

TTI-P-G-128/96

Test Report
acc. to the relevant standard
47 CFR Part 15 C – Intentional Radiators
Measurement Procedure:
ANSI C63.4-2003
relating to
Sick AG
RFH620

Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range 9 kHz to 40 GHz

FCC ID: WRMRFH620

Manufacturer's details	
Manufacturer	Sick AG
Manufacturer's grantee code	WRM
Manufacturer's address	Poppenbütteler Bogen 44
	22399 Hamburg
	Germany
	Phone: +49 (0) 40 611 36 03 26
	Fax: +49 (0) 40 611 36 03 31
	Email: jan.potthast@sick.de
Relevant standard used	47 CFR Part 15C - Intentional Radiators
	ANSI C63.4-2003

Test report prepared by	
Technical engineer	Ralf Trepper
	m.dudde hochfrequenz-technik (laboratory)
	Rottland 5a
	51429 Bergisch Gladbach
	Germany
	Phone: +49 (0) 2207 96 89-0
	Fax: +49 (0) 2207 96 89-20
	E-mail: m.duddelabor@dudde.com

Equipment Under Test (EUT)	
Equipment category	RFID
Trade name	Sick
Type designation	RFH620
Serial no.	0832
Variants	

FCC ID: WRMRFH620

1. Test result summary

CFR Section	Report Chapter	Requirements Headline	Test result		
15.203	11.1	Antenna Requirement	Pass	Fail	N.t.
15.205	11.2	Restricted bands of operation	Pass	Fail	N.t.
15.225(a)(b)(c)(d) 15.209	11.3	Radiated spurious emissions	Pass	Fail	N.t.
15.225(e)	11.4	Frequency tolerance	Pass	Fail	N.t.
15.207	11.5	Conducted limits	Pass	Fail	N.t.

		,
The equipment meets the requirements	Yes	No

Signature Ralf Trepper

Signature
Manager
Manfried Dudde

Date of issue: 2009-05-29

EUT: RFH620 FCC ID: WRMRFH620

Table of contents

1. Test result summary	. 3
2. Test laboratory	. 5
3. Introduction	. 5
4. Product	. 6
5. Test schedule	. 6
6. Product and measurement documentation	. 7
7. Observations and comments	. 7
8. Summary	. 7
9. Conclusions	. 8
10. Operational description	. 9
11.1 Antenna requirement	. 10
11.1.1 Regulation	. 10
11.1.2 Result	. 10
11.2 Restricted bands of operation	. 11
11.2.1 Regulation	. 11
11.2.2 Result	. 13
11.3 Radiated emission limits, general requirements	. 14
11.3.1 Regulation	. 14
11.3.2 Test equipment	. 15
11.3.3 Test procedure	. 16
11.3.4 Calculation of the field strength	. 17
11.3.5 Test result	. 18
11.4 Frequency tolerance	. 22
11.4.1 Regulation	. 22
11.4.2 Test equipment	. 22
11.4.3 Test procedures	. 22
11.4.4 Result	. 23
11.5 Conducted limits	. 24
11.5.1 Regulation	. 24
10.5.2 Test equipment	. 25
10.5.3 Test procedures	. 25
11.5.4 Test results	. 26
12 Additional information to this test report	. 28
Remarks	. 28
End of test report	20

FCC ID: WRMRFH620

2. Test laboratory

Company name : m.dudde hochfrequenz-technik

Street : Rottland 5a

City : 51429 Bergisch Gladbach

Country : Germany

Laboratory : FCC Registration Number: 699717

This site has been fully described in a report submitted to the FCC, and renewed with letter dated July 12, 2008, Registration Number 699717.

Phone : +49-2207-9689-0 Fax : +49-2207-9689-20

E-Mail : manfred.dudde@t-online.de Web : http://www.dudde.com

3. Introduction

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz - technik.

