Spirent Communications, Inc.

TEST REPORT FOR

Call Performance and Voice Quality Testing Equipment Model: Nomad UX

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s)
15.207 \& 15.249

Report No.: 96898-11

Date of issue: November 10, 2015

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
FCC Part 15 Subpart C 7
15.207 AC Conducted Emissions 7
15.215(c) Occupied Bandwidth 21
15.249(a) Field Strength of Fundamental 31
15.249(a)\&(d) Radiated Spurious Emissions / Band Edge 39
Supplemental Information 75
Emissions Test Details. 75

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:
Spirant Communications, Inc. 5280 Corporate Drive, Suite A100
Frederick, MD 21703

REPRESENTATIVE: Ryan Beach
Customer Reference Number: 19894

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Terri Rayle/Morgan Tramontin
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 96898

August 19, 2015
August 19 - September 1, 2015

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.02 .00
EMITest Immunity	5.02 .00

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Bothell	USO081	SL2-IN-E-1145R	$3082 \mathrm{C}-1$	318736	A-0148

14 Testing the Future
LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure	Description	Modifications	Results
15.207	AC Conducted Emissions	NA	Pass
$15.215(\mathrm{c})$	Occupied Bandwidth	NA	Pass
		NA	Pass
$15.249(\mathrm{a})$	Field Strength of Fundamental	NA	Pass
$15.249(\mathrm{a}) \&(\mathrm{~d})$	Field Strength of Spurious Emissions and Band Edge		

NA = Not applicable.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EXT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standards) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#
Call Performance and Voice	Spirant Communications, Inc.	Nomad UX
Quality testing equipment		S/N

Support Equipment:

Device	Manufacturer	Model \#	SN
Switching Power Supply	Phihong	E5C12R-120	P31704886A1
Computer	Dell	AA90PM111	6FF1NX1
Power Supply	Dell	2173	CN-0MV2MM-70163-15- 02NI-A01
USB2.0 Hub to Fiber Bit- Driver	S.I. Tech	2164	079536
AC Adapter	S.I. Tech	2172	079530
USB2.0 to Fiber Bit-Driver	S.I. Tech	2164	079535
AC Adapter	S.I. Tech	Spirant Communications, Inc.	$53-004937$
Nomad GPS			NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Call Performance and Voice Quality testing equipment	Spirant Communications, Inc.	Nomad UX	1000000E
Support Equipment:			
Device	Manufacturer	Model \#	SN
Switching Power Supply	Phihong	PSC12R-120	P31704886A1
Computer	Dell	E5430	6FF1NX1
Nomad GPS	Spirant Communications, Inc.	$53-004937$	NA

FCC PART 15 SUBPART C

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirent Communications, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#:
Test Type:
Tested By:
Software:

96898
Conducted Emissions
Michael Atkinson
EMITest 5.02.00

Date: 8/27/2015
Time: 15:54:22
Sequence\#: 40
115 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on an 80 cm table with connections to peripheral devices typical for normal installation.
Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located inside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on, radio 1 through 6 transmitting.
Investigated only Radio 1 transmitting.
Revision 1.2 board

Temperature: $23^{\circ} \mathrm{C}$
Relative Humidity: 35\%
Atmospheric Pressure: 102.1 kPa
Frequency Range Investigated: $0.15-30 \mathrm{MHz}$
Test Procedure: ANSI C63.10 (2013)

Spirent Communications, Inc. WO\#: 96898 Sequence\#: 40 Date: 8/27/2015 15.207 AC Mains - Average Test Lead: 115 V 60 Hz Line

[^0]Readings
Average Readings
1-15.207 AC Mains - Average
O Peak Readings

- Ambient
2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	$768-10$	$4 / 23 / 2014$	$4 / 23 / 2016$
T2	ANP05305	Cable	ETSI-50T	$2 / 20 / 2014$	$2 / 20 / 2016$
T3	ANP06540	Cable	Heliax	$11 / 5 / 2013$	$11 / 5 / 2015$
	AN02872	Spectrum Analyzer	E4440A	$11 / 13 / 2013$	$11 / 13 / 2015$
T4	AN02611	High Pass Filter	HE9615-150K- 50-720B	$3 / 26 / 2014$	$3 / 26 / 2016$
	AN01311	50uH LISN-Line1	$3816 / 2$	$3 / 4 / 2014$	$3 / 4 / 2016$
T5	AN01311	50uH LISN-Line2 (L)	$3816 / 2$	$3 / 4 / 2014$	$3 / 4 / 2016$

