

FCC Test Report Report No.: RF191014C06B FCC ID: WR3SS001XNA Test Model: SS-001-RUG-NA Series Model: SS-001-0-NA, SS-001-1-NA, SS-001-2-NA, SS-001-3-NA, SS-002-0-NA, SS-002-1-NA, SS-002-2-NA, SS-003-0-NA, SS-003-1-NA, SS-003-2-NA (refer to item 3.1 for more details) Received Date: Oct. 08, 2020 Test Date: Nov. 18 ~ Dec. 22, 2020 Issued Date: Dec. 23, 2020 Applicant: OMEGA Engineering, Inc. Address: 800 Connecticut Ave., Suite 5N01, Norwalk, CT 06854, USA. Manufacturer: Fitivision Technology Inc. Address: 11494 No. 13-22,2F,Section 6,Minguan East Rd., Neihu District, Taipei City, Taiwan (R.O.C) Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383. TAIWAN FCC Registration / 788550 / TW0003 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	elease	e Control Record	4
1	C	Certificate of Conformity	5
2	S	Summary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	Ģ	General Information	7
	3.1	General Description of EUT	7
	3.2	Description of Test Modes	8
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4 3.4.1	Description of Support Units	
	3.5	Configuration of System under Test General Description of Applied Standards and References	
4	Т	est Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	12
		Limits of Radiated Emission and Bandedge Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions Test Results	
	4.1.7	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
	4.2.6	EUT Operating Conditions	26
		Test Results	
	4.3	Number of Hopping Frequency Used	
	4.3.1		
		Test Setup	
		Test Instruments Test Procedure	
		Deviation from Test Standard	
		Test Results	
	4.4	Dwell Time on Each Channel	
	4.4.1	Limits of Dwell Time on Each Channel Measurement	
	4.4.2	Test Setup	30
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Results	
	4.5	Channel Bandwidth	
		Limits of Channel Bandwidth Measurement	
		Test Setup Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.6	Hopping Channel Separation	

46	1 Limits of Hopping Channel Separation Measurement	34
	2 Test Setup.	
	.3 Test Instruments	
	4 Test Procedure	
	5 Deviation from Test Standard	
4.6	6 Test Results	. 35
4.7		
4.7	1 Limits of Maximum Output Power Measurement	. 36
	2 Test Setup	
	3 Test Instruments	
	4 Test Procedure	
	5 Deviation from Test Standard	
	6 EUT Operating Condition	
4.7	7 Test Results	
4.8		
	1 Limits Of Conducted Out Of Band Emission Measurement	
	2 Test Instruments	
	3 Test Procedure	
	4 Deviation from Test Standard	
	5 EUT Operating Condition	
4.8	.6 Test Results	. 38
5	Pictures of Test Arrangements	. 40
•		
Арре	ndix – Information of the Testing Laboratories	41

Release Control Record

Issue No.	Description	Date Issued
RF191014C06B	Original release	Dec. 23, 2020

1 **Certificate of Conformity** Product: Smart Sensor Brand: OMEGA Test Model: SS-001-RUG-NA Series Model: SS-001-0-NA, SS-001-1-NA, SS-001-2-NA, SS-001-3-NA, SS-002-0-NA, SS-002-1-NA, SS-002-2-NA, SS-003-0-NA, SS-003-1-NA, SS-003-2-NA (refer to item 3.1 for more details) Sample Status: Engineering sample Applicant: OMEGA Engineering, Inc. Test Date: Nov. 18 ~ Dec. 22, 2020 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

, Date: Dec. 23, 2020 Polly Chien / Specialist

Approved by :

nce l hen

Date: Dec. 23, 2020

Bruce Chen / Senior Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -16.55dB at 0.47400MHz.					
15.247(a)(1) (i)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.					
15.247(a)(1) (i)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.					
15.247(a)(1) (i)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.					
15.247(b)(2)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -0.1dB at 2745.00MHz.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	Antenna 1 & 2: connector is RP-SMA Male (female receptacle, Male Outer shell) not a standard connector. Antenna 3: connector is U.FL (UMCC) \ IPEX MHF1 not a standard connector.					

Note:

1. 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 127 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.59 dB
	200MHz ~1000MHz	3.60 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Sensor
Brand	OMEGA
Test Model	SS-001-RUG-NA
Series Model	SS-001-0-NA, SS-001-1-NA, SS-001-2-NA, SS-001-3-NA, SS-002-0-NA,
Series Model	SS-002-1-NA, SS-002-2-NA, SS-003-0-NA, SS-003-1-NA, SS-003-2-NA
Model Difference	Refer to note
Sample Status	Engineering sample
Power Supply Rating	5Vdc from adapter
Modulation Type	2-GFSK
Operating Frequency	902.4 ~ 927.6MHz
Number of Channel	127
Output Power	171.002mW
Antenna Type	Refer to note
Antenna Connector	Refer to note
Accessory Device	N/A
Cable Supplied	N/A

Note:

1. This report is issued as a supplementary report to the original report no.: RF191014C06. The differences compared with original report is adding internal antenna, sensor board and test model. Therefore, the EUT is re-tested and recorded in this report.