This report contains the result of tests performed by m. dudde hochfrequenz - technik for the purpose of a type approval. The order for carrying out these tests has been placed by:

Manufacturer

Company name : Sick AG

Address : Poppenbütteler Bogen 44

Postcode : 22399 City/town : Hamburg

Country : Germany

Telephone : +49 (0) 40 611 360326 Telefax : +49 (0) 40 611 360331

E-mail : jan.potthast@sick.de

Date of order : 2008.12.02

References : Mr. Jan Potthast

FCC ID: WRMRFH620

4. Product

Samples of the following apparatus were submitted for testing:

Type of equipment : RFID-System

Trademark : Sick AG

Type designation : **RFH620**Hardware version : RFH620

Serial number : 0832

Software release : ---

Power used : 230 V AC
Frequency used : 13.560 MHz

Generated or used frequencies : 13.560 MHz (carrier frequency)

ITU emission class : 78K0A1D

FCC ID : WRMRFH620

5. Test schedule

The tests were carried out in accordance with the specifications detailed in chapter 7 "Summary" of this report at:

- m. dudde hochfrequenz - technik, D-51429 Bergisch Gladbach

The test sample was received on:

- 2008-12-02

The tests were carried out in the following period of time:

- 2009-04-30- 2009-05-20

6. Product and measurement documentation

For issuing this report the following product documentation was used and the following annexes were created:

Description	Date	Identifications
External photographs of the Equipment Under Test	2009-05-29	Annex no. 1
Internal photographs of the Equipment Under Test	2009-05-29	Annex no. 2
Occupied bandwidth plot	2009-05-29	Annex no. 3
FCC ID label sample	2009-05-29	Annex no. 4
Functional description / User Manual	2009-05-29	Annex no. 5
Test setup photos	2009-05-29	Annex no. 6
Block diagram	2009-05-29	Annex no. 7
Schematics	2009-05-29	Annex no. 8a
Parts list	2009-05-29	Annex no. 8b
Operational description	2009-05-29	Annex no. 9

The above mentioned documentation will be filed at m. dudde hochfrequenz - technik for a period of 10 years following the issue of this test report.

7. Observations and comments

8. Summary

The product is intended for the use in the following areas of application:

Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the frequency range of 9 kHz to 40 GHz

The samples were tested according to the following specification:

47 CFR Part 15 – Intentional Radiators, ANSI C63.4-2003

FCC ID: WRMRFH620

9. Conclusions

Samples of the apparatus were found to **CONFORM WITH** the specifications stated in chapter 8 "Summary" of this report.

In the opinion of m. dudde hochfrequenz - technik, the samples satisfied all applicable requirements relating to the network interface types specified in chapter 8.

The results of the type tests as stated in this report are exclusively applicable to the product item as identified in this report. m. dudde hochfrequenz - technik does not accept any responsibility for the results stated in this report, with respect to the properties of product items not involved in these tests.

This report consists of a main module, modules with test results and annexes listed in chapter 6. All pages have been numbered consecutively and bear the m. dudde hochfrequenz - technik logo, the report number and subnumbers.

The total number of pages in this report is 29.

Technical inspector:

Date : 2009-05-29

Name : Ralf Trepper

Signature : // / / / / / / /

Technical responsibility for area of testing:

Date : 2009-05-29

Name : Manfried Dudde

Signature : // //

10. Operational description

10.1 EUT details

RFH 620 Interrogator, (RF: 13.560 MHz)

Software / Tool	Function	Version
Interrogator RFH 620	SICK firmware	v 1.00
Device description	Device specific software module for SOPAS-ET	v 1.00
	configuration software	
SOPAS-ET	Configuration Software	v 2.20

10.2 EUT configuration

See Annex no. 5 (Functional description)

10.3 EUT measurement description

Radiated measurements

The *RFH620* was tested in a typical fashion. During preliminary emission tests the *RFH620* was operated in the continuous transmitting mode for worst case emission mode investigation. Therefore, the final qualification testing was completed with *RFH620* operated in continuous modes.

All tests were performed with the applicant's declared maximal voltage: 24 V DC

In order to establish the maximum radiation, firstly, there have been viewed all orthogonal adjustments of the test samples, secondly the test ample have been rotated at all adjustments around the own axis between 0° and 360°, and thirdly, the antenna polarization between horizontal and vertical had been varied.

Conducted measurements

- 1.) The device was connected to the artificial mains network via an serial-RS-232 connector to the RS-232 port of a HP Notebook and this to the artificial mains network. It has been tested in three runs: first, with inactive *RFH620*, second with activated *RFH620* in read write mode to read user data and write user data into different tags and third in stand by mode. L1 and N have been viewed too.
- 2.) The device was connected to the artificial mains network via the external power supply **24 V DC** and this to the artificial mains network. It has been tested only in charging mode, because after connecting the power supply none operating mode can be activated. L1 and N have been viewed.