Measurement Data: \quad Reading listed by margin. \quad Test Lead: Line

18	$2.003 \mathrm{M}$ ve	23.8	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	34.3	46.0	-11.7	Line
\wedge	2.003 M	40.6	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	51.1	46.0	+5.1	Line
20	$1.203 \mathrm{M}$	23.8	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	34.2	46.0	-11.8	Line
\wedge	1.203 M	40.8	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.2	+0.0	51.2	46.0	+5.2	Line
	$499.059 \mathrm{k}$	23.4	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	$+0.0$	$+0.0$	$+0.2$	$+0.0$	34.0	46.0	-12.0	Line
\wedge	499.058k	34.5	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	$+0.0$	$+0.0$	+0.2	$+0.0$	45.1	46.0	-0.9	Line
24	4.900M	23.3	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.1$	+0.0	33.9	46.0	-12.1	Line
\wedge	4.900 M	34.9	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.1$	$+0.0$	45.5	46.0	-0.5	Line
26	$\begin{aligned} & 2.902 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	22.7	$\begin{array}{r} +10.3 \\ +0.1 \\ \hline \end{array}$	$+0.1$	$+0.0$	$+0.1$	$+0.0$	33.3	46.0	-12.7	Line
\wedge	2.902 M	39.8	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.1$	$+0.0$	50.4	46.0	+4.4	Line
	$\mathrm{ve}^{1.001 \mathrm{M}}$	22.8	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.2	$+0.0$	33.2	46.0	-12.8	Line
\wedge	1.001 M	41.7	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.2$	$+0.0$	52.1	46.0	+6.1	Line
	$667.043 \mathrm{k}$ ve	22.4	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.0	+0.0	+0.2	$+0.0$	32.9	46.0	-13.1	Line
\wedge	667.043 k	39.6	$\begin{array}{r} \hline+10.2 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.2	$+0.0$	50.1	46.0	+4.1	Line
	$\mathrm{ve}^{1.938 \mathrm{M}}$		$\begin{array}{r} +10.2 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.1$	+0.0	32.5	46.0	-13.5	Line
\wedge	1.938 M	39.6	$\begin{array}{r} \hline+10.2 \\ +0.1 \\ \hline \end{array}$	+0.1	$+0.0$	$+0.1$	$+0.0$	50.1	46.0	+4.1	Line
34	$1.991 \mathrm{M}$	21.7	$\begin{array}{r} \hline+10.2 \\ +0.1 \\ \hline \end{array}$	+0.1	$+0.0$	$+0.1$	$+0.0$	32.2	46.0	-13.8	Line
\wedge	1.991 M	39.7	$\begin{array}{r} \hline+10.2 \\ +0.1 \\ \hline \end{array}$	+0.1	$+0.0$	+0.1	$+0.0$	50.2	46.0	+4.2	Line
36	$\mathrm{ve}^{1.702 \mathrm{M}}$	21.5	$\begin{array}{r} \hline+10.2 \\ +0.1 \\ \hline \end{array}$	$+0.1$	$+0.0$	$+0.1$	$+0.0$	32.0	46.0	-14.0	Line
\wedge	1.702 M	41.9	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.1$	+0.0	52.4	46.0	+6.4	Line
	$549.963 \mathrm{k}$ ve	21.4	$\begin{array}{r} \hline+10.3 \\ +0.1 \\ \hline \end{array}$	$+0.0$	$+0.0$	$+0.2$	$+0.0$	32.0	46.0	-14.0	Line
\wedge	549.963 k	37.2	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.0	$+0.0$	$+0.2$	$+0.0$	47.8	46.0	+1.8	Line
	$333.256 \mathrm{k}$ ve		$\begin{array}{r} \hline+10.3 \\ +0.1 \\ \hline \end{array}$	+0.0	$+0.0$	+0.1	$+0.0$	35.3	49.4	-14.1	Line
\wedge	333.255k	37.8	$\begin{array}{r} \hline+10.3 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	48.3	49.4	-1.1	Line
42	$\mathrm{ve}^{2.805 \mathrm{M}}$	21.3	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.1$	+0.0	31.9	46.0	-14.1	Line
\wedge	2.805 M	39.8	$\begin{array}{r} \hline+10.3 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.1	$+0.0$	50.4	46.0	+4.4	Line