2. The following models are provided to this EUT. The model SS-001-RUG-NA was chosen for final test. (New test model is marked on boldface)

Model (P/N)	Temperature	Humidity	Barometric	Light	TC	RTD	DIN
SS-001-	0-NA	Yes						
SS-001-	1-NA	Yes	Yes					
SS-001-	2-NA	Yes	Yes	Yes				
SS-001-	3-NA	Yes	Yes	Yes	Yes			
SS-001-R	UG-NA	Yes	Yes	Yes	Yes			
			-					
SS-002-	0-NA					Yes	Yes	Yes
SS-002-	1-NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SS-002-	2-NA	Yes	Yes	Yes		Yes	Yes	Yes
SS-003-	0-NA						Yes	Yes
SS-003-	1-NA			Yes			Yes	Yes
SS-003-	2-NA			Yes	Yes		Yes	Yes
3. The follo	owing an	tenna was provi	ided to the E	EUT. (New inte	ernal antenna	a is marked	on boldface)	
No.		Antenna Ty	ре		Connector		Gain(dł	Bi)
1		Dipole		F	RP-SMA Mal	е	2.30	

*The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

RP-SMA Male

U.FL (UMCC) · IPEX MHF1

Dipole

PIFA

2

3

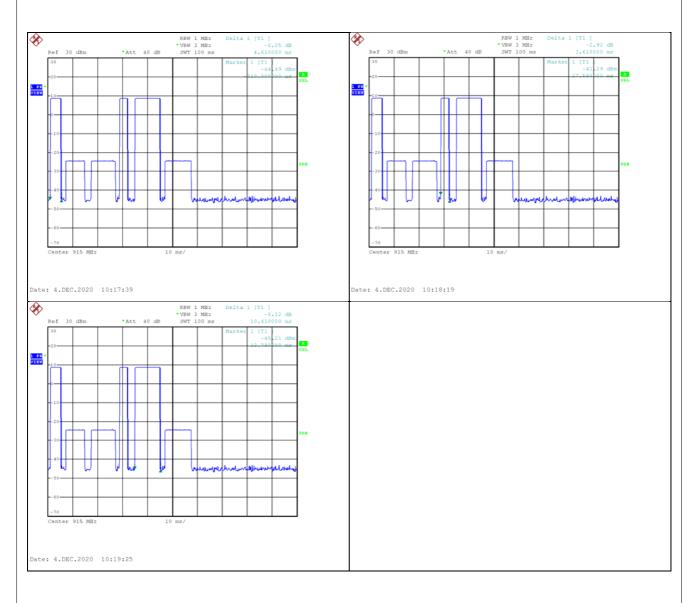
2.39

2

3.2 Description of Test Modes

127 channels are provided to this EUT:

Channel	Freq. (MHz)						
1	902.4	33	908.8	65	915.2	97	921.6
2	902.6	34	909.0	66	915.4	98	921.8
3	902.8	35	909.2	67	915.6	99	922.0
4	903.0	36	909.4	68	915.8	100	922.2
5	903.2	37	909.6	69	916.0	101	922.4
6	903.4	38	909.8	70	916.2	102	922.6
7	903.6	39	910.0	71	916.4	103	922.8
8	903.8	40	910.2	72	916.6	104	923.0
9	904.0	41	910.4	73	916.8	105	923.2
10	904.2	42	910.6	74	917.0	106	923.4
11	904.4	43	910.8	75	917.2	107	923.6
12	904.6	44	911.0	66	917.4	108	923.8
13	904.8	45	911.2	77	917.6	109	924.0
14	905.0	46	911.4	78	917.8	110	924.2
15	905.2	47	911.6	79	918.0	111	924.4
16	905.4	48	911.8	80	918.2	112	924.6
17	905.6	49	912.0	81	918.4	113	924.8
18	905.8	50	912.2	82	918.6	114	925.0
19	906.0	51	912.4	83	918.8	115	925.2
20	906.2	52	912.6	84	919.0	116	925.4
21	906.4	53	912.8	85	919.2	117	925.6
22	906.6	54	913.0	86	919.4	118	925.8
23	906.8	55	913.2	87	919.6	119	926.0
24	907.0	56	913.4	88	919.8	120	926.2
25	907.2	57	913.6	89	920.0	121	926.4
26	907.4	58	913.8	90	920.2	122	926.6
27	907.6	59	914.0	91	920.4	123	926.8
28	907.8	60	914.2	92	920.6	124	927.0
29	908.0	61	914.4	93	920.8	125	927.2
30	908.2	62	914.6	94	921.0	126	927.4
31	908.4	63	914.8	95	921.2	127	927.6
32	908.6	64	915.0	96	921.4		



