

a module solution provider

WG6611-00 WG6611-01 Series WLAN Module Multi-Peripherals Interface 802.11b/g/n solution Datasheet Draft 0.8

Prepared By	Reviewed By	Approved By
Mitchael Weng	Victor Cee	April
2017.07.04	2017/07/04	2017/9/4

Copyright © JORJIN TECHNOLOGIES INC. 2017 http://WWW.JORJIN.COM.TW CONFIDENTIAL

<u>Index</u>

1. HISTORY CHANGE
2. GENERAL DESCRIPTION
3. FUNCTIONAL FEATURES 4
3.1. Module Block Diagram
3.2. PIN ASSIGNMENT (TOP VIEW)
3.3. PIN DESCRIPTION
4. FUNCTIONAL SPECIFICATION
4.1. TEMPERATURE LIMIT RATINGS
4.2. DC POWER SUPPLY
4.3. CURRENT CONSUMPTION
4.4. WLAN 2.4-GHz RF Performance
4.5. PIN FUNCTION TABLE
5. REFFERENCE SCHEMATIC
5.1. APPLICATION REFERENCE CIRCUIT
6. PACKAGE INFORMATION
6.1. MODULE MECHANICAL OUTLINE
6.2. PACKAGE MARKING 17
7. SMT AND BAKING RECOMMENDATION 18
7.1. BAKING RECOMMENDATION
7.2. SMT RECOMMENDATION

1. HISTORY CHANGE

Revision	Date	Description			
D0.1	2016-01-13	Initial Document creation.			
D0.2	2016-02-26	Verify Current Consumption			
D0.3	2016-03-08	Verify Application Reference Circuit			
D0.4	2016-03-17	Modify Functional Specification remove			
		Certification			
D0.5	2016-06-21	1. Modify Functional Specification increased			
		IPEX Connector			
		2. Cover modify Series Specifications			
		3. Modify Module Block Diagram			
D0.6	2016-09-20	1. Modify Application Reference Circuit			
		2. Modify pin Description			
		3. Modify Module Block Diagram			
D0.7	2016-10-13	1. Remove SDIO Interface			
	(2. Add package marking			
D0.8	2017-06-29	1. Remove NFC function			
		2. Modify schematic pin define			
	3				

2. GENERAL DESCRIPTION

WG6611-00 is a single chip wireless Internet-of-Things module. The advance Realtek RTL8711AM is a highly integrated single-chip low power 802.11n Wireless LAN (WLAN) network controller. It combines an ARM-Cortex M3 MCU, WLAN MAC, a 1T1R capable WLAN baseband, and RF in a single chip. It also provides a bunch of configurable GPIOs which are configured as digital peripherals for different applications and control usage.

RTL8711AM integrates internal memories for complete WIFI protocol functions. The embedded memory configuration also provides simple application developments.

FEATURES INTRODUCTION

- Dimension, L x W x H = 22.25 mm x 19mm x2.3mm (Deviation +/-0.1mm)
- Support IEEE 802.11 b/g/n Standard
- One Transmit and one Receive path (1T1R)
- Frequency range: 2.412GHz 2.484GHz
- ARM[®] Cortex[®]-M3 Core
- CPU Clock: 166MHz
- Memory capacity: 512kB of ROM
- 1MB of Flash
- 448kB of SRAM
- Operating Voltage: DC 3.3V
- Other interface: UART, JTAG, I2S, I2C, SPI, ETE(External Timer Trigger Event), PCM, PWM
- RoHS Compliant
- Module is for Client mode & Address point & Router
- Default is for RF IPEX Connector
- Antenna Type(1T1R) Gain(dBi): 3.58
- Crystal: 40MHz