Page 10 of 76

Page 11 of 76

66	$830.665 \mathrm{k}$ ve	19.7	$\begin{array}{r} +10.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	+0.0	30.2	46.0	-15.8	Line
\wedge	830.664k	38.1	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	+0.0	48.6	46.0	+2.6	Line
\wedge	831.300k	37.8	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$+0.1$	+0.0	+0.2	$+0.0$	48.3	46.0	+2.3	Line
	$9.103 \mathrm{M}$	23.5	$\begin{array}{r} \hline+10.3 \\ +0.2 \end{array}$	+0.1	+0.0	+0.1	+0.0	34.2	50.0	-15.8	Line
\wedge	9.103 M	39.2	$\begin{array}{r} \hline+10.3 \\ +0.2 \end{array}$	+0.1	+0.0	+0.1	+0.0	49.9	50.0	-0.1	Line
71	$2.645 \mathrm{M}$	19.3	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	29.9	46.0	-16.1	Line
\wedge	2.645 M	38.6	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	49.2	46.0	+3.2	Line
	$861.900 \mathrm{k}$ ve	18.8	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	29.3	46.0	-16.7	Line
\wedge	861.900k	37.7	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$+0.1$	$+0.0$	+0.2	+0.0	48.2	46.0	+2.2	Line
75	$4.603 \mathrm{M}$	18.7	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	29.3	46.0	-16.7	Line
\wedge	4.603 M	33.9	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	44.5	46.0	-1.5	Line
77	$8.220 \mathrm{M}$ ve	22.1	$\begin{array}{r} \hline+10.3 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	32.7	50.0	-17.3	Line
\wedge	8.220 M	38.4	$\begin{array}{r} +10.3 \\ +0.1 \end{array}$	$+0.1$	$+0.0$	+0.1	$+0.0$	49.0	50.0	-1.0	Line
79	$7.887 \mathrm{M}$	22.0	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	32.6	50.0	-17.4	Line
\wedge	7.887 M	38.6	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	49.2	50.0	-0.8	Line
81	$8.256 \mathrm{M}$ ve	21.9	$\begin{array}{r} \hline+10.3 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	32.5	50.0	-17.5	Line
\wedge	8.256M	38.1	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	48.7	50.0	-1.3	Line
83	$2.153 \mathrm{M}$ ve	18.0	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	28.5	46.0	-17.5	Line
\wedge	2.153 M	37.7	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	48.2	46.0	+2.2	Line
85	$14.700 \mathrm{M}$	21.9	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.2	+0.0	+0.2	$+0.0$	32.4	50.0	-17.6	Line
\wedge	14.700M	38.4	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$+0.2$	+0.0	+0.2	$+0.0$	48.9	50.0	-1.1	Line
87	$8.607 \mathrm{M}$	21.7	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	$+0.1$	+0.0	+0.1	$+0.0$	32.3	50.0	-17.7	Line
\wedge	8.607 M	39.2	$\begin{array}{r} +10.3 \\ +0.1 \\ \hline \end{array}$	$+0.1$	+0.0	+0.1	$+0.0$	49.8	50.0	-0.2	Line

Page 12 of 76

89	$8.148 \mathrm{M}$ ve	20.9	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	31.5	50.0	-18.5	Line
\wedge	8.148M	38.6	$\begin{array}{r} \hline+10.3 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	49.2	50.0	-0.8	Line
91	$\begin{aligned} & 7.094 \mathrm{M} \\ & \text { rve } \\ & \hline \end{aligned}$	19.8	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	30.4	50.0	-19.6	Line
\wedge	7.094M	37.8	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.1	+0.0	48.4	50.0	-1.6	Line
93	$7.283 \mathrm{M}$ Ave	19.6	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	$+0.1$	+0.0	30.2	50.0	-19.8	Line
\wedge	7.283M	37.8	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	48.4	50.0	-1.6	Line
95	$280.897 \mathrm{k}$ Ave	20.1	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.0	+0.0	+0.2	+0.0	30.7	50.8	-20.1	Line
\wedge	280.897 k	40.5	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	$+0.0$	$+0.0$	$+0.2$	$+0.0$	51.1	50.8	$+0.3$	Line
\wedge	276.760k	40.5	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.0	$+0.0$	+0.2	+0.0	51.1	50.9	+0.2	Line
98	$10.797 \mathrm{M}$ Ave		$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	28.0	50.0	-22.0	Line
\wedge	10.797 M	38.3	$\begin{array}{r} \hline+10.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	48.6	50.0	-1.4	Line

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirant Communications, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 96898
Test Type:
Tested By:
Conducted Emissions
Date: 8/27/2015
Michael Atkinson
Time: 15:30:23