11.1 Antenna requirement

11.1.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

11.1.2 Result

The equipment meets the requirements			Ne	N.t.
Further test results are attached	Yes	No	Page no.	

Integrated antenna

n.a x see page no. 28

11.2 Restricted bands of operation

11.2.1 Regulation

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{2}$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

- (d) The following devices are exempt from the requirements of this Section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to Section 15.213.
 - (4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of Subpart D or F of this part.
 - (7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
 - (8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).
 - (9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).
- (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements
- (c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator. (d) The following devices are exempt from the requirements of this Section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

- (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
- (3) Cable locating equipment operated pursuant to Section 15.213.
- (4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.
- (5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
- (6) Transmitters operating under the provisions of Subpart D or F of this part.
- (7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
- (8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).
- (9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from 83 complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

11.2.2 Result

The equipment meets the requirements			Ne	N.t.
Further test results are attached	Yes	No	Page no.	

11.3 Radiated emission limits, general requirements

11.3.1 Regulation

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	
30-88	100	3	
88-216	150	3	
216-960	200	3	
Above 960	500	3	

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- (e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.
- (f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

11.3.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration
Receiver	Rohde & Schwarz Spectrum Analyzer	100.117	2008/10	2010/10
(9 kHz –18.0 GHz) Pre-amplifier (100kHz - 1.3GHz)	FSL 18 (171a) Hewlett Packard 8447 E (166a)	1726A00705	2008/02	2010/02
Pre-amplifier (1GHz - 18GHz)	Narda (345)		2008/02	2010/02
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)		2008/09	2010/09
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)		2007/02	2013/02
Horn antenna (0.86-8.5 GHz)	Schwarzbeck BBHA 9120 A (284)	236	2008/01	2013/01
Horn antenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	2008/01	2013/01
RF- cable	Kabelmetal 18m [N]	K1	2009/01	2010/01
RF- cable	Aircell 0.5m [BNC]	K40	2009/01	2010/01
RF- cable	Aircell 1m [BNC/N]	K56	2009/01	2010/01
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	2009/01	2010/01
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	2009/01	2010/01

11.3.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization; the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2003 Section 8 "Radiated Emissions Testing"

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2003. The C63.4-2003 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2003 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beam width of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in C63.4-2003, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beam width of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2003 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Radiated emissions test characteristics	
Frequency range	30 MHz - 4,000 MHz
Test distance	3 m*
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz)
	1 MHz (1000 MHz - 4,000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/horizontal

^{*} According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

11.3.4 Calculation of the field strength

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dB μ V/m.

The 35.91dBμV/m value can be mathematically converted to its corresponding level in μV/m.

Level in $\mu V/m = Common Antilogarithm (35.91/20) = 39.8$

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

11.3.5 Test result

For all emission other than harmonic spurious emissions

	TRANSMI	TTER SP	URIOUS	RADIATIO	N BELOV	V 30 MHz	(Section 15.20	5, 15.209)	
f (MHz)	Bandwidth (kHz)	Noted receiver	Test distance	Correction factor	Distance extrapol.	Level corrected	Limit	Margin	Polarisation EUT
	Type of detector	level dBμV	m	dB	factor dB	dBμV/m	dBμV/m	dBμV/m	antenna orientation
0.1200	QPK/0.2kHz	< 4.0	10	20.2	-59.1	-34.90	Pk46.0- @ 300	80.90	V, H/0-360°
	QPK/0.2kHz	< 4.0	10	20.2	-59.1	-34.90	AV26.0 @ 300	80.90	V, H/0-360°
0.5000	QPK/0.2kHz	< 4.0	10	20.2	-19.1	5.10	AV33.6 @ 30	28.5	V, H/0-360°
1.5000	QPK/0.2kHz	< 4.0	10	20.2	-19.1	5.10	AV24.1 @ 30	19.00	V, H/0-360°
3.0000	QPK/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
5.0000	QPK/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
8.0000	QPK/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
10.0000	QPK/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
20.0000	QPK/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
30.0000	QPK/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
	No emissions detected								
Measu	Measurement uncertainty 4 dB								

Remark: *1 Noise level of the measuring instrument $\leq 4.0 dB \mu V$ @ 10m distance (0.009 MHz -30 MHz) Remark: *Peak Limit according to Section 15.35 (b).