3. FUNCTIONAL FEATURES

3.1. Module Block Diagram

3.2. Pin Assignment (Top view)

3.3. Pin Description

Pin#	Name	Description	Туре
1	GND	Ground	G
2	GND	Ground	G
3	NC	Not Connected is not used	Ν
4	NC	Not Connected is not used	Ν
5	NC	Not Connected is not used	Ν
6	NC	Not Connected is not used	N
7		GPIOE, GPIOC, GPIOA, GPIOB	D
/		group IO power	Р
8	NC	Not Connected is not used	Ν
9	SWCLK/GPIOE_4	Clock into the core	I/O
10	SWDIO/GPIOE_3	SWD data in/out	I/O
11	GPIOE_2/PWM2	GPIO Pin, PWM(multiplexing)	I/O
12	GPIOE_1/I2C2_SDA/PWM1	GPIO Pin, PWM, I2C(multiplexing)	I/O
13	GPIOE_0/I2C2_SCL	GPIO Pin, I2C(multiplexing)	I/O
14	NC	Not Connected is not used	Ν
15	ADC_CH2	ADC_CH2,AD converter input	Ι
16	NC	Not Connected is not used	Ν
17	GND	Ground	G
10		1: Enable Chip	1
10		0: Disable chip in shutdown mode	I
19	NC	Not Connected is not used	Ν
20	NC	Not Connected is not used	Ν
21	NC	Not Connected is not used	Ν
22	GPIOA_3/UART0_RTS	GPIO Pin, UART(multiplexing)	I/O
23	NC	Not Connected is not used	Ν
24	GPIOA_5/UART0_CTS	GPIO Pin, UART(multiplexing)	I/O
25	GPIOA_7/UART0_TXD	GPIO Pin, UART(multiplexing)	I/O
26	GPIOA_6/UART0_RXD	GPIO Pin, UART(multiplexing)	I/O
27	GND	Ground	G
28	NC	Not Connected is not used	Ν
29	NC	Not Connected is not used	Ν
30	GND	Ground	G
31	NC	Not Connected is not used	N
32	NC	Not Connected is not used	Ν

33	GND	Ground	G
34	VD33	3.3V Power Supply	Р
35	GND	Ground	G
36	GPIOC_3/SPI0_MISO/I2S1_MCK	GPIO Pin, SPI, I2S(multiplexing)	I/O
37	GPIOC_2/SPI0_MOSI/ I2S1_SD_TX	GPIO Pin, SPI, I2S(multiplexing)	I/O
38	GPIOC_1/SPI0_CLK/I2S1_CLK	GPIO Pin, SPI, I2S(multiplexing)	I/O
39	GPIOC_0/PWM0/I2S1_WS	GPIO Pin, PWM, I2S(multiplexing)	I/O
40	GPIOC_4/SPI0_CS1/I2S1_SD_RX	GPIO Pin, SPI, I2S(multiplexing)	I/O
41	GPIOC_5	GPIO Pin	1/0
42	GPIOB_3/I2C3_SDA	GPIO Pin, I2C(multiplexing)	I/O
		GPIO Pin, /I2C(multiplexing),	
12	CDIOD 2/12C2 SCI (NODMAL MODE SEI	Shared with GPIOB_2	I/O
45	GPIOB_2/12C3_3CL/NORIVIAL_WIDDE_SEL	1:Normal operation	
		0:Enter into test/debug mode	
44	UART_RXD/GPIOB_1	UART_LOG_IN(Debug)	I/O
		UART_LOG_OUT(Debug),	
15		Shared with GPIOB_0	1/0
45	DART_TAD/GFIOB_0/BOOT_SCENARIO	0:booting from flash	1/0
		1:booting from internal memory	
46	NC	Not Connected is not used	N
47	NC	Not Connected is not used	N
48	GND	Ground	G
49	NC	Not Connected is not used	Ν
50	NC	Not Connected is not used	Ν
51	GND	Ground	G
52	GND	Ground	G
53	NC	Not Connected is not used	Ν

4. FUNCTIONAL SPECIFICATION

Main Chipset	Realtek RTL8711AM	
Wireless standard	IEEE 802.11 b/g /n	
Frequency	4~2.483GHz ISM Band	
	802.11b: 11,5.5,2,1 Mbps	
Transmit Speed	802.11g: 54,48,36,24,18,12,9,6 Mbps	
	802.11n: up to 150Mbps	

Winalasa Sagunitu	WPAK2-AES(802.11i(WPA,WP2))
wireless security	OPEN, shared key, and pair-wise key authentication services
Channel	Channel 1~14
	802.11b(DSSS): CCK(11, 5.5Mbps), DQPSK(2Mbps),
	DBPSK(1Mbps);
Modulation	802.11g(OFDM): BPSK(9,6Mbps), QPSK(18,12Mbps),
	16QAM(36,24Mbps), 64QAM(54,48Mbps);
	802.11n(OFDM): BPSK, QPSK, 16QAM, 64QAM(150Mbps)
	150Mbps: Typical - 64dBm @ 10% PER
Sensitivity	54Mbps: Typical - 65dBm @ 10% PER
	11Mbps: Typical - 76dBm @ 8% PER
	11Mbps: 802.11b 17±2dBm
TX Power	54Mbps:802.11g 14±2dBm
	150Mbps:802.11n 13±2dBm
	11Mbps: 802.11b EVM≦8%
EVM	54Mbps:802.11g EVM≦-28dB
	150Mbps:802.11n EVM≦-30dB
	RF path selection feature
Antenna	-00 : IPEX Connector
	-01 : Internal Antenna
	AP Mode (Default)
Network Architecture	Client Mode
I/O Voltage Level	Please refer to Table 1 and Table 2 below
	UART x2
	(Maximum 2 high speed UART interface with baud rate up to
	4Mbps)
	I2C x3
	(Three speeds:
	Standard mode(0 to 100 Kb/s)
	Fast mode(<400Kb/s)
	High-speed mode(<3.4Mb/s)(with appropriate bus loading)
	I2S x1
1/0	(Support 8/16/24/32/48/96KHz,44.1/88.2KHz)
Interface	SPI x2
	(Support Master/Slave mode(SPI0 only), and Slave only(SPI1 and
	SPI2);

