71 -33.61 -26.24 -33.94 -25.84 -30.74 -30.92	Detector QP AVG QP AVG QP AVG QP AVG QP AVG	Comment	

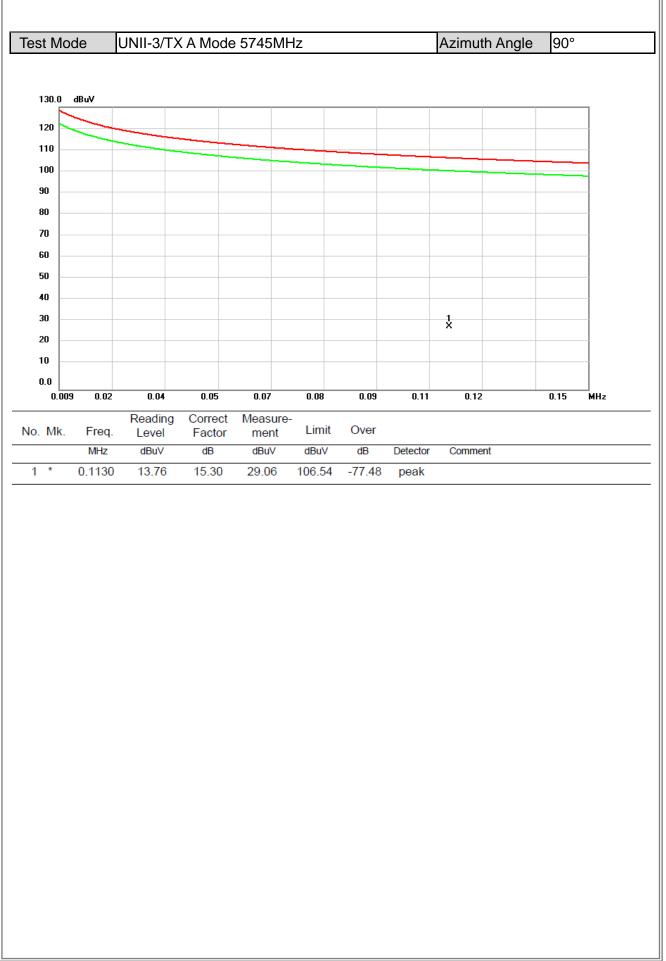

APPENDIX A - RADIATED EMISSION (9KHZ TO 30MHZ)

Report No.: BTL-FCCP-4-1806T107A

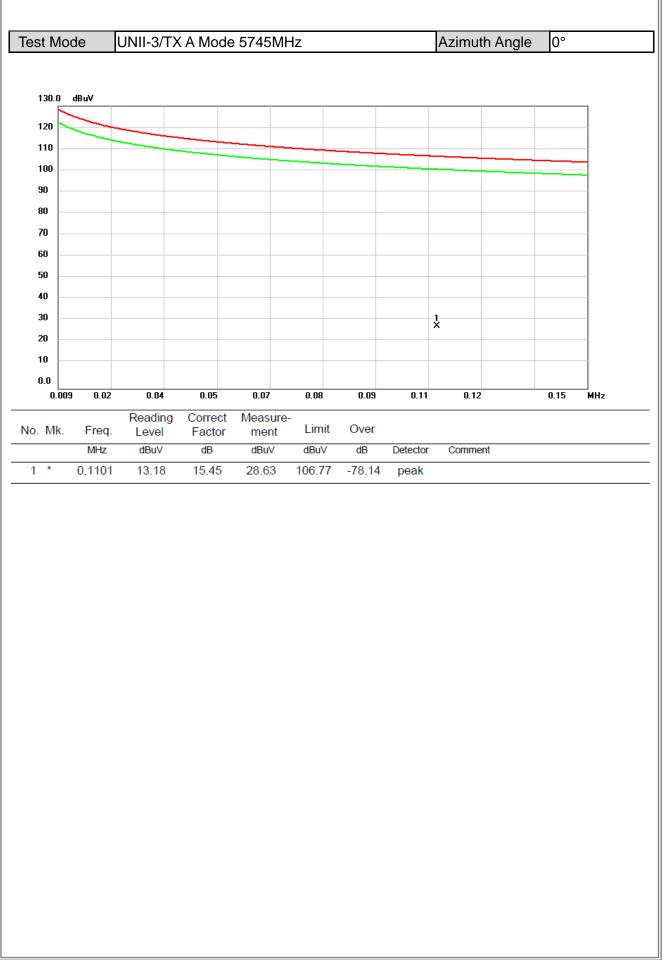
Page 30 of 110 Report Version: R00



est N	lode	UNII-1/TX	(A Mode	e 5240M⊦	lz			Azimuth Angle	90°
130.0) dBuV								
120 110									
100 90 80									
70 60									
50 40	• •	2							
30 20	2 X	3 X X	5 ×	6 X					
10 0.0 0. ⁻	150 3.14	6.12	9.10	12.09	15.08	18.06	21.04	24.03	30.00 MHz
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.2296		9.36	39.00	100.38	-61.38	peak		
2	1.9808	29.33	-2.89	26.44	69.54	-43.10	peak		
3 *	3.9310	36.73	-3.78	32.95	69.54	-36.59	peak		
4	6.1996	32.47	-4.05	28.42	69.54 69.54	-41.12 -45.20	peak peak		
5	8.7468	28.95	-4.61	24.34					



Fest M	lode	UNII-1/TX	(A Mode	e 5240MH	lz			Azimuth Angle	0°	
130.0) dBuV									
120 110 100 90										
80 70 60										
50 40 30	N 1 X 2 3	4 ×								
20 10 0.0	2 3	×	5 X	<u>6</u>						
0.1	150 3.14	6.12	9.10	12.09	15.08	18.06	21.04	24.03	30.00 M	Hz
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1	0.3092	29.90	6.81	36.71	97.80	-61.09	peak			
2	1.8614	29.60	-2.58	27.02	69.54	-42.52	peak			
3	2.9360	30.70	-3.62	27.08	69.54	-42.46	peak			
4 *	5.2444	32.38 30.50	-3.95 -4.22	28.43 26.28	69.54 69.54	-41.11 -43.26	peak peak			
5	7.5130									



est N	lode	UNII-3/TX	(A Mode	9745MH	z			Azimuth Angle	90°	
130.0) dBuV									_
120 110										_
100 90 80										
70 60										
50 40										
30 20	× × × ×	4 ×	5 X	6 X						
10 0.0 0.	150 3.14	6.12	9.10	12.09	15.08	18.06	21.04	4 24.03	30.00	MHz
o. Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1	0.3092		6.81	36.26	97.80	-61.54	peak			
2 *	1.1052		-0.62	28.13	66.73	-38.60	peak			
3	2.2196 5.3240		-3.09	26.38	69.54	-43.16	peak			
4 5	8.5080	31.87 29.79	-3.96 -4.52	27.91 25.27	69.54 69.54	-41.63 -44.27	peak peak			
		1010	-4.02	60.61	03.04	-44.21	Dear			

est M	lode	UNII-3/TX	(A Mode	e 5745MI	Ηz			Azimuth Angle	e 0°	
130.0 Г	dBuV									-
120 110 100										
90 80										
70 60 50	A									
40) 30	2 X	3 X X	5 X	5						_
20 10 0.0					<u> </u>					
0.1	150 3.14	6.12	9.10	12.09	15.08	18.06	21.04	24.03	30.00	MHz
o. Mk		Reading Level	Correct Factor	Measure ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment		
1	0.1898	29.40	10.93	40.33	102.04	-61.71	peak			
2	2.0604	32.62	-2.98	29.64	69.54	-39.90	peak			
3 *	4.2096	37.80	-3.82	33.98	69.54	-35.56	peak			
4	5.4434	31.76	-3.97	27.79 24.84	69.54 69.54	-41.75 -44.70	peak peak			
5	9.1846	29.55	-4.71							

APPENDIX B - RADIATED EMISSION (30MHZ TO 1000MHZ)

Test	Mode	e l	JNII-1/	TX A Mo	ode 524	0MH	Z			Polarization	Vertical
80.	.0 dB	uV/m									
70											
60											
50											
40			ſ			-					6 ×
30	↓ ×			3 X	4 ×	5 X					
20											
10											
0.0) 30.000	127.00) 224.(00 321	.00 41	8.00	515.00	612.00) 709.0	0 806.00	1000.00 MHz
No. N	/lk.	Freq.	Readin Level	g Corre Fact		isure- ent	Limit	Over			
		MHz	dBuV	dB	dBu	V/m	dBuV/m	dB	Detector	Comment	
1	32	.9100	38.18	-9.0	4 29.	14	40.00	-10.86	peak		
2	70	.7400	37.35	-10.8	33 26.	52	40.00	-13.48	peak		
3		.1900	35.62			52	46.00	-19.48	peak		
4		.1000	34.10				46.00	-18.10	peak		
5		.0100	36.46				46.00	-13.34	peak		
6 *	925	.3100	35.21	5.39	9 40.	60	46.00	-5.40	peak		

est N	lode	UNII-1/	TX A Mo	ode 524	OMHz	2			Polarization	Horizonta
80.0	dBu¥/m									
70										
60										
50										
40			ź		4 ×				6	
30	_	3 1		×		5 X		6 X		
20										
10										
0.0 30	0.000 127.	00 224.	00 321	.00 418	.00	515.00	612.00	709.0	0 806.00	1000.00 MHz
No. MI	k. Freq.	Readir Level				Limit	Over			
	MHz	dBuV	dB	dBu	//m (dBuV/m	dB	Detector	Comment	
1	150.2800	35.18	-8.6	2 26.	56	43.50	-16.94	peak		
2 *	250.1900					46.00	-9.02	peak		
3	350.1000					46.00	-14.42	peak		
4	450.0100					46.00	-11.38	peak		
5	600.3600				91 -	46.00	-15.09	peak		
6	746.8300	31.64	2.20	33.	0	46.00	-12.10	peak		

Test M	lode	UNII-3/1	ΓΧ Α Μοσ	de 5745I	MHz			Polarization	Vertical
80.0	dBuV/m								
70									
60									
50									
40					-				6X
30	k 2		3 X	4 ×	5 X				
20	^								
10									
0.0 30).000 127.0	10 224.0	0 321.0	0 418.0	0 515.	00 612.0	0 709.0	0 806.00	1000.00 MHz
No. Mł	k. Freq.	Reading Level	g Correc Facto			it Over			
	MHz	dBuV	dB	dBuV/r	n dBuV/	/m dB	Detector	Comment	
1	32.9200	39.35	-9.03	30.32	40.0	0 -9.68	peak		
2	70.7500	36.11	-10.84	25.27	40.0	0 -14.73	peak		
3	250.1900	35.14	-9.10	26.04	46.0	0 -19.96	peak		
4	350.1200	34.19	-6.20	27.99	46.0	0 -18.01	peak		
5	450.0200	36.72	-3.80	32.92			peak		
6 *	925.3100	35.52	5.39	40.91	46.0	0 -5.09	peak		