The equipment meets the requirements		Yes	Ne	N.t.
Further test results are attached	Yes	No	Page no.	

For all emission other than harmonic spurious emissions

	TRAN	SMITTE				ABOVE 30			205, 15.20	9)	
f (MHz)	Bandwidth (kHz) Type	Noted receiver level	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT / antenna	Antenna height
	of detector	dΒμV	m	dB	dB	dB	dBμV/m	dBμV/m	dBμV/m	ancina	cm
30.0000	100, QPK	≤ 3.5	3	-2.60	0	0	0.90	40.00	39.10	H,V/H,V	100-400
88.0000	100, QPK	≤ 3.5	3	-10.80	0	0	-7.30	40.00	47.30	H,V/H,V	100-400
216.0000	100, QPK	≤ 3.5	3	-10.30	0	0	-6.80	43.50	50.30	H,V/H,V	100-400
960.0000	100, QPK	≤ 3.5	3	8.50	0	0	12.00	43.50	31.50	H,V/H,V	100-400
1700.0000	1000, AV	≤ 4.5	3	3.80	0	0	8.30	54.00	45.70	H,V/H,V	100-400
2250.0000	1000, AV	≤ 10	3	8.00	0	0	18.00	54.00	36.00	H,V/H,V	100-400
4000.0000	1000, AV	≤ 10	3	8.40* ⁶	0	0	18.40	54.00	35.60	H,V/H,V	100-400
5000.0000	1000, AV	≤ 10	3	9.10*6	0	0	19.40	54.00	34.60	H,V/H,V	100-400
7500.0000	1000, AV	≤ 14	3	12.9*60	0	0	26.90	54.00	27.10	H,V/H,V	100-400
8300.0000	1000, AV	≤ 14	3	14.80*6	0	0	28.80	54.00	25.20	H,V/H,V	100-400
9400.0000	1000, AV	≤ 14	3	16.00*6	0	0	30.00	54.00	24.00	H,V/H,V	100-400
11000.0000	1000, AV	≤ 14	3	18.25* ⁶	0	0	32.25	54.00	21.75	H,V/H,V	100-400
	No emissions detected										
Measure	Measurement uncertainty 4 dB										

Bandwidth = the measuring receiver bandwidth

Remark: *\(^1\) noise floor noise level of the measuring instrument $\leq 3.5 dB \mu V @ 3m distance (30 - 1,000 MHz)$

Remark: *2 noise floor noise level of the measuring instrument $\leq 4.5 \text{dB}\mu\text{V}$ @ 3m distance (1,000 – 2,000 MHz)

Remark: *3 noise floor noise level of the measuring instrument $\leq 10 \text{dB}\mu\text{V}$ @ 3m distance (2,000 – 5,500 MHz)

Remark: *4 noise floor noise level of the measuring instrument $\leq 14 dB \mu V$ @ 3m distance (5,500 – 14,500 MHz)

Remark: *5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

Remark: *6 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements		Yes	Ne	N.t.
Further test results are attached	Yes	No	Page no.	