	Support DMA to offload CPU bandwidth.
	1 very high speed SPI with baud rate up to 41 MHz.
	1 high speed SPI with baud rate up to 10MHz).
	PWM x4
	(PWM with configurable duration and duty cycle from $0 \sim 100\%$)
	GPIO x19
	PCM x2
	(Master clock output:64,128,256,or 512kHz)
	ETE x1
Dimensions	22.25 x 19 x2.3mm

Table1-Typeical Digital IO DC Parameters(3.3V Case)

Symbol	Parameter	Min	Тур.	Max	Units
VIH	Input-High-Voltage	2.0			V
VIL	Input-Low-Voltage			0.8	V
VOH	Output-High-Voltage	2.4			V
VOL	Output-Low-Voltage			0.4	V

Table2-Typeical Digital IO DC Parameters(1.8V Case)

Symbol	Parameter	Min	Тур.	Max	Units
VIH	Input-High-Voltage	$0.65 \mathrm{xV}_{\mathrm{cc}}$			V
VIL	Input-Low-Voltage			$0.35 \mathrm{xV}_{\mathrm{cc}}$	V
VOH	Output-High-Voltage	V _{cc} -0.45			V
VOL	Output-Low-Voltage			0.45	V

4.1. Temperature Limit Ratings

Parameter	Min.	Max.	Units
Storage Temperature	-40	+80	°C
Operating Temperature	0	+70	°C

4.2. DC POWER SUPPLY

Symbol	Parameter	Min	Тур.	Max	Units
VDD	3.3V Supply Voltage	3.0	3.3	3.6	V
VDIO	Digital IO Supply	1.62	1.8~3.3	3.6	V
	Voltage				

4.3. Current Consumption

State	Current(3.3V)	Description			
Deep Sleep	5.5uA	Low Power Timer and GPIO Evnet Wakeup			
Deep Standby	25uA	Low Power Timer and GPIO Evnet Wakeup			
Sleep	0.5mA	Associated with AP but no traffic			
Associated Idle (DTIM=1)	3.3mA	Associated with AP and no traffic			
Associated Idle (DTIM=2)	Associated with AP and no traffic				
Associated Idle (DTIM=3)	Associated with AP and no traffic				
Run in Active clock	25mA	CPU clock 166MHz, UART/SPI/I2C available WiFi is disable			
11n RX Mode	62mA	CPU clock 166MHz, UART/SPI/I2C available WiFi is in 11n Rx			
11n TX Throughput @ 13dBm	162mA	CPU clock 166MHz, UART/SPI/I2C available WiFi is in 11n Tx transmitting data(throughput) WiFi is in 11n Rx			

Mode	Condition	Typical Current at 3.3V		
	TX at 11 Mbps	343mA		
Active:	TX at 54 Mbps	282mA		
	TX at HT20-MCS7	267mA		
	TX at HT40-MCS7	262mA		
	RX at 11Mbps	68mA		
	RX at 54Mbps	74mA		
	RX at HT20-MCS7	74mA		
	RX at HT40-MCS7	74mA		

4.4. WLAN 2.4-GHz RF Performance

2.4G WLAN Transmitter							
Characteristics	Condition	Min	Тур.	Max	Unit		
11h Output Dowor	11M CCK		17				
11b Output Power	1M DSSS		17				
	54M OFDM		14		dDaa		
11g Output Power	6M OFDM		16		авт		
	MCS7		13				
11h Output Power	MCS0		15				

2.4G WLAN Receiver							
Characteristics	Condition	Min	Tyd	Max	Unit		
11h Dy Considiuity	11M CCK		-76				
	1M DSSS) (-83				
	54M OFDM		-65		dDaa		
11g KX Sensitivity	6M OFDM		-82		aBm		
	MCS7		-64				
IIN KX Sensitivity	MCS0		-82				

