

|                            |                                                           |
|----------------------------|-----------------------------------------------------------|
| <b>Client:</b>             | Ecobee Inc.                                               |
| <b>Product Name/Model:</b> | Smart Thermostat Lite & Smart Thermostat Essential/ECB701 |
| <b>FCC ID:</b>             | WR9202428847PR                                            |
| <b>Reference</b>           | FCC KDB 447498 D04 v01                                    |

# FCC RF Exposure

Where the Device Under Test (DUT) can be shown to meet the requirements for an exemption pursuant to FCC 47 CFR §1.1307(b)(3), an evaluation is not required with respect to the limits on human exposure to RF emissions provided in FCC 47 CFR §1.1310.

## 1. Determination of Exemption

As per 47 CFR §1.1307(b)(3), for single RF sources (i.e., any single fixed RF source, mobile device, or portable device), a single RF source is exempt if:

- A. **1-mW Test Exemption:** The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
- B. **SAR-Based Exemption:** The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold  $P_{th}$  (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive).  $P_{th}$  is given by:

$$P_{th} \text{ (mW)} = \begin{cases} ERP(d/20 \text{ cm})^x & d \leq 20 \text{ cm} \\ ERP_{20cm} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$$

Where

$$x = -\log_{10} \left( \frac{60}{ERP_{20cm} \sqrt{f}} \right) \text{ and } f \text{ is in GHz}$$

And

$$ERP_{20cm} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases}$$

d = the minimum separation distance (cm) in any direction from any part of the device antenna(s) or radiating structure(s) to the body of the device user.

C. **MPE-Based Exemption:** Using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least  $\lambda/2\pi$ , where  $\lambda$  is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of  $\lambda/4$  or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 of § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

| RF Source Frequency (MHz) | Threshold ERP (Watts)                |
|---------------------------|--------------------------------------|
| 0.3-1.34                  | 1,920 R <sup>2</sup>                 |
| 1.34-30                   | 3,450 R <sup>2</sup> /f <sup>2</sup> |
| 30-300                    | 3.83 R <sup>2</sup>                  |
| 300-1,500                 | 0.0128 R <sup>2</sup> f              |
| 1,500-100,000             | 19.2 R <sup>2</sup>                  |

## 2. RF Exposure Evaluation

The DUT is a mobile device designed to be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the RF source's radiating structure and the body of the user or nearby persons.

The EUT contains 902 – 928 MHz FHSS/Hybrid transmitters and 2400 – 2483.5 MHz DTS transmitters. EIRP exemption threshold was calculated using the lowest operating frequency for each transmitter; the lower frequency resulted in a lower exemption limit.

### 2.1 DUT RF Output Power

Highest power (peak or average) for each operation band was used in the RF exposure evaluation.

| Transmitter | Operation Band (MHz) | Conducted Power (dBm) | Antenna Gain (dBi) | Max ERP (dBm) | Max ERP (W) | Minimum Separation Distance (cm) |
|-------------|----------------------|-----------------------|--------------------|---------------|-------------|----------------------------------|
| FHSS/Hybrid | 920 – 927            | 12.03                 | 2.6                | 12.48         | 0.02        | 20                               |
| BLE         | 2400 - 2480          | 20.11                 | 2.5                | 20.46         | 0.11        | 20                               |
| WLAN        | 2412 - 2462          | 18.19                 | 2.5                | 18.54         | 0.07        | 20                               |

Note:

1. ERP (dBm) = conducted power (dBm) + Antenna Gain (dBi) – 2.15
2. ERP (W) =  $10^{((ERP(dBm) – 30)/10)}$

## 2.2 MPE-Based Exemption

The EUT contains 902 – 928 MHz FHSS/Hybrid transmitters and 2400 – 2483.5 MHz DTS transmitters. EIRP exemption threshold was calculated using the lowest operating frequency for each transmitter; the lower frequency resulted in a lower exemption limit

| Evaluation Frequency (MHz) | Minimum Required Separation Distance ( $\lambda/2\pi$ ) (mm) | Threshold ERP (W) | DUT Maximum ERP (W) |
|----------------------------|--------------------------------------------------------------|-------------------|---------------------|
| 920.00                     | 51.9                                                         | 0.47              | 0.02                |
| 2402.00                    | 19.9                                                         | 0.77              | 0.11                |
| 2412.00                    | 19.8                                                         | 0.77              | 0.07                |

Note:

$\lambda/2\pi = (3 \times 10^8 \text{m/s}) / (2 * 3.14 * f(\text{Hz}))$  in meters

Threshold ERP =  $19.2 * 0.2^2 = 0.768$

Each transmitter operates below its applicable Threshold ERP Limit; thus, the RF Exposure Exemption requirement is met.

According to 47 CFR §1.1307(b)(3)(i)(B), this device complies with the RF exposure test exemption.

## 2.3 Simultaneous Transmission Evaluation

The transmitters on the EUT are located on different SoCs. BLE and WLAN are on SoC1. 900 MHz transmitter is on SoC2. The 2.4 GHz BLE share the same antenna as the 2.4 GHz WLAN.

Each SoC could only transmit one mode at a time; i.e. SoC1 could only either transmit BLE or WLAN, and SoC2 could only either transmit FHSS or Hybrid. Thus, the worst-case RF exposure is a combination of the highest ERP from each SoC. The highest ERP from SoC1 is 0.11 W and from SoC2 is 0.02 W.

Per 47 CFR Section 1307(b)(3)(ii)(B), the DUT qualify for simultaneous exemption if the transmitters meet the following requirement:

$$\sum_{i=1}^a \frac{P_i}{P_{th,i}} + \sum_{j=1}^b \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^c \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

$$\frac{0.11\ W}{0.77\ W} + \frac{0.02\ W}{0.47\ W} = 0.18 < 1$$

The DUT qualifies for simultaneous transmission exemption.