EUT: RFH620 FCC ID: WRMRFH620 Date of issue: 2009-05-29

f (MHz)	Bandwidth (kHz),	Noted receiver level	Test distance	Correction factor	Distance extrapol.	Level corrected	Limit	Margin	Pola EU /	T
	Type of detector	dBμV	m	dB	factor dB	dBμV/m	dBμV/m @ meter	dBμV/ m	anter orient heigh	ation
13.560	QPK/9kHz	40.5	10	20.2	-19.1	41.6	84.0 @ 30	42.4	V 0°/	100
27.120	QPK/9kHz	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°-36	0°/ 100
40.680	QPK/120kHz	42.0	3	-4.2	0	37.8	40.0 @ 3	2.2	V	10
54.240	QPK/120kHz	44.5	3	-4.9	0	39.6	40.0 @ 3	0.4	V	10
67.830	QPK/120kHz	37.5	3	-6.7	0	30.8	40.0 @ 3	9.2	V	12
81.260	QPK/120kHz	20.5	3	-8.9	0	11.6	40.0 @ 3	28.4	V	12
94.920	QPK/120kHz	< 6.5	3	-9.5	0	-3.0	43.5 @ 3	46.5	V/H 0-360°	100-
108.480	QPK/120kHz	< 6.5	3	-8.0	0	-1.5	43.5 @ 3	45.0	V/H 0-360°	100-
122.060	QPK/120kHz	34.0	3	-5.7	0	28.3	43.5 @ 3	15.2	V	10
135.630	QPK/120kHz	34.5	3	-5.3	0	29.2	43.5 @ 3	14.3	Н	12
149.160	QPK/120kHz	< 6.5	3	-7.6	0	-1.1	43.5 @ 3	44.6	V/H 0-360°	100-
162.730	QPK/120kHz	36.5	3	-4.1	0	32.4	43.5 @ 3	11.1	Н	12
176.30	QPK/120kHz	33.0	3	-5.7	0	27.3	43.5 @ 3	16.2	V	12
189.860	QPK/120kHz	33.5	3	-7.7	0	25.8	43.5 @ 3	17.8	V	12
244.090	QPK/120kHz	29.0	3	-6.5	0	22.5	43.5 @ 3	21.0	Н	12
257.650	QPK/120kHz	31.5	3	-6.2	0	25.3	43.5 @ 3	18.2	Н	12
284.760	QPK/120kHz	< 6.5	3	-5.5	0	-1.0	46.0 @ 3	47.0	V/H 0-360°	100-
366.120	QPK/120kHz	21.5	3	-3.4	0	18.1	46.0 @ 3	27.9	V	12

Blue marked: restricted bands

Remark: *1 noise floor noise level of the measuring instrument $\leq 4.0 \text{dB}\mu\text{V}$ @ 10m distance (0.009 – 30 MHz)

Remark: *2 noise floor noise level of the measuring instrument $\leq 6.5 dB\mu V$ @ 3m distance (30 – 1,000 MHz) Remark: *3 noise floor noise level of the measuring instrument $\leq 10 dB\mu V$ @ 3m distance (1,000 – 2,000 MHz)

Remark: *4 noise floor noise level of the measuring instrument \leq 17 dBµV @ 3m distance (2,000 – 5,500 MHz)

Remark: *5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

The equipment meets the requirements	yes	no	n.a.

Further test results are attached page no: no

n.a x see page no. 28

EUT: RFH620 FCC ID: WRMRFH620 Date of issue: 2009-05-29

f (MHz)	Bandwidth (kHz),	Noted receiver level	Test distance	Correction factor	Distance extrapol.	Level corrected	Limit	Margin	Polaris. EUT
	of detector	dΒμV	m	dB	dB	dBμV/m	dBμV/m @ meter	dB	antenna orientation height/cm
14.5638	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
14.4588	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
14.3517	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
14.2467	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
14.1417	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
14.0325	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
13.9275	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	40.5 @ 30	35.4	V 0°/ 100
13.8225	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	40.5 @ 30	35.4	V 0°/ 100
13.7154	QPK/9kHz	8.2	10	20.2	-19.1	9.3	40.5 @ 30	31.2	V 0°/ 100
13.5663	QPK/9kHz	20.5	10	20.2	-19.1	21.6	50.5 @ 30	28.9	V 0°/ 100
13.5537	QPK/9kHz	25.5	10	20.2	-19.1	26.6	50.5 @ 30	23.9	V 0°/ 100
13.4025	QPK/9kHz	7.7	10	20.2	-19.1	8.8	40.5 @ 30	31.7	V 0°/ 100
13.2954	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	40.5 @ 30	35.4	V 0°/ 100
13.1904	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	40.5 @ 30	35.4	V 0°/ 100
13.0854	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
12.9720	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
12.8712	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
12.7704	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
12.6612	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
12.5520	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V 0°/ 100
	All emissio	ns are mor	e than 20	dB below th	e appropri	ate spuriou	s limit (see plot	t below)	

Remark: *\(^1\) noise floor noise level of the measuring instrument $\leq 4.0 dB \mu V$ @ 10m distance (0.009 – 30 MHz)

The equipment meets the requirements	yes	no	n.a.