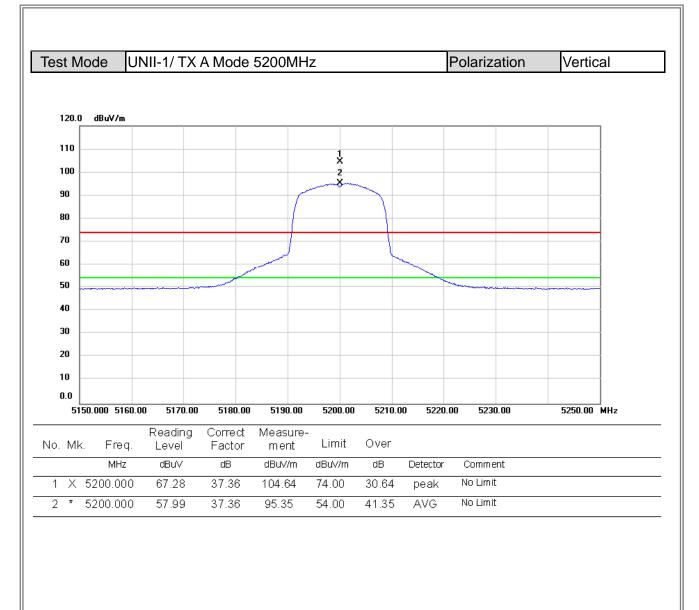
ēst M	lode	UNII-3/	TX A Mo	ode 57	'45MF	łz			Polarization	Horizonta
80.0	dBuV/m									
70										
60										
50										
40			3X		5					6 ×
30		1 2 X X		4 ×	5 X					
20		^								
10										
0.0 30	0.000 127.0	JO 224 .	00 321	.00	418.00	515.00	612.00	709.0	0 806.00	1000.00 MHz
No. MI	k. Freq.	Readin Level			easure- ment	Limit	Over			
	MHz	dBuV	dB	d	BuV/m	dBuV/m	dB	Detector	Comment	
1	156.1300	35.22	-8.5	7 2	6.65	43.50	-16.85	peak		
2	199.7500	36.61	-10.9	0 2	5.71	43.50	-17.79	peak		
3	250.1600				7.23	46.00	-8.77	peak		
4	350.1100				2.14	46.00	-13.86	peak		
5	450.0100				4.31	46.00	-11.69	peak		
6 *	926.2700	34.99) 5.4	4	0.40	46.00	-5.60	peak		

APPENDIX C - RADIATED EMISSION (ABOVE 1000MHZ)

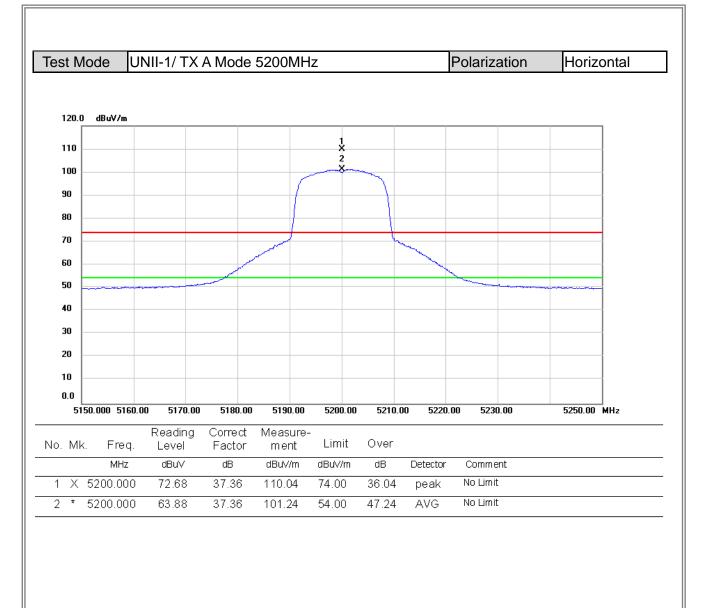
st N	lode U	JNII-1/ TX	A Mode	5180MH	Z			Polarization	Vertical
120.0	0 dBuV/m								
120.0									
110					3 X				
100					4				
90					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim			
80				/_		\rightarrow			
70									
60						L			
50		×						~~~~	
40		2 X							
30									
20									
10 0.0									
	30.000 5140	.00 5150.00) 5160.00	5170.00	5180.00	5190.0	0 5200.	00 5210.00	5230.00 MHz
lo. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	5149.420	17.12	37.30	54.42	74.00	-19.58	peak		
2	5149.420	4.10	37.30	41.40	54.00	-12.60	AVG		
3 X	5180.000	66.64	37.34	103.98	74.00	29.98	peak	No Limit	
4 *	5180.000	57.19	37.34	94.53	54.00	40.53	AVG	No Limit	

51 10	lode U	NII-1/TX	A Mod	e 5180MH	Z			Pola	rization	Vertical
120.0) dBu∀/m									
[
110										
100										
90										
80										
70			_							
60			1 X							
50										
40										
30										
20										
10										
0.0	00.000 4900.0)0 8800.0	0 12700	0.00 16600.00	20500.00	24400.	00 28300	0.00	32200.00	40000.00 MHz
	00.000 4300.0	Reading	Correc			24400.	.00 20300	0.00	32200.00	40000.00 MH2
o. Mk	k. Freq.	Level	Facto	r ment	Limit	Over				
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Con	nment	
1 *	MHz	dBu∨ 58.63	dB 1.57	dBu√/m 60.20	dBuV/m 68.20	dB -8.00	Detector peak	Con	nment	
1 *								Con	nment	
1 *								Con	nment	
1 *								Con	nment	

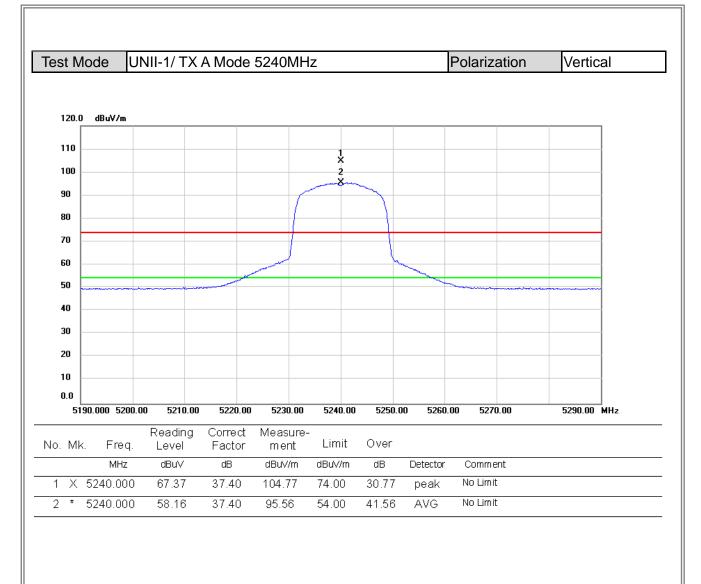
s	t N	lode UI	NII-1/ TX	A Mode	5180MH:	Z			Polarization	Horizontal
1	20.0) dBu∀/m					1			
1	10					3 X				
1	00					4				
ę	10				\int					
8	80									
7	70									
E	50		1 X							
Ę	50									
4	10		2 X							
3	30									
2	20									
	0									
).0									
	51	30.000 5140.0	0 5150.00	5160.00	5170.00	5180.00	5190.0	0 5200.	00 5210.00	5230.00 MHz
۱o.	M۲	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBu∨	dB	dBuV/m	dBư√/m	dB	Detector	Comment	
1		5150.000	26.66	37.31	63.97	74.00	-10.03	peak		
2		5150.000	6.93	37.31	44.24	54.00	-9.76	AVG	N I - 1 ive it	
		5180.000	72.33	37.34	109.67	74.00	35.67	peak	No Limit	
4	*	5180.000	63.08	37.34	100.42	54.00	46.42	AVG	No Limit	



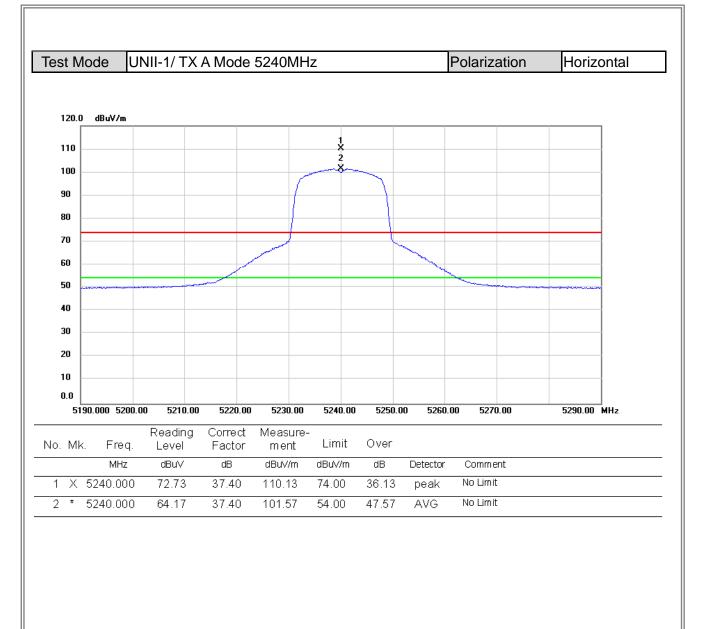
	ode U	NII-1/TX	A Mode	e 5180MH	Z		Pol	arization	Horizontal
120.0	dBuV/m								
110									
110									
100									
90									
80									
70		L							
60 E0			1 X						
50									
40									
30									
20 10									
0.0									
L	00.000 4900.0	00 8800.00	12700.	00 16600.00	20500.00	24400.00	28300.00	32200.00	40000.00 MHz
- N/L		Reading	Correct	Measure-	Limit	Over			
o. Mk	. Freq.	Level	Factor	ment	LIIIIL	0.461			
	MHz		dB	dBuV/m	dBuV/m	dB D	etector C	omment	
1 *	MHz	dBu∨ 53.62	dB 1.57	dBuV/m 55.19	dBuV/m 68.20		etector C pe ak	omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	
1 *	10360.00	dBu∨						omment	



	de UN	NII-1/ TX	A Mod	le 5200MH	z		Pol	arization	Vertical
120.0	dBuV/m								
110									
100									
90									
80									
70									
60			1 X						
50									
40									
30									
20									
10									
0.0	.000 4900.00	0 8800.00	12700	0.00 16600.00	20500.00	24400.00	28300.00	32200.00	40000.00 MHz
1000.		Reading	Correc			24400.00	20300.00	32200.00	40000.00 MH2
o. Mk.	Freq.	Level	Facto	r ment	Limit	Over			
1 * 10	MHz 0400.00	dBu∀ 58.71	dB 1.62	dBuV/m 60.33	dBuV/m 68.20			omment	
					00.20	-7.87	peak		
					00.20	-1.01	реак		