Note: IPEX Connector Test RF Performance Measurement

4.5. Pin Function Table

PIN name	JTAG	UART Funtion	I2C Group	SPI Group	I2S Group	PCM Group	WL_LED0	PWM0 Group	ETE Group	WKDT	GPIO INT
GPIOA_3		UARTO_RTS									Default_key
GPIOA_5		UARTO_CTS								WKDT0	Mode_key
GPIOA_6		UARTO_IN									
GPIOA_7		UARTO_OUT/									GPIO
GPIOB_0		UART0_LOG_OUT	Dahi	a Conce					ETEO		
GPIOB_1		UART_LOG_IN	Debt	ig conse	Je		WL_LEDO		ETE1		
GPIOB_2			I2C3_SCL						ETE2		
GPIOB_3			I2C3_SDA						ETE3		GPIO INT
GPIOC_0		UARTO_IN		SPIO_CSO	I2S1_₩S	PCM1_SYNC		PWM0	ETEO		
GPIOC_1		UARTO_CTS	<u>12C</u>	SPIO_CLK	I2S1_CLK	PCM1_CLK		PWM1	ETE1		GPIO INT
GPIOC_2		UARTO_RTS		SPIO_MOSI	I2S1_SD_TX	PCM1_OUT		PWM2	ETE2		
GPIOC_3	ITAC	UARTO_OUT		spi0_miso	I2S1_MCK	PCM1_IN		румз 🚽	ETE3		GPIO INT
GPIOC_4	JIAG		I2C1_SDA	SPIO_CS1	I2S1_SD_RX						GPIO INT
GPIOC_5	$ \frown $		I2C1_SCL	SPIO_CS2	I2S0_SD_RX			PWM			GPIO INT
GPIOE_0	JTAG_TRST	UARTO_OUT	I2C2_SCL	SPIO_CSO	I2SO_WS	PCM0_SYNC		PWMO			
GPIOE_1	JTAG_TDI	UARTO_RTS	I2C2_SDA	SPIO_CLK	I2SO_CLK	PCM0_CLK		PWM1			GPIO INT
GPIOE_2	JTAG_TDO	UARTO_CTS	I2C3_SCL	SPIO_MOSI	I2S0_SD_TX	PCM0_OUT		PWM2			GPIO INT
GPIOE_3	JTAG_TMS	UARTO_IN	i2c3_sda	SPIO_MISO	I2S0_MCK	PCM0_IN		PWM3		WKDT3	GPIO INT
GPIOE_4	JTAG_CLK		I2C3_SCL	SPIO_CS1	I2S1_WS						

5. REFFERENCE SCHEMATIC

5.1. Application Reference Circuit

6. PACKAGE INFORMATION

6.1. Module mechanical outline

6.2. Package Marking

Data Code: YYWWSSFA

- **YY** = Digit of the year, ex: 2012=12
- **WW** = Week (01~52)
- **SS** = Serial number from 01~98 match to MFG's lot number or 99 to repair control code
- **F** = Reverse for internal use
- **A** = Module version from A to Z

7. SMT AND BAKING RECOMMENDATION

7.1. Baking Recommendation

• Baking condition :

- Follow MSL Level 4 to do baking process.
- After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - a) Mounted within 72 hours of factory conditions <30°C/60% RH, or
 - b) Stored at <10% RH.
- Devices require bake, before mounting, if Humidity Indicator Card reads >10%

If baking is required, Devices may be baked for 8 hrs at 125 °C.

7.2. SMT Recommendation

• Recommended Reflow profile :

No.	Item	Temperature (°C)	Time (sec)			
1	Pre-heat	D1: 140 ~ D2: 200	T1: 80 ~ 120			
2	Soldering	D2: = 220	T2: 60 ± 10			
3	Peak-Temp.	D3: 250 °C max				

Note: (1) Reflow soldering is recommended two times maximum.

- (1) Add Nitrogen while Reflow process : SMT solder ability will be better.
- Stencil thickness: 0.1~ 0.15 mm (Recommended)
- Soldering paste (without Pb): Recommended SENJU N705-GRN3360-K2-V can get better soldering effects.

Copyright © JORJIN TECHNOLOGIES INC. 2017 http://WWW.JORJIN.COM.TW CONFIDENTIAL

FCC Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

FCC Radiation Exposure Statement

This device complies with FCC radiation exposure limits set forth for an uncontrolled environment and it also complies with Part 15 of the FCC RF Rules. This equipment must be installed and operated in accordance with provided instructions and the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. End-users and installers must be provided with antenna installation instructions and consider removing the no-collocation statement.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Caution!

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device is intended only for OEM integrators under the following conditions:

- 1) The antenna must be installed such that 20cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna,
- 3) For all products market in US, OEM has to limit the operation channels in CH1 to CH11 for 2.4Gband by supplied firmware programming tool. OEM shall not supply any tool or info to the end-user regarding to Regulatory Domain change.

As long as 3 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

IMPORTANT NOTE:

In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End Product Labelling

The final end product must be labelled in a visible area with the following: "Contains FCC ID:WS2-WG6611.

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.