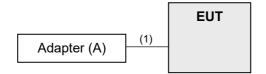
3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able to			scription	
Mode RE≥1G		RE<1G	PLC	APCM	Description		
-	\checkmark	\checkmark	\checkmark	\checkmark	-		
Measu	urement	Emission abov	/e 1GHz & Ba	andedge	RE<1G: Radiated Emission		
ote: The EUT ha	d been pre-te	ested on the p	ositioned of e	ach 3 axis. T	The worst case was found whe		
between a	has been o vailable m	conducted odulations	to determir , data rates	and anter		ossible combinations tenna diversity architectu	
					al test as listed below.		
EUT Configu	ure Mode	Ava	ailable Chann	el	Tested Channel	Modulation Type	
-			1 to 127		1, 64, 127	2-GFSK	
between a Following	vailable m channel(s)	odulations, was (were	, data rates	and anter	st-case mode from all po nna ports (if EUT with an al test as listed below. Tested Channel	tenna diversity architectu	
EUT Configure Mode		AV	allable Chann	ei	rested Channel	wooulation type	
_					64,	2-GFSK	
Pre-Scan between a	has been o vailable m	conducted odulations	Test: to determir , data rates	and anter	st-case mode from all po nna ports (if EUT with an	2-GFSK	
between a	has been o vailable m channel(s)	conducted odulations was (were	Test: to determir , data rates	and anter	st-case mode from all po	2-GFSK	
 Pre-Scan between a Following 	has been o vailable m channel(s)	conducted odulations was (were	Test: to determir , data rates e) selected	and anter	st-case mode from all po nna ports (if EUT with an al test as listed below.	2-GFSK	
 Pre-Scan between a Following EUT Configu - ntenna Port This item i mode. Pre-Scan between a 	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m	conducted odulations,) was (were a was d Measure I test value conducted odulations,	Test: to determir , data rates e) selected ailable Chann 1 to 127 ement: e of each m to determir , data rates	and anter for the fina el ode, but o ne the wors and anter	st-case mode from all po na ports (if EUT with an al test as listed below. Tested Channel 64 nly includes spectrum p st-case mode from all po	2-GFSK Dessible combinations tenna diversity architectur Modulation Type 2-GFSK lot of worst value of each	
 Pre-Scan between a Following EUT Configu - ntenna Port This item i mode. Pre-Scan between a 	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m <u>channel(s)</u>	conducted odulations) was (were Av d Measure I test value conducted odulations) was (were	Test: to determin , data rates a) selected ailable Chann 1 to 127 ament: e of each m to determin , data rates	and anter for the fina el ode, but o ne the wors and anter for the fina	st-case mode from all po na ports (if EUT with an <u>al test as listed below.</u> <u>Tested Channel</u> 64 nly includes spectrum po st-case mode from all po nna ports (if EUT with an	2-GFSK Dessible combinations tenna diversity architectur Modulation Type 2-GFSK lot of worst value of each possible combinations	
 Pre-Scan between a Following EUT Configu - ntenna Port This item i mode. Pre-Scan between a Following 	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m <u>channel(s)</u>	conducted odulations) was (were Av d Measure I test value conducted odulations) was (were	Test: to determir , data rates) selected ailable Chann 1 to 127 ement: e of each ment , data rates) selected	and anter for the fina el ode, but o ne the wors and anter for the fina	st-case mode from all po na ports (if EUT with an al test as listed below. Tested Channel 64 nly includes spectrum post-case mode from all po na ports (if EUT with an al test as listed below.	2-GFSK Dessible combinations tenna diversity architectur Modulation Type 2-GFSK lot of worst value of each possible combinations tenna diversity architectur	
 Pre-Scan between a Following EUT Configu - ntenna Port This item i mode. Pre-Scan between a Following 	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m <u>channel(s)</u> ure Mode	conducted odulations) was (were Av d Measure I test value conducted odulations) was (were	Test: to determin , data rates e) selected ailable Chann 1 to 127 ement: e of each m to determin , data rates e) selected ailable Chann	and anter for the fina el ode, but o ne the wors and anter for the fina	st-case mode from all ports (if EUT with an al test as listed below. Tested Channel 64 nly includes spectrum ports st-case mode from all ports (if EUT with an al test as listed below. Tested Channel	2-GFSK Dessible combinations tenna diversity architectur Modulation Type 2-GFSK lot of worst value of each possible combinations tenna diversity architectur Modulation Type	