	Further test results are attached	yes	no	page no:
--	-----------------------------------	----------------	----	----------

n.a x see page no. 28

FCC ID: WRMRFH620

11.4 Frequency tolerance

11.4.1 Regulation

Test Requirement: FCC CFR47, Part 15C Test Procedure: ANSI C63.4:2003

15.225 (e) Operation within the band 13.553-13.567 MHz

11.4.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	2008/10	2010/10
Low noise signal generator (10kHz – 5.4GHz)	Marconi Instruments 2042 (6)	119347/003	2008/06	2010/06
Test probe	EMCO 7405-901 (41)	1408	2008/01	2010/01

11.4.3 Test procedures

The frequency tolerance of the carrier signal shall be maintained within \pm 0.01 % of the operating frequency over a temperature variation of -20 °C to +55 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 °C.

11.4.4 Result

Test con	nditions	Carrier Frequency 13.560 MHz			
		Frequency error / kHz	Limit / kHz		
T_{min} +20 °C	V _{min} 207 V AC	+0.01	1.3		
	V _{max} 253 V AC	+0.01	1.3		
T _{max} +30 °C	V _{min} 207 V AC	+0.01	1.3		
	V _{max} 253 V AC	+0.01	1.3		
T_{max} +40 °C	V _{min} 207 V AC	+0.01	1.3		
	V _{max} 253 V AC	+0.01	1.3		
T _{max} +50 °C	V _{min} 207 V AC	+0.01	1.3		
	V _{max} 253 V AC	+0.01	1.3		
T _{max} +60 °C	V _{min} 207 V AC	+0.01	1.3		
	V _{max} 253 V AC	+0.01	1.3		
T _{min} +10 °C	V _{min} 207 V AC	+0.01	1.3		
	V _{max} 253 V AC	+0.01	1.3		
T _{max} 0 °C	V _{min} 207 V AC	+0.00	1.3		
	V _{max} 253 V AC	+0.00	1.3		
T _{max} -10 °C	V _{min} 207 V AC	-0.03	1.3		
	V _{max} 253 V AC	-0.03	1.3		
T _{max} -20 °C	V _{min} 207 V AC	-0.05	1.3		
	V _{max} 253 V AC	-0.05	1.3		
Maximum frequency error (kH	z)	0.05	1.3		
Measurement uncertainty		±5 * 10 ⁻⁸			

The equipment meets the requirements			no	n.a.
Further test results are attached	yes	no	page no:	,

n.a x see page no. 28

11.5 Conducted limits

11.5.1 Regulation

Section 15.207 (a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\text{ohms}$ line impedance stabilization network (LISN). Compliance with this provision of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission(MHz)	Conducted limit (dBµV)			
	Quasi-peak	Average		
0.15-0.50	66 to 56*	56 to 46*		
0.50-5.0	56	46		
5.0-30.0	60	50		

^{*} Decreases with the logarithm of the frequency

Section 15.207 (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or connected to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

10.5.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Remarks
Receiver	Schwarzbeck FMLK 1518 / PAZ1550	1518294 9360	06 / 07	06 / 09	
Protector limiter 9 kHz - 30MHz, 10 dB	(428) (429) Rhode & Schwarz ESH 3Z2 (272)	357,881052	03 / 08	03 / 10	
V-LISN 50 ohms//(50 uH+5 ohms)	RFT NNB 11 (72)	13835240	06 / 08	06 / 11	
V-LISN 50 ohms//(50 uH+5 ohms)	EMCO (49b)	9512-1227	08 / 06	08 / 09	

10.5.3 Test procedures

The EUT and the additional equipment (if required) are connected to the main power through a line impedance stabilization network (LISN). The LISN must be appropriate to ANSI C63.4: 2003 Section 7.

Additional equipment must also be connected to a second LISN with the same specifications described in the above sentence (if required).