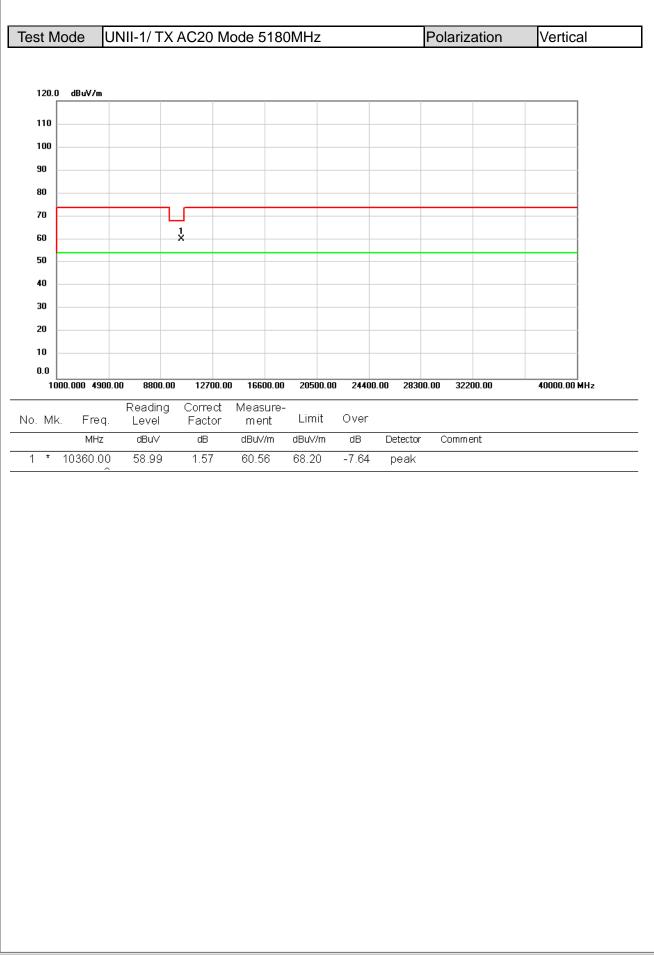


0111	lode U	NII-1/ TX	A Mode	5200MH	Z			Polarization	Horizontal
120.0	dBu¥/m								
110									
100									
90									
80									
70									
60			1 X						
50									
40									
30									
20									
10									
0.0 10	00.000 4900.0	00 8800.00	12700.0	0 16600.00	20500.00	24400.0	10 28301	0.00 32200.00	40000.00 MHz
- N/L		Reading	Correct	Measure-	Limit	Over			
o. Mk	. Freq. MHz	Level dBuV	Factor dB	m ent dBuV/m	dBuV/m		Detector	Comment	
1 *	10400.00	53.62	1.62	55.24		-12.96	peak		
1 *		53.62					peak		
1 *		53.62					peak		
1 *		53.62					peak		
1 *		53.62					peak		
1 *		53.62					peak		



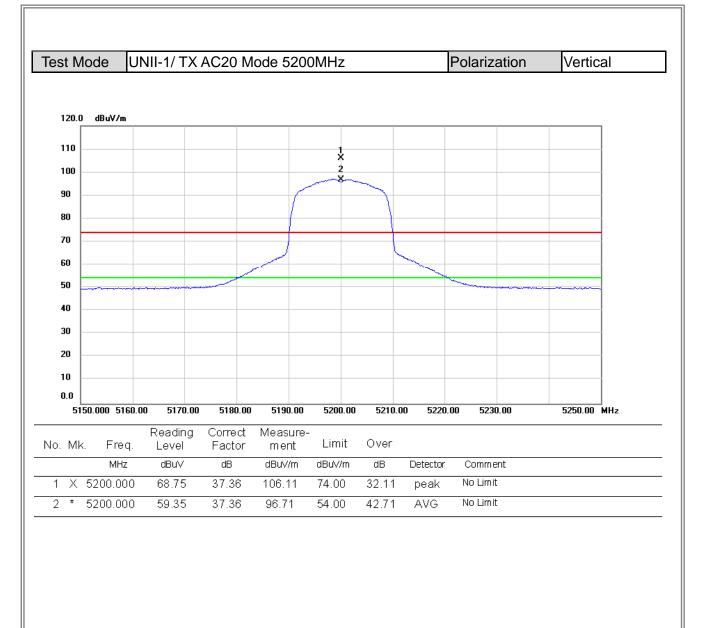
	lode	UNII-	1/ TX	A Mod	e 5240MH	Z			Pola	arization	Vertical	
120.0	dBuV/m											
110												
100												
90 80												
70												
60				1 X								
50												
40												
30												
20												
10 0.0												
L	00.000 490	0.00	8800.00	12700	0.00 16600.00	20500.00	24400.0	0 2830	00.00	32200.00	40000.00 MHz	
o. Mk	. Frec	Re	ading evel	Correc Facto	t Measure- r ment	Limit	Over					
	MHz		BuV	dB	dBuV/m	dBuV/m		Detector	r Co	omment		
1 *	10480.0		9.48	1.69	61.17	68.20	-7.03	peak				
1 *		0 5										
1 *		0 5										
1 *		0 5										
1 *		0 5										
1 *		0 5										
1 *		0 5										
1 *		0 5										
1 *		0 5										
1 *		0 5										

	de UN	<u> 111-1/TX</u>	(A Moo	de 5240M	Hz			Polarizatio	n H	orizontal
120.0	dBu∀/m									
110										
100										
90 -										
80										
70										
60			1 ×							
50										
40										
30 20										
10										
0.0	000 4900.00	0 0000 0	0 1070	0.00 1000	00 20500 0	20 24400	0.00 2020	0 00 22200 00	40	000.00 MIL-
1000.	UUU 49UU.UI	0 8800.0 Reading					U.UU 2831	00.00 32200.00	40	000.00 MHz
b. Mk.	Freq.	Level	Facto	or ment	Limit	Over				
				- ID: A Vice	-ID: A Vice	-10	Detector	. On us us high		
	MHz	dBu∨ 53.02	dB 1.69	dBuV/m 54.71	dBuV/m 68.20	dB -13.49	Detector peak	r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		
	MHz	dBu∨						r Comment		

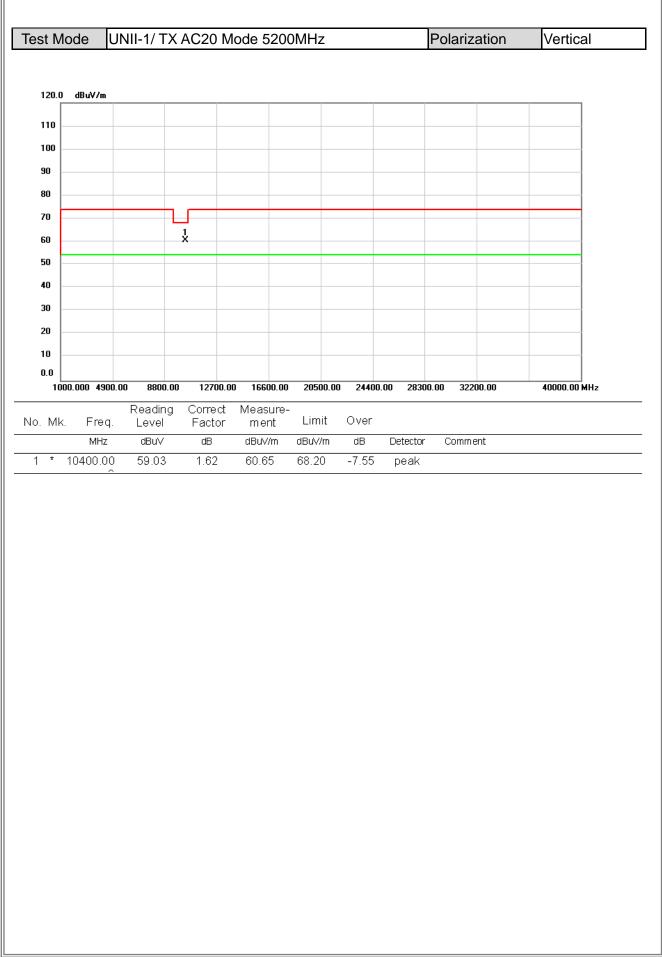


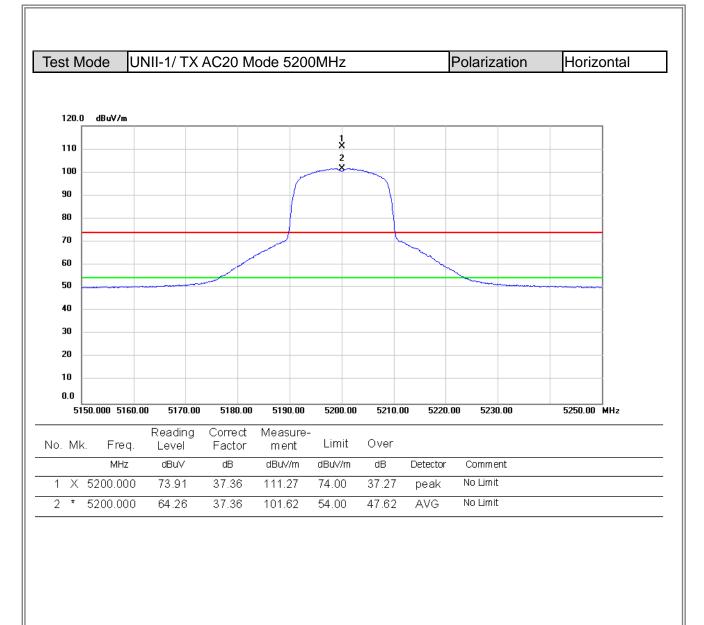
es	t N	lode U	NII-1/TX	AC20 M	ode 518(OMHz			Polarization	Vertical
1	20.0) dBuV/m								
1	10									
	00					×				
	00					×	~			
	0				<u> </u>					
	0									
	0		1							
	0		2							
	0		×							
	0									
	20									
	0									
U		30.000 5140.	00 5150.00	5160.00	5170.00	5180.00	5190.0	0 5200	.00 5210.00	5230.00 MHz
lo.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		5149.680	16.35	37.30	53.65	74.00	-20.35	peak		
2		5149.680	3.40	37.30	40.70	54.00	-13.30	AVG	No. 1 ins it	
	×	5180.000	68.07	37.34	105.41	74.00	31.41	peak	No Limit	
4	^	5180.000	58.43	37.34	95.77	54.00	41.77	AVG	No Limit	