 Pre-Scan between a Following EUT Configu - ntenna Port This item i mode. Pre-Scan between a Following EUT Configu - 	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m <u>channel(s)</u> ure Mode	conducted odulations,) was (were Av d Measure I test value conducted odulations,) was (were Av	Test: to determin , data rates e) selected ailable Chann 1 to 127 ement: e of each m to determin , data rates e) selected ailable Chann	and anter for the fina el ode, but o ne the wors and anter for the fina el	st-case mode from all ports (if EUT with an al test as listed below. Tested Channel 64 nly includes spectrum ports st-case mode from all ports (if EUT with an al test as listed below. Tested Channel	2-GFSK Dessible combinations tenna diversity architectur Modulation Type 2-GFSK lot of worst value of each possible combinations tenna diversity architectur Modulation Type	
 Pre-Scan between a Following EUT Configu - ntenna Port This item i mode. Pre-Scan between a Following EUT Configu - 	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m <u>channel(s)</u> ure Mode	conducted odulations,) was (were d Measure l test value conducted odulations,) was (were d Ava Ava conducted	Test: to determin , data rates ailable Chann 1 to 127 ament: of each m to determin , data rates a) selected ailable Chann 1 to 127	and anter for the fina el ode, but o ne the wors and anter for the fina el	st-case mode from all po na ports (if EUT with an al test as listed below. Tested Channel 64 nly includes spectrum post-case mode from all po na ports (if EUT with an al test as listed below. Tested Channel 1, 64, 127	2-GFSK Dessible combinations tenna diversity architectur Modulation Type 2-GFSK lot of worst value of each Dessible combinations tenna diversity architectur Modulation Type 2-GFSK	
 Pre-Scan between a Following EUT Configu - Intenna Port This item i mode. Pre-Scan between a Following EUT Configu - est Condition	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m <u>channel(s)</u> ure Mode	conducted odulations,) was (were d Measure d Measure l test value conducted odulations,) was (were Aw D Environm 22 de	Test: to determin , data rates e) selected ailable Chann 1 to 127 ement: e of each m to determin , data rates e) selected ailable Chann 1 to 127	and anter for the fina el ode, but o ne the wors and anter for the fina el	st-case mode from all points (if EUT with an al test as listed below. Tested Channel 64 nly includes spectrum points (if EUT with an al test as listed below. Tested Channel of the spectrum points (if EUT with an al test as listed below. Tested Channel 1, 64, 127 Input Power	2-GFSK Dessible combinations tenna diversity architecture Modulation Type 2-GFSK dot of worst value of each Dessible combinations tenna diversity architecture Modulation Type 2-GFSK Dot of worst value of each Dessible combinations tenna diversity architecture Modulation Type 2-GFSK	
 Pre-Scan between a Following EUT Configu - ntenna Port This item i mode. Pre-Scan between a Following EUT Configu - est Condition Applicable RE≥1G 	has been o vailable m <u>channel(s)</u> ure Mode Conducte includes al has been o vailable m <u>channel(s)</u> ure Mode	conducted odulations,) was (were d Measure d Measure l test value conducted odulations,) was (were d Ava conducted conducted odulations,) was (were d Ava 22 de 22 de	Test: to determin , data rates ailable Chann 1 to 127 ement: e of each m to determin , data rates e) selected ailable Chann 1 to 127 nental Condit g. C, 66% RH	and anter for the fina el ode, but o ne the wors and anter for the fina el ions	st-case mode from all po na ports (if EUT with an al test as listed below. Tested Channel 64 nly includes spectrum post-case mode from all po na ports (if EUT with an al test as listed below. Tested Channel 1, 64, 127 Input Power 120Vac, 60Hz	2-GFSK Dessible combinations tenna diversity architectur Modulation Type 2-GFSK lot of worst value of each Dessible combinations tenna diversity architectur Modulation Type 2-GFSK Tested by Greg Lin	