Software: EMITest 5.02.00
Sequence\#: 39
115 V 60 Hz
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on an 80 cm table with connections to peripheral devices typical for normal installation.
Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located inside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on, radio 1 through 6 transmitting.
Investigated only Radio 1 transmitting.
Revision 1.2 board
Temperature: $23^{\circ} \mathrm{C}$
Relative Humidity: 35\%
Atmospheric Pressure: 102.1 kPa
Frequency Range Investigated: $0.15-30 \mathrm{MHz}$
Test Procedure: ANSI C63.10 (2013)

Spirent Communications, Inc. WO\#: 96898 Sequence\#: 39 Date: 8/27/2015
15.207 AC Mains - Average Test Lead: 115 V 60 Hz Neutral

\quad Sweep Data
$\times \quad$ QP Readings
Software Version: 5.02 .00
_ Readings

* Average Readings
- $1-15.207$ AC Mains - Average
O Peak Readings
- Ambient

2-15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06219	Attenuator	768-10	$4 / 23 / 2014$	$4 / 23 / 2016$
T2	ANP05305	Cable	ETSI-50T	$2 / 20 / 2014$	$2 / 20 / 2016$
T3	ANP06540	Cable	Heliax	$11 / 5 / 2013$	$11 / 5 / 2015$
	AN02872	Spectrum Analyzer	E4440A	$11 / 13 / 2013$	$11 / 13 / 2015$
T4	AN02611	High Pass Filter	HE9615-150K- $50-720 B$	$3 / 26 / 2014$	$3 / 26 / 2016$
T5	AN01311	50uH LISN-Line1	$3816 / 2$	$3 / 4 / 2014$	$3 / 4 / 2016$
		(N)	50uH LISN-Line2 (L)	$3816 / 2$	$3 / 4 / 2014$
			$3 / 4 / 2016$		

Measurement Data	Reading listed by margin.				Test Lead: Neutral					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
MHz	T5		dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$		
$1 \quad 278.280 \mathrm{k}$	37.0	+10.3	$+0.0$	+0.0	$+0.2$	$+0.0$	47.6	50.9	-3.3	Neutr
		+0.1								
$2 \quad 207.860 \mathrm{k}$	36.1	+10.3	+0.0	+0.0	+0.2	+0.0	46.7	53.3	-6.6	Neutr
		+0.1								
$3 \quad 1.301 \mathrm{M}$	19.3	+10.1	+0.1	+0.0	+0.2	+0.0	29.8	46.0	-16.2	Neutr
Ave		+0.1								
$\wedge 1.296 \mathrm{M}$	40.2	+10.1	+0.1	$+0.0$	$+0.2$	$+0.0$	50.7	46.0	+4.7	Neutr
		+0.1								
$\wedge 1.307 \mathrm{M}$	39.7	+10.1	+0.1	+0.0	+0.2	+0.0	50.2	46.0	+4.2	Neutr
		+0.1								
$6 \quad 15.496 \mathrm{M}$	21.7	+10.0	+0.2	+0.0	+0.2	+0.0	32.3	50.0	-17.7	Neutr
Ave		$+0.2$								
$\wedge 15.496 \mathrm{M}$	41.1	+10.0	+0.2	+0.0	+0.2	+0.0	51.7	50.0	+1.7	Neutr
		$+0.2$								
$\wedge \quad 15.490 \mathrm{M}$	39.3	+10.0	$+0.2$	$+0.0$	$+0.2$	$+0.0$	49.9	50.0	-0.1	Neutr
		$+0.2$								
9 598.686kAve	17.0	+10.3	+0.0	+0.0	+0.2	+0.0	27.6	46.0	-18.4	Neutr
		+0.1								
$\wedge 598.686 \mathrm{k}$	39.2	+10.3	+0.0	+0.0	+0.2	+0.0	49.8	46.0	+3.8	Neutr
		+0.1								
$11{ }^{1.405 M}$Ave	15.6	+10.1	+0.1	$+0.0$	+0.2	+0.0	26.1	46.0	-19.9	Neutr
		+0.1								
$\wedge 1.405 \mathrm{M}$	40.6	+10.1	+0.1	+0.0	+0.2	+0.0	51.1	46.0	+5.1	Neutr
		+0.1								
$13 \begin{aligned} & 334.710 \mathrm{k} \\ & \text { Ave }\end{aligned}$	18.1	+10.3	$+0.0$	$+0.0$	+0.1	$+0.0$	28.6	49.3	-20.7	Neutr
		+0.1								
$\wedge 334.710 \mathrm{k}$	38.1	+10.3	+0.0	+0.0	+0.1	$+0.0$	48.6	49.3	-0.7	Neutr
		+0.1								