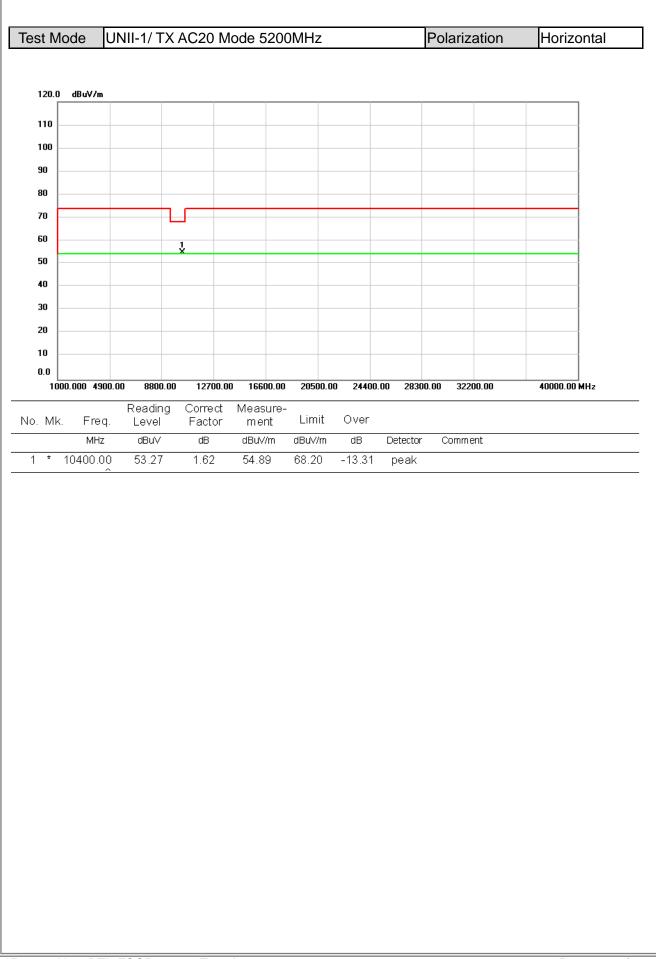
est	Mo	de U	NII-1/ TX	(AC2) M	ode 518	OMHz			Polarization	Horizontal
12	20.0	dBuV/m									
11	10						3 X				
10											
9(,					\int					
80	,										
70	,		1								
60)		1 X						man and		
50											
4()		×								
30											
20											
10											
0.											
	5130.	000 5140.0)0 5150.0	0 516	0.00	5170.00	5180.00	0 5190	.00 5200	.00 5210.00	5230.00 MHz
lo.	Mk.	Freq.	Reading Level	i Corre Fac		Measure- ment	Limit	Over			
		MHz	dBu∨	dB		dBuV/m	dBuV/m	dB	Detector	Comment	
1		149.980	29.19	37.3		66.49	74.00	-7.51	peak		
2		149.980	8.20	37.3		45.50	54.00	-8.50		ble Live it	
		180.000	72.91	37.3		110.25	74.00	36.25	· ·	No Limit	
4	* 51	180.000	63.48	37.3	4	100.82	54.00	46.82	AVG	No Limit	

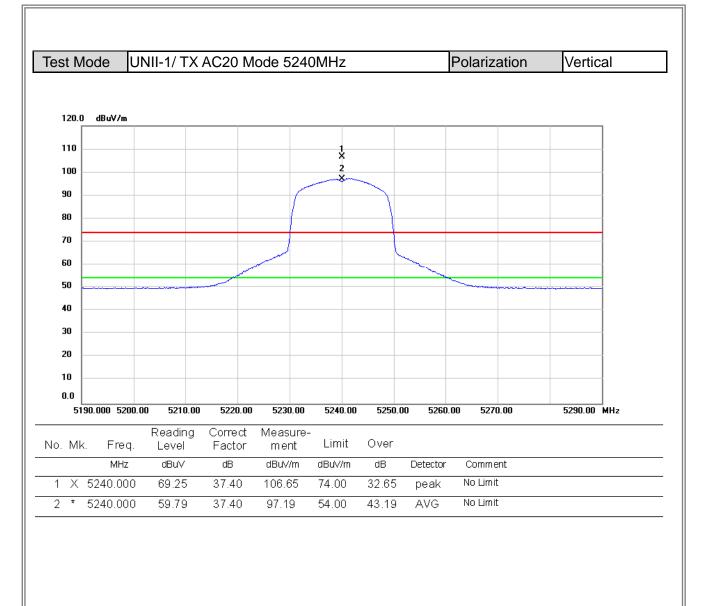


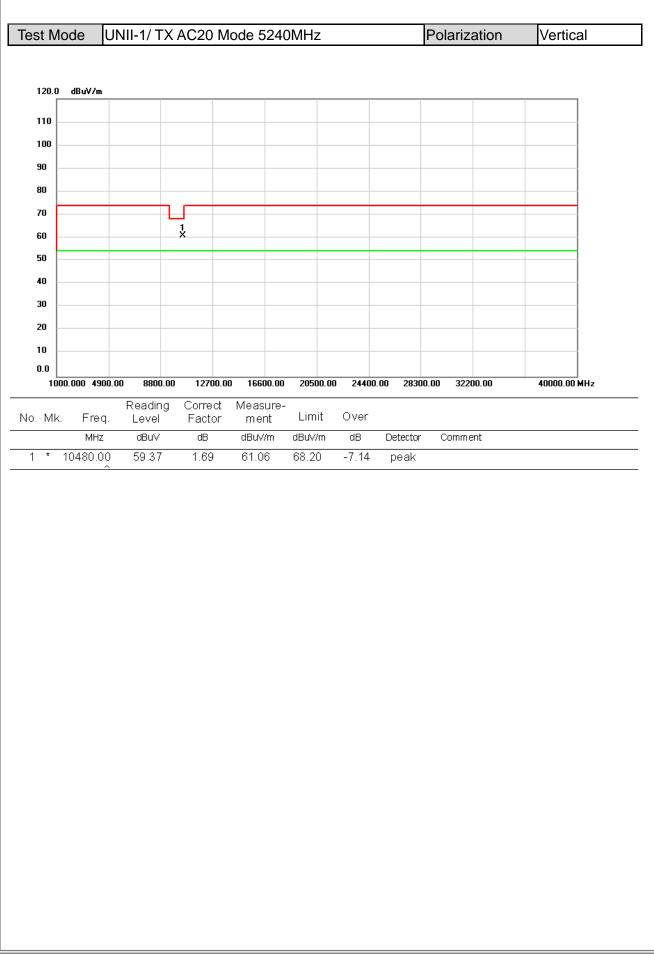
	de UN	III-1/ TX /	4C20 N	/lode 5180	OMHz		Po	larization	Horizontal
									·
120.0	dBuV/m								
110 -									
100 -									
90									
80									
70									
60									
50			1 X						
40									
30									
20									
10									
0.0									
	.000 4900.00) 8800.00	12700.	00 16600.00	20500.00	24400.00	28300.00	32200.00	40000.00 MHz
. ML	Erog	Reading	Correct	Measure-	Limit	Over			
). Mk.	Freq. MHz	Level dBuV	Factor dB	m ent dBuV/m	dBuV/m)etector (Comment	
1 * 1	0360.00	53.36	1.57	54.93			peak		
					00.20	-15.27	pour		
							peak		
							pour		