3.3 Duty Cycle of Test Signal

Duty cycle = 4.61+3.61+10.41=18.63/100 =0.1863, Duty factor = 20 * log(0.1863) = -14.60

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Adapter	Liteon	PA-1050-39	NA	NA	Provided by Lab Input: 100-240Vac, 50/60Hz, 0.25A Output: 5.2Vdc, 1A

Note: All power cords of the above support units are non-shielded (1.8m).

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Micro USB cable	1	1.6	Y	0	-

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver KEYSIGHT	N9038A	MY55420137	Apr. 16, 2020	Apr. 15, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100039	Jun. 12, 2020	Jun. 11, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100980	Apr. 20, 2020	Apr. 19, 2021
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	Nov. 06, 2020	Nov. 05, 2021
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-1169	Nov. 24, 2019 Nov. 22, 2020	Nov. 23, 2020 Nov. 21, 2021
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 24, 2019 Nov. 22, 2020	Nov. 23, 2020 Nov. 21, 2021
Loop Antenna TESEQ	HLA 6121	45745	Jul. 06, 2020	Jul. 05, 2021
Preamplifier Agilent (Below 1GHz)	8447D	2944A10638	Jun. 08, 2020	Jun. 07, 2021
Preamplifier Agilent (Above 1GHz)	8449B	3008A02367	Feb. 18, 2020	Feb. 17, 2021
RF signal cable HUBER+SUHNER&EMCI	SUCOFLEX 104 & EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	Jan. 18, 2020	Jan. 17, 2021
RF signal cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795 /4)	Jan. 18, 2020	Jan. 17, 2021
RF signal cable Woken	8D-FB	Cable-CH9-01	Jun. 08, 2020	Jun. 07, 2021
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn BV ADT	AT100	AT93021705	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY551 90004/MY55190007/ MY55210005	Jul. 13, 2020	Jul. 12, 2021

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 9.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

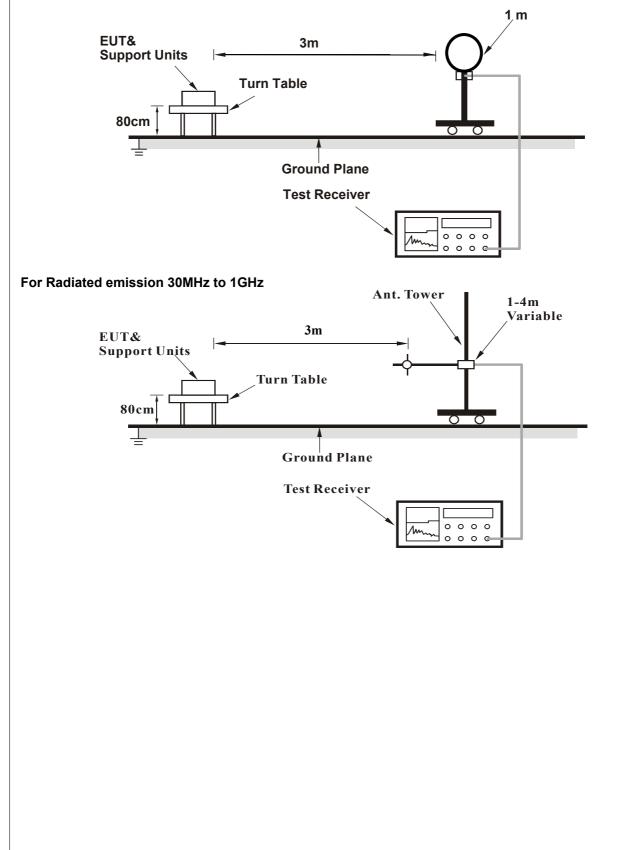
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

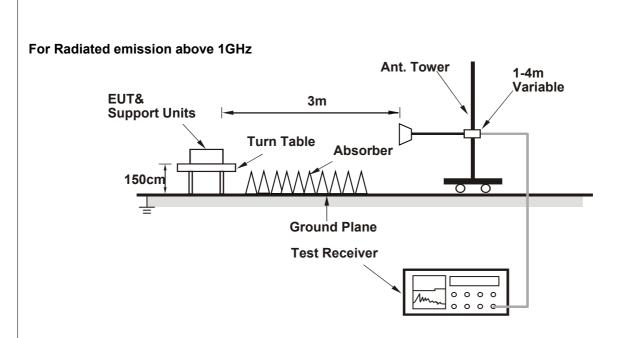
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty cycle correction factor. The duty cycle correction factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

FREQUENCY RANGE 902.4MHz ~ 927.6MHz FUNCTION Quasi-Peak (QP)	CHANNEL	TX Channel 1	DETECTOR	Quasi Bask (QD)	
	FREQUENCY RANGE	902.4MHz ~ 927.6MHz	FUNCTION	Quasi-Peak (QP)	

		ANTENNA	A POLARITY	& TEST DIS	TANCE: HOF	RIZONTAL AT	Г 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#902.00	58.6 QP	91.8	-33.2	1.49 H	263	25.7	32.9
2	*902.40	111.8 QP			1.49 H	263	78.9	32.9
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#902.00	60.1 QP	93.6	-33.5	1.15 V	303	27.2	32.9
2	*902.40	113.6 QP			1.15 V	303	80.7	32.9

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 64	DETECTOR	Quesi Bask (QD)
FREQUENCY RANGE	902.4MHz ~ 927.6MHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*915.00	114.8 QP			1.43 H	304	81.6	33.2
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*915.00	115.8 QP			1.16 V	297	82.6	33.2

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 127	DETECTOR	
FREQUENCY RANGE	902.4MHz ~ 927.6MHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*927.60	116.2 QP			1.48 H	301	82.8	33.4
2	#928.00	64.3 QP	96.2	-31.9	1.48 H	301	30.9	33.4
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*927.60	117.9 QP			1.14 V	300	84.5	33.4
2	#928.00	66.2 QP	97.9	-31.7	1.14 V	300	32.8	33.4

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

5. " * ": Fundamental frequency.