11.5.4 Test results

1.) Tested with external AC power supply

TRANSMITTER CONDUCTED EMISSIONS (Section 15.207)							
Tested	Emission	Receiver	Result	Spec. limit	Margin	Remarks	
line	frequency	bandwidth	quasi-peak	(average)			
	[MHz]	[kHz]	[dBµV]	[dBµV]	[dB]		
L1	0.181	9	-2	55.8	57.8	*2	
N	0.181	9	-2	55.8	57.8	*2	
L1	0.301	9	-2	51.7	53.7	*2	
N	0.301	9	-2	51.7	53.2	*2	
L1	0.475	9	-2	47	49.0	*1	
N	0.475	9	-2	47	49.0	*1	
L1	0.600	9	-2	46	48.0	*1	
N	0.600	9	-2	46	48.0	*1	
L1	0.775	9	-2	46	48.0	*2	
N	0.775	9	-2	46	48.0	*2	
L1	0.850	9	-2	46	48.0	*1	
N	0.850	9	-2	46	48.0	*1	
L1	1.000	9	-2	46	48.0	*1	
N	1.000	9	-2	46	48.0	*1	
L1	1.254	9	-2	46	48.0	*2	
N	1.254	9	-2	46	48.0	*2	
L1	2.000	9	-2	46	48.0	*1	
N	2.000	9	-2	46	48.0	*1	
L1	4.356	9	28.0	46	18	*2	
N	4.356	9	25.0	46	21	*2	
L1	6.7644	9	-2	50	52.0	*1	
N	6.7644	9	-2	50	52.0	*1	
L1	13.560	9	46.5	50	3.5	*2	
N	13.560	9	48.0	50	2.0	*2	
L1	20.2931	9	-2	50	52.0	*1	
N	20.2931	9	-2	50	52.0	*1	
L1	27.119	9	26.0	50	24.0	*2	
N	27.119	9	29.0	50	21.0	*2	

All emissions lower than the noise level of the measuring instrument!

Remark: *\begin{align*} Noise level of the measuring instrument \$\leq -2dB\$\$\$\$\mu\$V (0.009 - 30MHz) Remark: *\begin{align*} Quasi peak measurements lower than "Specified Average Limit"

The equipment meets the requirements			no	n.a.
Further test results are attached	yes	no	page no:	

2.) Tested with Laptop over RS-232- port

	TRANSMITTER CONDUCTED EMISSIONS (Section 15.207)							
Tested	Emission	Receiver	Result	Spec. limit	Margin	Remarks		
line	frequency	bandwidth	quasi-peak	(average)				
	[MHz]	[kHz]	[dBµV]	[dBµV]	[dB]			
L1	0.181	9	-2	55.8	57.8	*2		
N	0.181	9	-2	55.8	57.8	*2		
L1	0.301	9	-2	51.7	53.7	*2		
N	0.301	9	-2	51.7	53.2	*2		
L1	0.475	9	-2	47	49.0	*1		
N	0.475	9	-2	47	49.0	*1		
L1	0.600	9	-2	46	48.0	*1		
N	0.600	9	-2	46	48.0	*1		
L1	0.775	9	-2	46	48.0	*2		
N	0.775	9	-2	46	48.0	*2		
L1	0.850	9	-2	46	48.0	*1		
N	0.850	9	-2	46	48.0	*1		
L1	1.000	9	-2	46	48.0	*1		
N	1.000	9	-2	46	48.0	*1		
L1	1.254	9	-2	46	48.0	*2		
N	1.254	9	-2	46	48.0	*2		
L1	2.000	9	-2	46	48.0	*1		
N	2.000	9	-2	46	48.0	*1		
L1	4.000	9	-2	46	48.0	*1		
N	4.000	9	-2	46	48.0	*1		
L1	6.7644	9	-2	50	52.0	*1		
N	6.7644	9	-2	50	52.0	*1		
L1	13.5288	9	-2	50	52.0	*1		
N	13.5288	9	-2	50	52.0	*1		
L1	20.2931	9	-2	50	52.0	*1		
N	20.2931	9	-2	50	52.0	*1		
L1	27.0575	9	-2	50	52.0	*1		
N	27.0575	9	-2	50	52.0	*1		

All emissions lower than the noise level of the measuring instrument!

Remark: *1 Noise level of the measuring instrument \leq -2dB μ V (0.009 – 30MHz) Remark: *2 Quasi peak measurements lower than "Specified Average Limit"

The equipment meets the requirements				no	n.a.
Further test results are attached	yes	no	ŗ	oage no:	

FCC ID: WRMRFH620

12 Additional information to this test report

Remarks

n.a.¹ not applicable, because antenna is part of the PCB
 n.a.² not applicable, because EUT is directly battery powered

FCC ID: WRMRFH620

End of test report