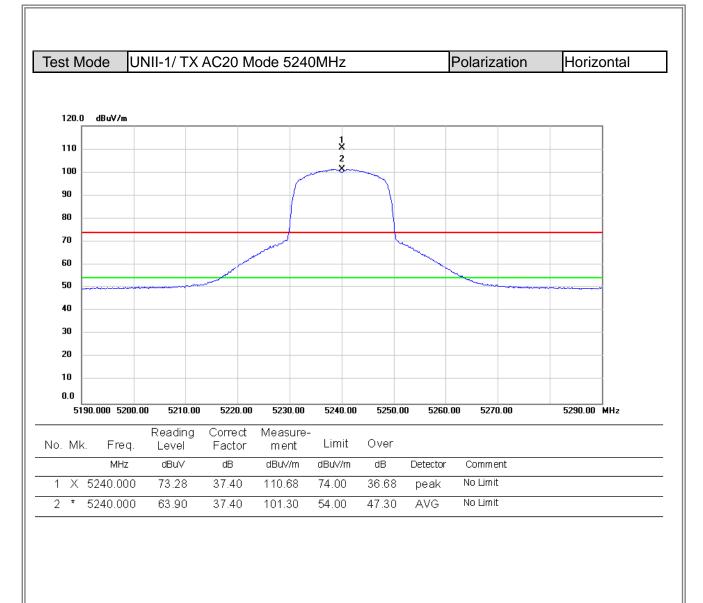








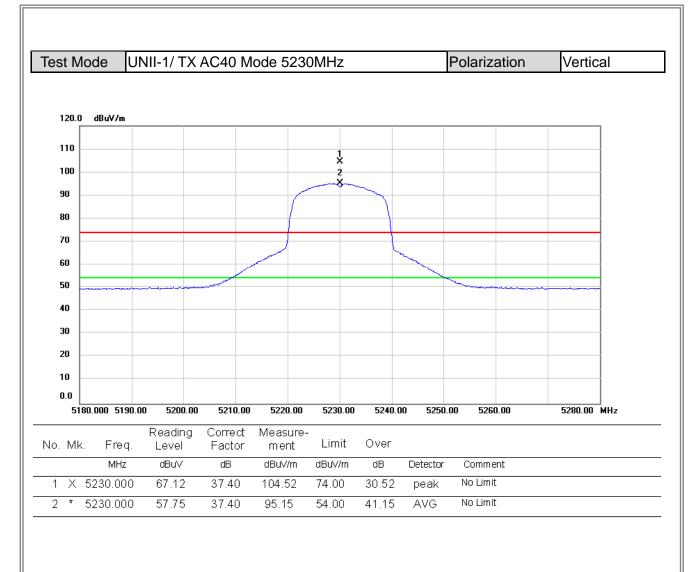




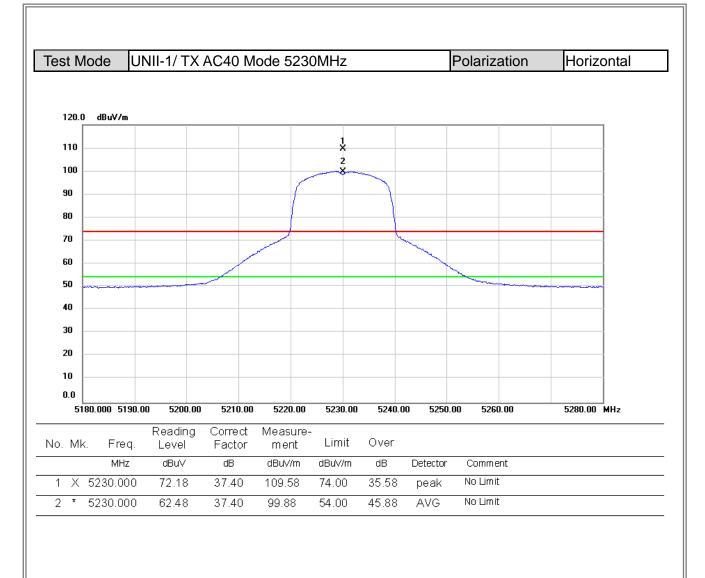
est Mo	de Ul	NII-1/ TX	AC40 M	ode 5190)MHz			Polarization	Vertical
120.0	dBuV/m								
120.0	0007711								
110					3 X				
100 -									
90 -					×	~			
80 -									
70						-			
60				- And a start of the start of t			~		
50	×			~~~			and the second s	~	
[⁻	2 X								
40	1								
30 -									
20									
10									
0.0	.000 5150.0	0 5160.00	5170.00	5180.00	5190.00	5200.0	0 5210.	00 5220.00	5240.00 MHz
5140	.000 3130.0	Reading	Correct		3130.00	5200.0	JU J210.	00 5220.00	J240.00 MH2
lo. Mk.	Freq.	Level	Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 5	149.800	17.02	37.30	54.32	74.00	-19.68	peak		
2 5	149.800	4.10	37.30	41.40	54.00	-12.60	AVG		
3 X 5	190.000	66.06	37.34	103.40	74.00	29.40	peak	No Limit	
4 * 5	190.000	56.63	37.34	93.97	54.00	39.97	AVG	No Limit	

531 10100	de UN	NII-1/ TX	AC40 I	Mode 5190	OMHz		Po	larization	Vertical
120.0 d	dBuV/m								
110									
100									
90									
80									
70									
60			1 X						
50			^						
40									
30									
20									
10									
0.0 1000.0	000 4900.0	0 8800.00	12700	.00 16600.00	20500.00	24400.00) 28300.00	32200.00	40000.00 MHz
o. Mk.	Freq.	Reading Level	Correct Factor	t Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m		Detector (omment	
			чD	abamin	abawiii	uD i			
1 * 10	0380.00	55.33	1.59	56.92	68.20		peak		
1 * 10									
1 * 10									
1 * 10									
1 * 10									

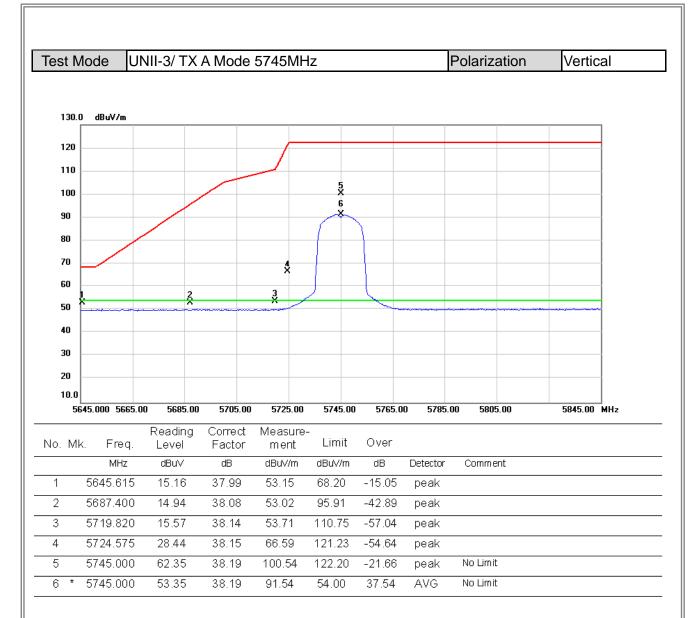
esi	t M	lode L	INII-1/ T	X	4C40 M	ode 519()MHz			Polarization	Horizo	ontal
1	20.0 Г) dBuV/m										1
1	10						3 X					
1	00						4	~				
9	0						-					
8	0							\rightarrow				
7	o	1										
6	0	×										
5	0	2										
4	0	×										
3	0											
2	0											
1	o											
0	.0											
	51	40.000 5150			5170.00	5180.00	5190.00	5200.0	0 5210	.00 5220.00	5240.00	MHz
D.	Mk	. Freq.	Readin Level	g	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBu∨		dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1		5149.900			37.30	66.71	74.00	-7.29	peak			
2		5149.900	8.60		37.30	45.90	54.00	-8.10	AVG			
3	Х	5190.000	71.85		37.34	109.19	74.00	35.19	peak	No Limit		
1	*	5190.000	62.70		37.34	100.04	54.00	46.04	AVG	No Limit		



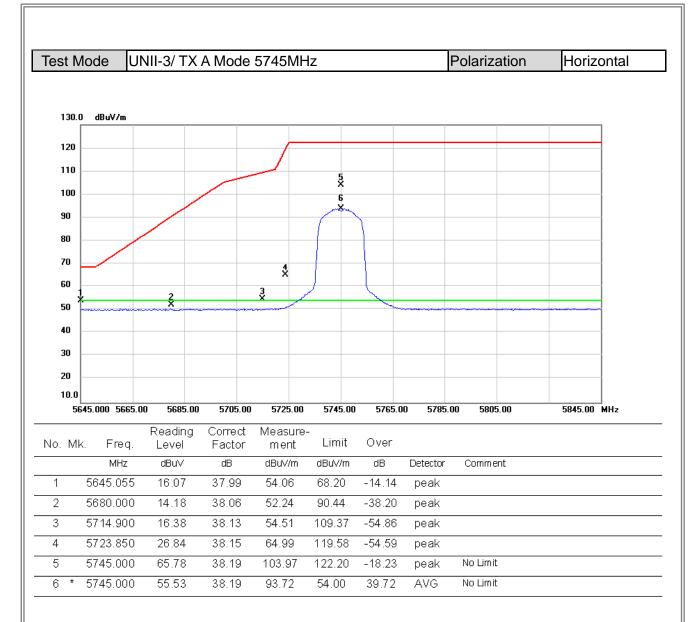
	de UN	NII-1/TX	AC40	Mode 519	0MHz		Po	larization	Horizontal
120.0	dBuV/m								
110									
110									
100									
90									
80									
70									
50			1 X						
40									
30									
20									
10									
0.0									
1000	.000 4900.00		12700			24400.00	0 28300.00	32200.00	40000.00 MHz
o. Mk.	Freq.	Reading Level	Correct Factor	t Measure r ment	- Limit	Over			
	MHz	dBu∨	dB	dBu//m	dBuV/m	dB I	Detector	Comment	
1 * 1	0380.00	53.09	1.59	54.68	68.20	-13.52	peak		
1 * 1	0380.00								
1 * 1	0380.00								
1 * 1	0380.00								
1 * 1	0380.00								
1 * 1	0380.00								
1 * 1	0380.00								
1 * 1	0380.00								



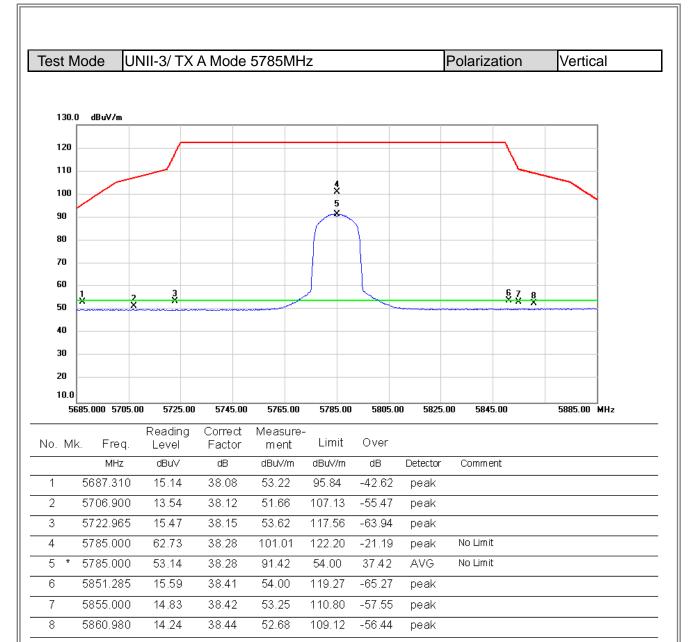
	ode UI	NII-1/ TX	AC40 N	/lode 5230)MHz			Polarization	Vertical
120.0	dBuV/m								
110									
100 -									
90 -									
80 -									
70 -									
60			1 X						
50									
40									
30 20									
10									
0.0	0.000 4900.0	0 8800.00	12700.0	00 16600.00	20500.00	24400.	00 28300	.00 32200.00	40000.00 MHz
o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
0. IMR.	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 * 1	10460.00	55.38	1.68	57.06	68.20	-11.14	peak		
1 * 1		55.38	1.68	57.06	68.20	-11.14	peak		
1 * 1		55.38	1.68	57.06	68.20	-11.14	peak		
1 * 1		55.38	1.68	57.06	68.20	-11.14	peak		
1 * 1		55.38	1.68	57.06	68.20	-11.14	peak		
1 * 1		55.38	1.68	57.06	68.20	-11.14	peak		
1 * 1		55.38	1.68	57.06	68.20	-11.14	peak		



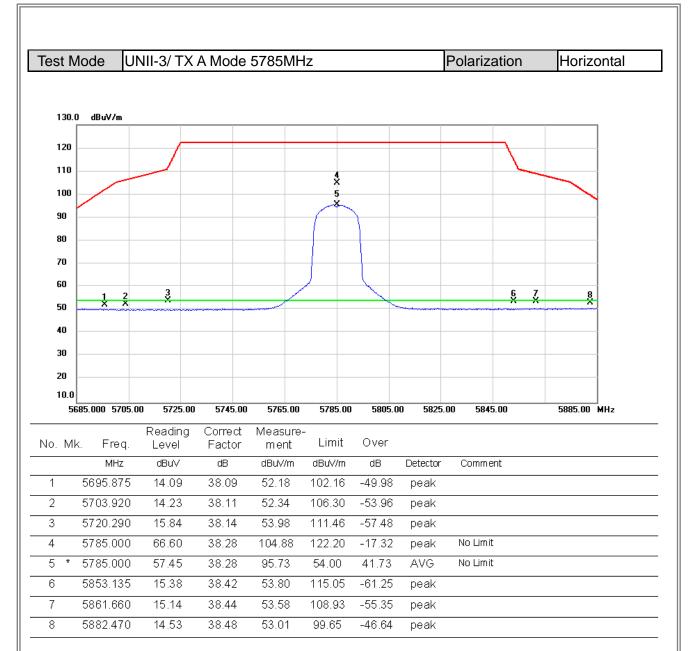
	de UN	NII-1/ TX	AC40	Mode 523	0MHz		Pol	arization	Horizontal
120.0	dBu∀/m								
110									
100									
90 -									
80									
70									
60			1 X						
50									
40 30									
20									
10									
0.0									
1000	.000 4900.00	0 8800.00 Reading	0 12700 Correc			24400.00	28300.00	32200.00	40000.00 MHz
p. Mk.	Freq.	Level	Facto	r ment	Limit	Over			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB D	etector C	omment	
1 * 1	0460.00	53.03	1.68	54.71			peak		
1 * 1	0460.00	53.03							
1 * 1	0460.00	53.03							
1 * 1	0460.00	53.03							
1 * 1	0460.00	53.03							
1 * 1	0460.00	53.03							



est N	lode U	NII-3/ TX	A Mode	5745MH	Z			Polarizat	ion	Vertic	al
120	0 dBuV/m										
130.0	J dBu¥/m										1
120											
110											
100											
90											
80											
70											
60			1 X								
50			2 X								
40			^								
30											
20											
10.0											
10	000.000 4900.0	00 8800.00	12700.0	16600.00	20500.0	0 24400	.00 2830	0.00 32200.	00	40000.00	MHz
p. Ml	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
J. IVII	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment			
1	11490.00	54.22	2.89	57.11	74.00	-16.89	peak				
2 *	11490.00	44.58	2.89	47.47	54.00	-6.53	AVG				