Above 1GHz Data

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 10GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#2707.20	64.1 PK	74.0	-9.9	2.66 H	17	67.0	-2.9
2	#2707.20	49.5 AV	54.0	-4.5	2.66 H	17	52.4	-2.9
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#2707.20	55.1 PK	74.0	-18.9	3.24 V	359	58.0	-2.9
2	#2707.20	40.5 AV	54.0	-13.5	3.24 V	359	43.4	-2.9

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

CHANNEL	TX Channel 64	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 10GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#2745.00	68.4 PK	74.0	-5.6	2.98 H	106	71.0	-2.6
2	#2745.00	53.8 AV	54.0	-0.2	2.98 H	106	56.4	-2.6
		ANTEN	NA POLARIT	Y & TEST DI	STANCE: VE	RTICAL AT	3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#2745.00	68.5 PK	74.0	-5.5	1.05 V	217	71.1	-2.6
2	#2745.00	53.9 AV	54.0	-0.1	1.05 V	217	56.5	-2.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

CHANNEL	TX Channel 127	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 10GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#2782.80	66.5 PK	74.0	-7.5	2.76 H	126	68.8	-2.3	
2	#2782.80	51.9 AV	54.0	-2.1	2.76 H	126	54.2	-2.3	
		ANTEN	NA POLARIT	Y & TEST DI	STANCE: VE	RTICAL AT	3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#2782.80	68.4 PK	74.0	-5.6	1.18 V	211	70.7	-2.3	
2	#2782.80	53.8 AV	54.0	-0.2	1.18 V	211	56.1	-2.3	

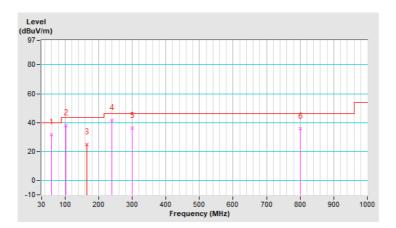
Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

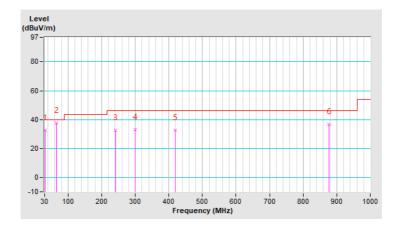

Below 1GHz worst-case data:

C	HANNEL	TX Channel 64	DETECTOR	
F	REQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	59.10	31.5 QP	40.0	-8.5	1.25 H	187	40.8	-9.3	
2	102.75	37.9 QP	43.5	-5.6	1.00 H	323	50.5	-12.6	
3	165.80	25.1 QP	43.5	-18.4	1.50 H	277	33.5	-8.4	
4	239.52	41.7 QP	46.0	-4.3	1.00 H	204	50.9	-9.2	
5	300.63	36.4 QP	46.0	-9.6	1.25 H	243	43.2	-6.8	
6	800.18	35.9 QP	46.0	-10.1	1.00 H	224	32.5	3.4	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 64	DETECTOR	Quasi Dask (QD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	32.91	32.8 QP	40.0	-7.2	1.25 V	103	43.2	-10.4	
2	64.92	37.5 QP	40.0	-2.5	1.00 V	192	47.6	-10.1	
3	240.49	32.7 QP	46.0	-13.3	1.25 V	3	41.8	-9.1	
4	299.66	32.9 QP	46.0	-13.1	1.25 V	86	39.7	-6.8	
5	419.94	32.8 QP	46.0	-13.2	1.00 V	156	37.1	-4.3	
6	875.84	36.8 QP	46.0	-9.2	1.50 V	280	32.4	4.4	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

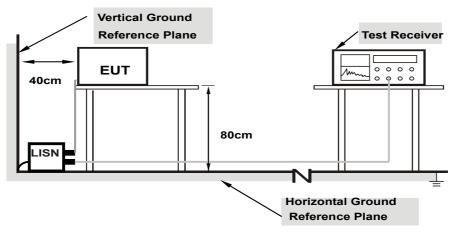
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Dec. 31, 2019	Dec. 30, 2020
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 04, 2020	Sep. 03, 2021
LISN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 20, 2020	Feb. 19, 2021
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 28, 2020	Aug. 27, 2021
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).