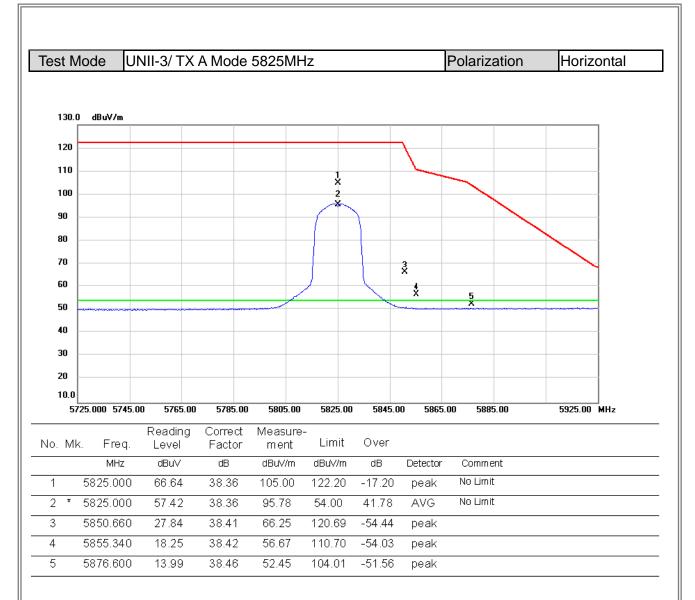
Mode U	NII-3/ TX	A Mode	5745MH	Z			Polariza	ition	Horizonta
0.0 dBuV/m									
0	1								
0									
0									
		1							
		1 X							
		2 X							
.0		10700 0			0.04400	000 0000	0.00 0000		10000.00.000
1000.000 4900.0	00 8800.00 Reading	12700.0 Correct	0 16600.00 Measure-		0 24400	J.UU 283U	0.00 32200	J.UU	40000.00 MHz
vlk. Freq.	Level	Factor	ment	Limit	Over				
MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Commen	ıt	
11490.00 11490.00	52.49 39.52	2.89 2.89	55.38 42.41	74.00 54.00	-18.62 -11.59	-			
		2.03	42.41	04.00	-11.00				



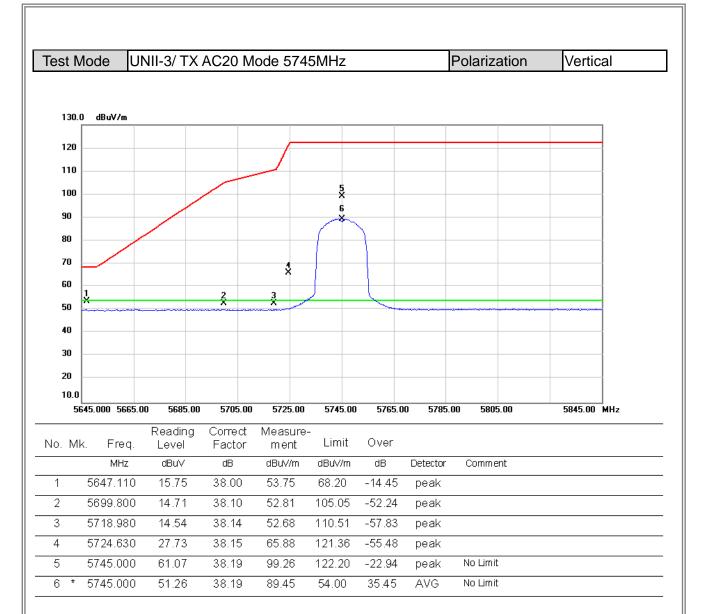
est N	/lode U	NII-3/ TX	A Mode	5785MH	Z			Pola	rization	Vertic	al
130.	0 dBuV/m		1								1
120		1									
110											
100											
90											
80											
70											
60			1 X								_
50			2 X								
40											
30											
20 10.0											
	000.000 4900.0	00 8800.00	12700.0	0 16600.00	20500.	00 2440	0.00 2830	00.00	32200.00	40000.00	_ ∣MHz
	k Eng	Reading	Correct		Limit	Over					
o. M	k. Freq. MHz	Level dBuV	Factor dB	m ent dBuV/m	dBuV/m		Detector	· Cor	mment		
1	11570.00	54.86	2.72	57.58	74.00	-16.42					
2 *	11570.00	44.65	2.72	47.37	54.00	-6.63	AVG				

t Mode U	INII-3/ TX /	A Mode 5	5785MHz	2			Pola	rization	Horizontal
30.0 dBuV/m									
20	1								
10									
00									
	<u></u>								
0									
0		1 X							
0		2 X							
0									
0									
0									
1000.000 4900.	00 8800.00	12700.00	16600.00	20500.00	24400). 00 283 0	0.00	32200.00	40000.00 MHz
	Reading		Measure-	1 inn ik	0				
Mk. Freq. MHz	Level dBuV	Factor dB	ment dBuV/m	Limit dBu//m	Over dB	Detector	Com	nment	
11570.00		2.72	55.70	74.00	-18.30				
* 11570.00		2.72	42.55	54.00	-11.45				

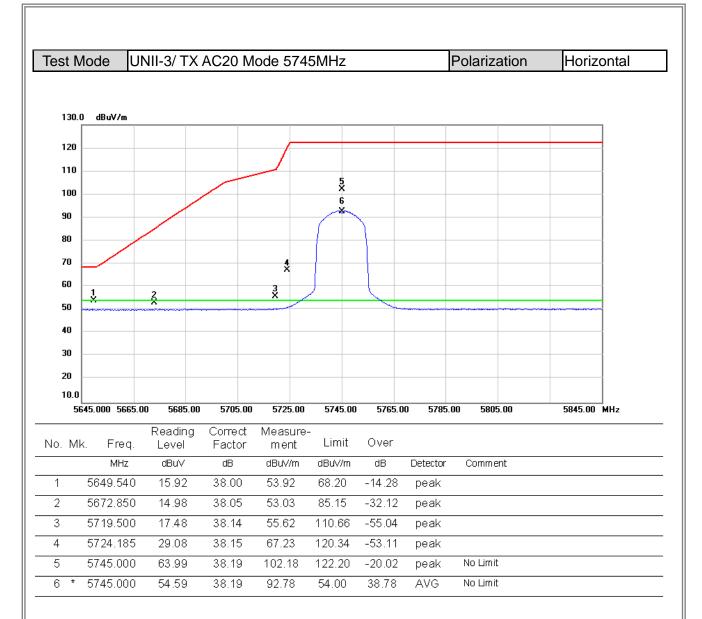
est N	lode U	JNII-3/ TX	A Mode	5825MH	Z			Polarization	Vertical
130.0) dBuV/m								
120							`		
							$\mathbf{\Lambda}$		
110					1 X				
100					2				
90						<u>۲</u>			
80									
70						-	3 X		
60						$\left\{ + \right\}$	× 4 ×	5	
50								5 X	
40									
30									
20									
10.0									
57	25.000 5745.		5785.00	5805.00	5825.00	5845.0	0 5865	i.00 5885.00	5925.00 MHz
lo. Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBư∨/m	dBuV/m	dB	Detector		
1	5825.000	62.99	38.36	101.35	122.20	-20.85	peak	No Limit	
2 *	5825.000	53.62	38.36	91.98	54.00	37.98	AVG	No Limit	
3	5850.185		38.41	61.96	121.78	-59.82	peak		
4	5856.360	16.31	38.42	54.73	110.42	-55.69	peak		
5	5879.500	13.63	38.47	52.10	101.86	-49.76	peak		



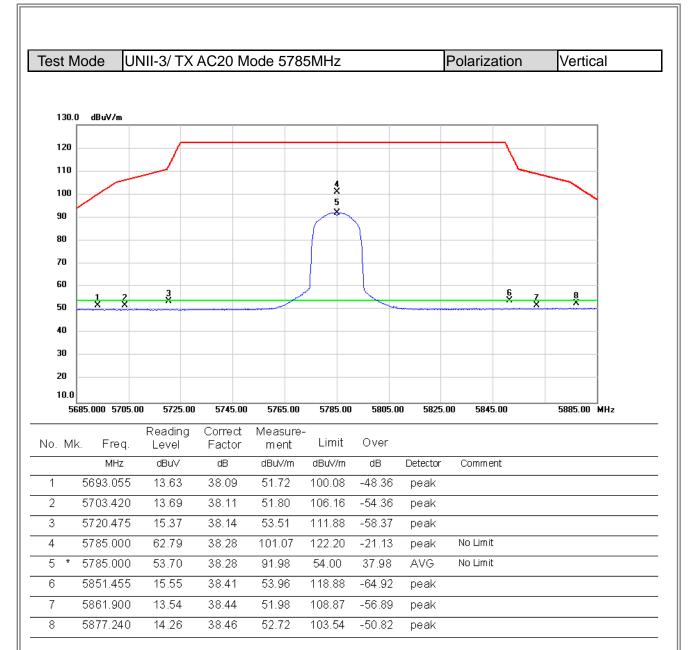
est N	Vode U	NII-3/ TX	A Mode	5825MH	Z			Polariz	zation	Vertic	al
130.	.0 dBuV/m										
120		1									
110											
100											
90											
80											
70											
60 50			1 X 2								
50 40			×								
30											
20											
10.0 1	000.000 4900.0	00 8800.00	12700.0	0 16600.00	20500.0	0 24400	.00 2830	0.00 32:	200.00	40000.00	MHz
		Reading	Correct	Measure-							
o. M	lk. Freq. MHz	Level dBuV	Factor dB	ment dBuV/m	Limit dBuV/m	Over dB	Detector	Comm	ent		
1	11650.00	53.57	2.50	56.07	74.00	-17.93	peak				
2 *	11650.00	43.70	2.50	46.20	54.00	-7.80	AVG				