3. The VCCI Site Registration No. is C-12040.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

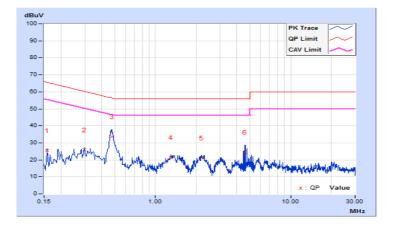
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.


4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Channel	TX Channel 64		

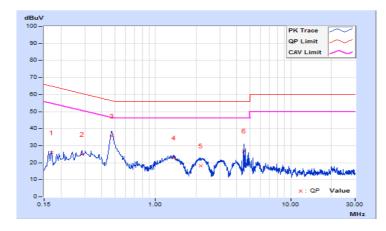
	Frog	Corr.	Reading Value		Emissic	on Level	Lir	nit	Margin	
No	Freq.	Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15800	9.65	16.07	8.09	25.72	17.74	65.57	55.57	-39.85	-37.83
2	0.29800	9.66	16.34	8.80	26.00	18.46	60.30	50.30	-34.30	-31.84
3	0.47800	9.66	24.00	16.52	33.66	26.18	56.37	46.37	-22.71	-20.19
4	1.29400	9.68	11.90	4.87	21.58	14.55	56.00	46.00	-34.42	-31.45
5	2.18600	9.70	11.44	4.15	21.14	13.85	56.00	46.00	-34.86	-32.15
6	4.55400	9.74	14.76	6.05	24.50	15.79	56.00	46.00	-31.50	-30.21

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Channel	TX Channel 64		

	Frag	Corr.	Reading Value [dB (uV)]		Emissic	on Level	Lir	nit	Margin	
No	Freq.	Factor			[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17000	9.68	16.32	8.57	26.00	18.25	64.96	54.96	-38.96	-36.71
2	0.28600	9.68	15.28	5.75	24.96	15.43	60.64	50.64	-35.68	-35.21
3	0.47400	9.68	25.98	20.21	35.66	29.89	56.44	46.44	-20.78	-16.55
4	1.36600	9.70	13.25	4.37	22.95	14.07	56.00	46.00	-33.05	-31.93
5	2.15400	9.73	8.53	3.17	18.26	12.90	56.00	46.00	-37.74	-33.10
6	4.54600	9.78	17.01	2.80	26.79	12.58	56.00	46.00	-29.21	-33.42


Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Number of Hopping Frequency Used

Limits of Hopping Frequency Used Measurement 4.3.1

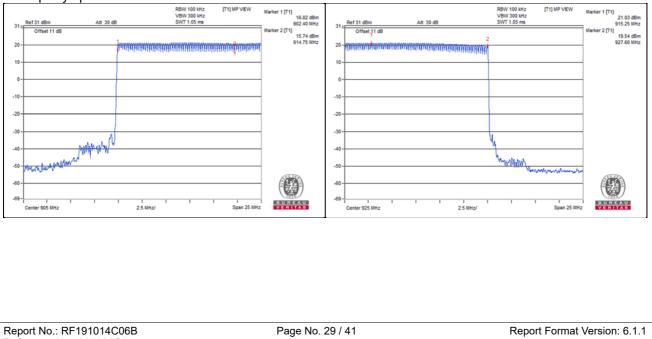
The 20 dB bandwidth of the hopping channel is less than 250 kHz, at least 50 channels frequencies, and should be equally spaced.

4.3.2 **Test Setup**

4.3.3 **Test Instruments**

Refer to section 4.1.2 to get information of above instrument.

4.3.4 **Test Procedure**


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 **Deviation from Test Standard**

No deviation.

4.3.6 **Test Results**

There are 127 hopping frequencies in the hopping mode. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. (If the 20 dB bandwidth of the hopping channel is less than 250 kHz)

4.4.2 Test Setup

4.4.3 Test Instruments

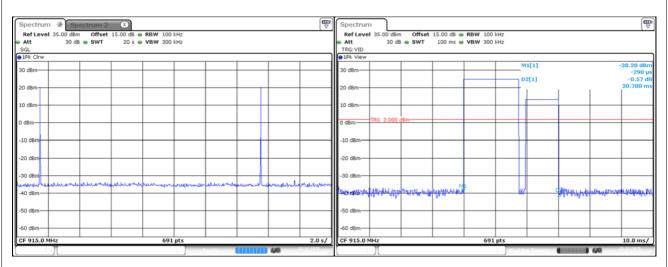
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with ime difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.