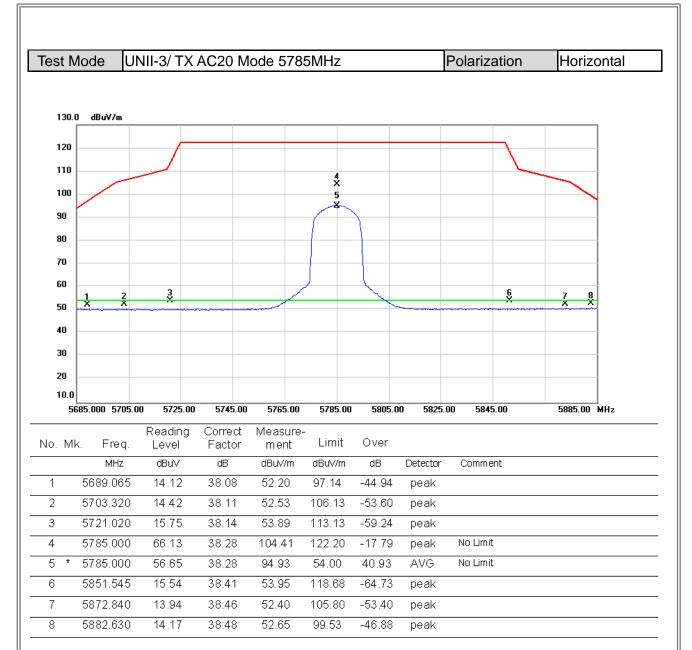
: N	lode U	NII-3/ TX	A Mode	5825MH	Z			Polarization	Horizontal
30 1) dBuV/m								
20									
)0)0									
)									
)									
)									
)									
)			1 X						
)			2 X						
)									
)									
). O	100.000 4900.0	0 8800.00	12700.0	0 16600.00	20500.0	0 24400	.00 2830	0.00 32200.00	40000.00 MHz
	100.000 4900.0	Reading	Correct	Measure-		U 244UU	1.00 2830	0.00 32200.00	40000.00 MHZ
MI		Level	Factor	ment	Limit	Over			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
*	11650.00 11650.00	53.37 39.86	2.50 2.50	55.87 42.36	74.00 54.00	-18.13 -11.64	-		
			2.00	12.00	01.00				



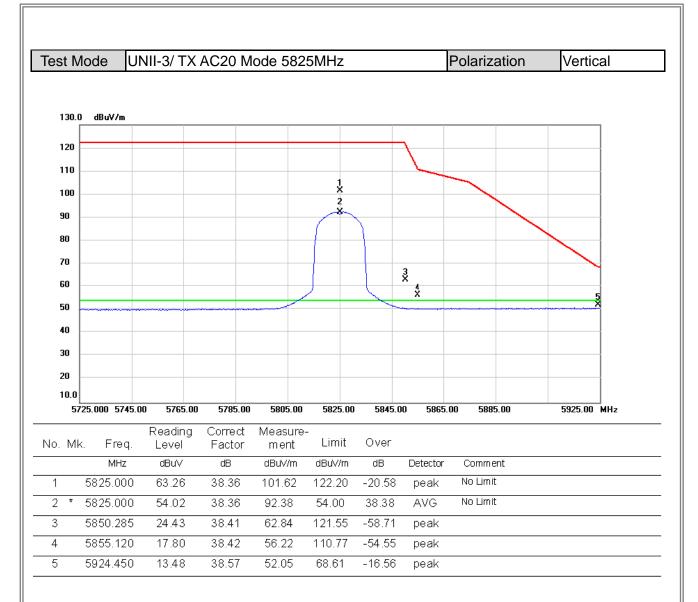
SUN	ode UI	NII-3/ TX	AC20 M	lode 5745	5MHz			Polariza	tion	Vertic	al
130.0 	dBuV/m										1
120		1									
10											{
100											-
90											-
30											
70											4
50			1 X								
10			2								-
			×								
											1
20 0.0											1
	00.000 4900.0	0 8800.00	12700.0	0 16600.00	20500.00) 24400	.00 2830	0.00 32200	0.00	40000.00	_l IMHz
		Reading	Correct	Measure-	Linaik						
Mk	Freq. MHz	Level dBuV	Factor dB	m ent dBu//m	Limit dBu//m	Over dB	Detector	Common	+		
	11490.00	иви∨ 54.31	2.89	57.20	ивиv/m 74.00	-16.80	Detector peak	Commer	L		
*	11490.00	44.44	2.89	47.33	54.00	-6.67	AVG				



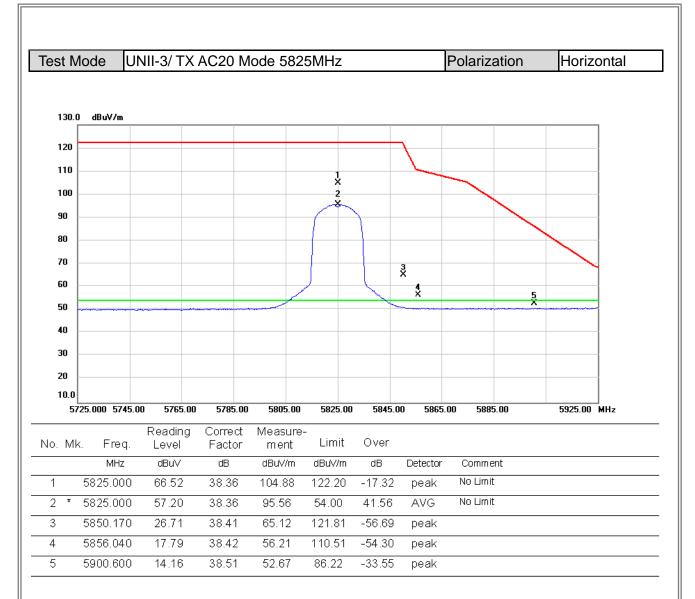
	lode UN	NII-3/ TX /	AC20 Mo	ode 5745	öMHz			Polariz	ation	Horiz	ontal
130.0) dBuV/m										
120											
110											
100											
90											
80											
70											
60											
50			1 X								
40			2 X								
30											
20											
10.0			10700.00								
10	00.000 4900.00	0 8800.00 Reading	12700.00 Correct	16600.00 Measure-	20500.00	0 24400.	.00 2830	10.00 322	200.00	40000.00	MHZ
Io. Mł	k. Freq.	Level	Factor	ment	Limit	Over					
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent		
1	11490.00	52.64 39.64	2.89 2.89	55.53 42.53	74.00 54.00	-18.47 -11.47	peak AVG				
2			2.09	42.00		-11.47	~~~				



130.0 dBuV/m 120	st Moo	de Ul	NII-3/ TX /	AC20 Mo	ode 5785	5MHz			Pol	arization	Vertical
120 100 1											
120 100 1											
110	130.0	dBu¥/m									
100	120 —		1								
90 90 <td< td=""><td>110 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	110 -										
80	100 -										
80	90 -										
70 1											
60 1 X Image: Constraint of the second											
S0 X Z X I		L		_							
M0 X X I											
30				×							
20	40										
Int. 0	30										
1000.000 4900.00 8800.00 12700.00 16600.00 20500.00 24400.00 28300.00 32200.00 40000.00 MHz Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over 0											
Mk.Freq.Reading LevelCorrect FactorMeasure- mentLimitOverMHzdBuVdBdBuV/mdBDetectorComment11570.0054.322.7257.0474.00-16.96peak		0.000	0 8800.00	12700.00	16600.00	20500.00	24400.0	10 283	00.00	32200.00	40000 00 MH
Mk.Freq.LevelFactormentLimitOverMHzdBuVdBdBuV/mdBDetectorComment11570.0054.322.7257.0474.00-16.96peak	1000.	000 4300.0				20300.00	24400.0	203		52200.00	40000.00 141
11570.00 54.32 2.72 57.04 74.00 -16.96 peak			Dooding	Corroct	Moacuro						
	Mk.	Freq.	Reading Level	Correct Factor		Limit	Over				
* 11570.00 44.54 2.72 47.26 54.00 -6.74 AVG	Mk.		Level	Factor	ment			Detector	r C	omment	
	11	MHz	Level dBuV 54.32	Factor dB 2.72	ment dBu∨/m	dBuV/m 74.00	dB -16.96	peak	r C	omment	
	11	MHz	Level dBuV 54.32	Factor dB 2.72	ment dBuV/m 57.04	dBuV/m 74.00	dB -16.96	peak	r C	omment	



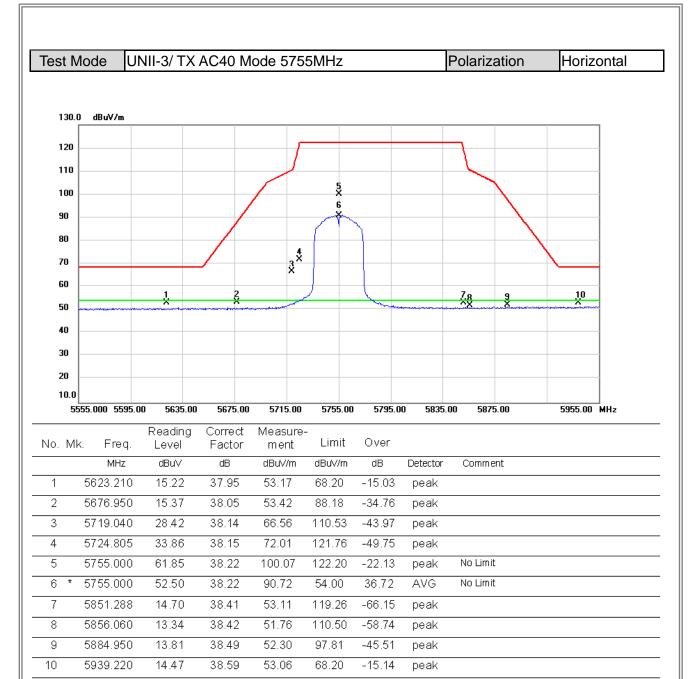
est N	lode UN	III-3/ TX	AC20 M	ode 5785	бMHz			Pola	arization	Horizo	ntal
130.0	dBuV/m										
120	n										
110											
100											
90											
80											
70											
60											
50			1 X								
40			2 X								
30											
20											
10.0											
10	00.000 4900.00				20500.00	24400	.00 283	00.00	32200.00	40000.00 N	4Hz
o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
	MHz	dBu∨	dB	dBuV/m	dBư√/m	dB	Detecto	r Cu	omment		
1	11570.00	53.51	2.72	56.23	74.00	-17.77	peak				
2 "	11570.00	39.93	2.72	42.65	54.00	-11.35	AVG				



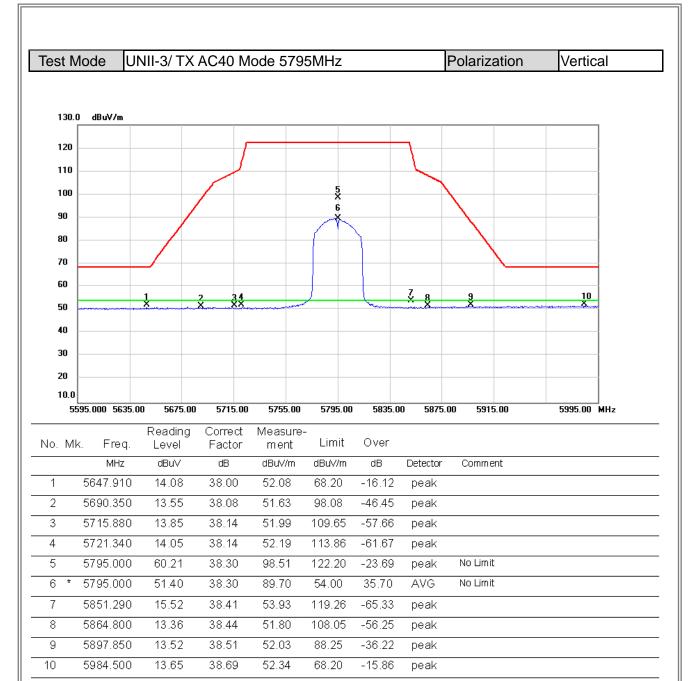
est Mo	ode UN	NII-3/ TX	AC20 M	lode 5825	MHz			Polar	ization	Vertica	al
130.0	dBuV/m										
120	f										
110											
100 -											
90 -											
80											
70											
60 -											
50			1 X 2								
40			x								
30											
20 10.0											
	0.000 4900.00	0 8800.00	12700.0	0 16600.00	20500.00	24400.	00 2830	0.00 3	2200.00	40000.00	Hz
		Reading	Correct	Measure-	Linaik						
o. Mk.	Freq. MHz	Level dBuV	Factor dB	m ent dBuV/m	Limit dBuV/m	Over dB	Detector	Corr	ment		
1	11650.00	53.81	2.50	56.31		-17.69	peak				
	11650.00	43.40	2.50	45.90	54.00	-8.10	AVG				

st Mo	de U	JNII-3/ TX	AC20 M	ode 5825	5MHz			Pola	arization	Horiz	ontal
130.0	dBu¥/m										1
120 -											ļ
110 -											
100											
90											
80											
70		וו									-
70 60 —											1
			1 X								
50			2 X								1
40			^								
30 -											
20											
10.0).000 4900.	.00 8800.00	12700.00	16600.00	20500.00	24400.	00 2830	0.00	32200.00	40000.00	 MHz
		Reading	Correct	Measure-							
Mk.	Freq.	Level	Factor	ment	Limit	Over					
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	C	omment		
	1650.00		2.50	54.99	74.00	-19.01	peak				
* /	1650.00	39.88	2.50	42.38	54.00	-11.62	AVG				

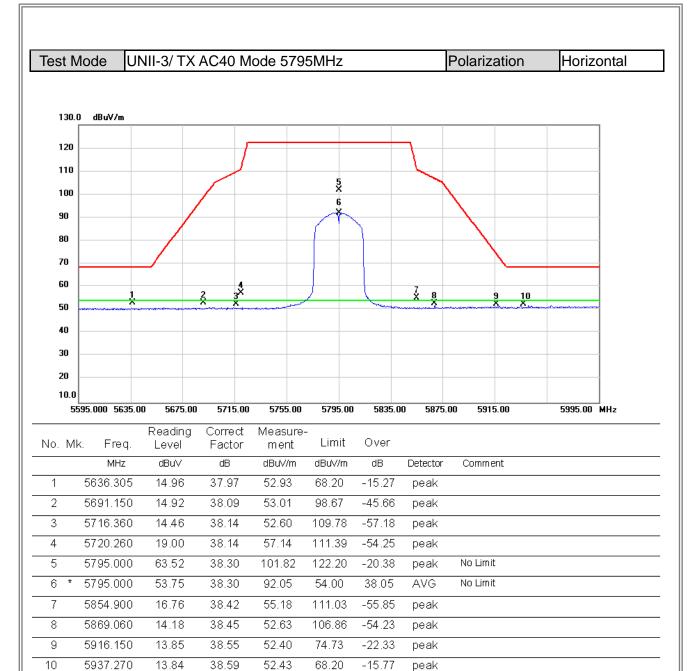
est N	lode U	NII-3/ TX	AC40 M	ode 5755	5MHz		F	Polarization	Vertical
130.0	D dBuV/m								
120								-	
110									
100					5 X				
90			/		6				
80						γ			
70				4 ×					
60			2	ЗX				7	
50		1	2			-	·····	<u>, 8</u>	9 10 Ž X
40									
30									
20									
10.0 55	555.000 5595.0	00 5635.00	5675.00	5715.00	5755.00	5795.0	0 5835.0	0 5875.00	5955.00 MHz
		Reading	Correct	Measure-					
No. Mł		Level	Factor	ment	Limit	Over			
1	MHz 5646.010	dBu∨ 14.83	dB 37.99	dBuV/m 52.82	dBuV/m 68.20	dB -15.38	Detector	Comment	
2	5675.550	14.03	38.05	53.58	87.15	-15.50	peak peak		
3	5718.520	23.46	38.14	61.60	110.39	-48.79	peak		
4	5721.710	30.79	38.14	68.93	114.70	-45.77	peak		
5	5755.000	58.29	38.22	96.51	122.20	-25.69	peak	No Limit	
	5755.000	49.22	38.22	87.44	54.00	33.44	AVG	No Limit	
6*			38.42	53.44	112.53	-59.09	peak		
7	5854.240	15.02							
Ŭ	5854.240 5873.720 5918.650	15.02 13.23 12.82	38.46	51.69 51.37	105.56 72.88	-53.87 -21.51	peak peak		



St IV	lode U	JNII-3/ TX /	AC40 Mo	ode 5755	5MHz			Pol	arization	Vertic	al
	•									•	
130.0 	dBuV/m										1
120		1									
110											
100											
90											
80											
70		וו									-
			-								1
50			X								
50			2 X								1
40											1
30											
20											
10.0 10	00.000 4900.	.00 8800.00	12700.00	16600.00	20500.00	24400	1 00 283	300.00	32200.00	40000.00	
		Reading		Measure-		21100			02200.00	10000.00	
Mk	. Freq.	Level	Factor	ment	Limit	Over					
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detecto	or C	comment		
	11510.00	54.22	2.88	57.10	74.00	18.00					
*	11510.00					-16.90					
	11510.00	43.96	2.88	46.84	54.00	-7.16					
	11510.00	43.96									



est Moo	le UN	111-3/ TX	AC40 M	ode 5755	MHz			Pola	arization	Horizo	ontal
130.0	lBuV/m										
120											
110											
100											
90											
80											
70											
60			1 X								
50			2								
40			×								
30											
20											
10.0	00 4900.00	0 8800.00	12700.00) 16600.00	20500.00	24400.	00 2830	0 00	32200.00	40000.00 1	4 Hz
1000.		Reading	Correct	Measure-					02200.00	10000.001	
o. Mk.	Freq.	Level	Factor	ment	Limit	Over					
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	C	omment		
	510.00	52.65	2.88	55.53		-18.47	peak				
2 * 11	510.00	39.45	2.88	42.33	54.00	-11.67	AVG				



st M	ode UI	NII-3/ TX /	AC40 Mc	de 5795	ōMHz			Pola	rization	Vertic	al
130.0	dBu∀/m										1
120		1									
110											
100											
90											
80											
70	1										
60			1 X								
50			2								
40			×								
30											
20											
10.0											
10	00.000 4900.0	00 8800.00	12700.00	16600.00	20500.00	24400.	00 28300	0.00	32200.00	40000.00	MHz
b. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
J. IVIK	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Co	mment		
1	11590.00	54.25	2.67	56.92		-17.08	peak				
	11590.00	43.88	2.67	46.55		-7.45	AVG				

st I	Node U	NII-3/ TX	AC40 M	ode 5795	MHz			Pol	arization	Horizo	ontal
130	0 dBuV/m										
120		1									
110											
100											
90											
80											
70		∥									
60			1 X								
50			2								
40			×								
30											
20											
10.0 1	000.000 4900.0	0 8800.00	12700.00	16600.00	20500.00	24400.	00 29	3300.00	32200.00	40000.00	MH 3
	000.000 4300.0	Reading	Correct	Measure-	20300.00	24400.	00 20		52200.00	40000.00	m112
M	k. Freq.	Level	Factor	ment	Limit	Over					
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detect	tor C	omment		
	11590.00	53.46	2.67	56.13		-17.87	peal				
*	11590.00	39.61	2.67	42.28	54.00	-11.72	AVG	è			

APPENDIX – REFERENCE INFORMATION

Report No.: BTL-FCCP-4-1806T107A

Normal Condition Power Table

Test Mode

RLAN

		_	AN	IT-0	Total F	Power	Lii	mit
Mode		Frequency (MHz)	Peak	Average	Peak	Average	Avergae	PASS/
		(11112)	dBm	dBm	dBm	dBm	dBm	FAIL
		5180	22.05	15.74	22.05	15.74	30.00	PASS
	Band 1	5200	22.26	16.18	22.26	16.18	30.00	PASS
802.11a		5240	22.26	15.88	22.26	15.88	30.00	PASS
002.11a	Band 4	5745	19.74	11.33	19.74	11.33	30.00	PASS
		5785	20.63	14.69	20.63	14.69	30.00	PASS
		5825	20.54	14.46	20.54	14.46	30.00	PASS
	Band 1	5180	22.16	15.81	22.16	15.81	30.00	PASS
		5200	22.21	15.82	22.21	15.82	30.00	PASS
802.11n_		5240	22.28	15.90	22.28	15.90	30.00	PASS
20MHz		5745	19.70	10.51	19.70	10.51	30.00	PASS
	Band 4	5785	20.59	14.26	20.59	14.26	30.00	PASS
		5825	20.37	14.08	20.37	14.08	30.00	PASS
	Band 1	5190	21.71	13.89	21.71	13.89	30.00	PASS
802.11n_	Danu I	5230	21.89	13.96	21.89	13.96	30.00	PASS
40MHz	Band 4	5755	19.82	11.39	19.82	11.39	30.00	PASS
	Danu 4	5795	20.05	12.66	20.05	12.66	30.00	PASS