4.4.6 Test Results

Number of transmission in a period	Length of transmission	Result	Limit
	time (msec)	(msec)	(msec)
2 times	30.78	61.56	400

Note:

- 1. Test plots of the transmitting time slot are shown as below.
- 2. Calculator Result = 2 times * 30.78 = 61.56

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

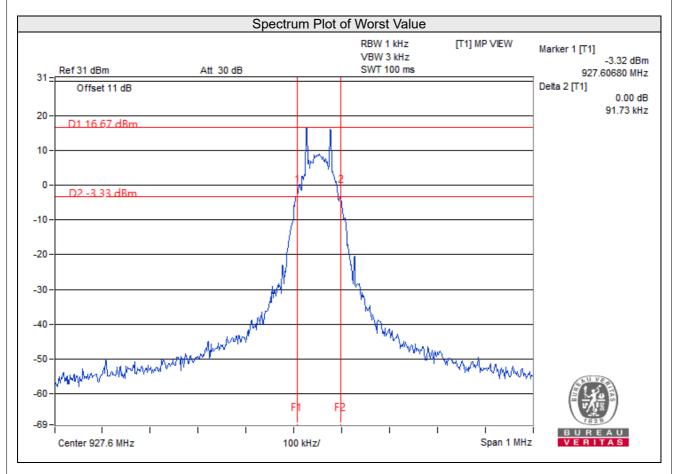
4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
1	902.4	0.09020	0.5
64	915.0	0.08432	0.5
127	927.6	0.09173	0.5

Note: 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 127 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

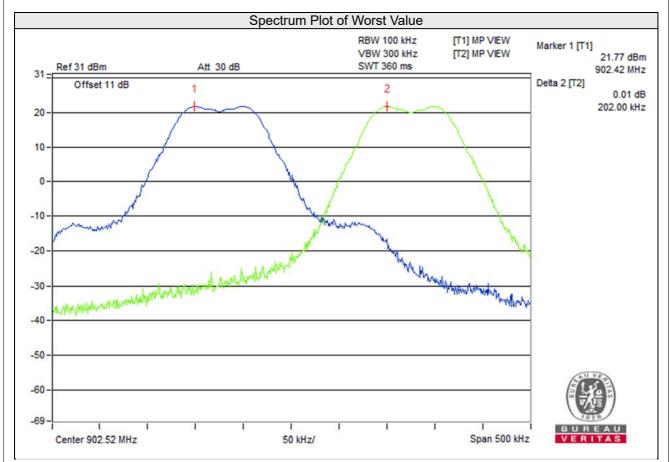
4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.6.5 Deviation from Test Standard

No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)	Pass / Fail
1	902.4	0.202	0.09200	Pass
64	915.0	0.203	0.08432	Pass
127	927.6	0.207	0.09173	Pass



4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

For Peak Power

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

For Average Power

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

For Peak Power

Channel	Frequency (MHz)	Output Power (mW)	Output Power (dBm)	Power Limit (dBm)	Pass / Fail
1	902.4	171.002	22.33	30.00	Pass
64	915.0	161.808	22.09	30.00	Pass
127	927.6	161.436	22.08	30.00	Pass

*Antenna gain =2dBi < 6dBi, so the conducted power limit is not reduced.

For Average Power

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	902.4	169.044	22.28
64	915.0	160.325	22.05
127	927.6	158.855	22.01

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

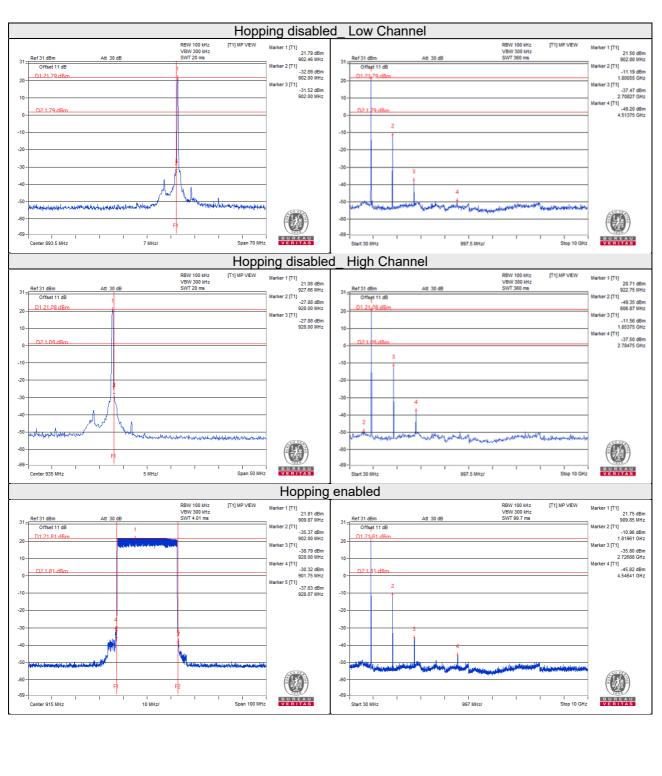
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.


4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---