15	$2.004 \mathrm{M}$	14.2	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	24.7	46.0	-21.3	Neutr
\wedge	2.004 M	37.3	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	47.8	46.0	+1.8	Neutr
17	$13.905 \mathrm{M}$	18.0	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	28.4	50.0	-21.6	Neutr
\wedge	13.905 M	39.3	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	49.7	50.0	-0.3	Neutr
19	$14.463 \mathrm{M}$	17.6	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.2	+0.0	+0.2	$+0.0$	28.1	50.0	-21.9	Neutr
\wedge	14.463 M	38.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.2	+0.0	+0.2	$+0.0$	49.0	50.0	-1.0	Neutr
	$14.905 \mathrm{M}$	16.9	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.2	+0.0	+0.2	$+0.0$	27.4	50.0	-22.6	Neutr
\wedge	14.905M	38.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.2	+0.0	+0.2	$+0.0$	49.0	50.0	-1.0	Neutr
	$416.885 \mathrm{k}$ ve	14.3	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.0	+0.0	+0.2	$+0.0$	24.9	47.5	-22.6	Neutr
\wedge	416.884k	38.3	$\begin{array}{r} +10.3 \\ +0.1 \\ \hline \end{array}$	+0.0	+0.0	+0.2	$+0.0$	48.9	47.5	+1.4	Neutr
	$1.009 \mathrm{M}$	12.8	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	23.2	46.0	-22.8	Neutr
\wedge	1.009 M	38.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	48.9	46.0	+2.9	Neutr
	$1.672 \mathrm{M}$	12.6	$\begin{array}{r} \hline+10.2 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.1	$+0.0$	23.1	46.0	-22.9	Neutr
\wedge	1.672 M	38.9	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	49.4	46.0	+3.4	Neutr
	$14.706 \mathrm{M}$	16.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \\ \hline \end{array}$	+0.2	+0.0	+0.2	$+0.0$	27.0	50.0	-23.0	Neutr
\wedge	14.706M	39.0	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.2	+0.0	+0.2	$+0.0$	49.5	50.0	-0.5	Neutr
	$1.196 \mathrm{M}$	12.6	$\begin{array}{r} \hline+10.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.2	$+0.0$	23.0	46.0	-23.0	Neutr
\wedge	1.196M	36.5	$\begin{array}{r} \hline+10.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.2	$+0.0$	46.9	46.0	+0.9	Neutr
	$9.752 \mathrm{M}$	16.0	$\begin{array}{r} \hline+10.1 \\ +0.2 \end{array}$	+0.1	+0.0	+0.1	+0.0	26.5	50.0	-23.5	Neutr
\wedge	9.752 M	38.6	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ \hline \end{array}$	+0.1	+0.0	+0.1	$+0.0$	49.1	50.0	-0.9	Neutr
	$2.604 \mathrm{M}$ ve	11.6	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	22.2	46.0	-23.8	Neutr
\wedge	2.604 M	36.6	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	47.2	46.0	+1.2	Neutr
	$2.196 \mathrm{M}$ ve	11.6	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	22.1	46.0	-23.9	Neutr
\wedge	2.196 M	34.5	$\begin{array}{r} \hline+10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	45.0	46.0	-1.0	Neutr
	$894.216 \mathrm{k}$ ve	11.7	$\begin{array}{r} \hline+10.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.2	$+0.0$	22.1	46.0	-23.9	Neutr
\wedge	894.215 k	37.3	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	47.7	46.0	+1.7	Neutr

Page 17 of 76

41	$2.740 \mathrm{M}$	11.3	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	21.9	46.0	-24.1	Neutr
\wedge	2.740M	37.9	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	+0.0	48.5	46.0	+2.5	Neutr
43	$1.604 \mathrm{M}$	11.5	$\begin{array}{r} +10.1 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.1	$+0.0$	21.9	46.0	-24.1	Neutr
\wedge	1.604 M	38.7	$\begin{array}{r} +10.1 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.1	$+0.0$	49.1	46.0	+3.1	Neutr
	$531.056 \mathrm{k}$	11.2	$\begin{array}{r} +10.3 \\ +0.1 \\ \hline \end{array}$	$+0.0$	$+0.0$	$+0.2$	$+0.0$	21.8	46.0	-24.2	Neutr
\wedge	531.055k	37.0	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	$+0.0$	$+0.0$	$+0.2$	$+0.0$	47.6	46.0	+1.6	Neutr
	$928.238 \mathrm{k}$	11.3	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.2	$+0.0$	21.7	46.0	-24.3	Neutr
\wedge	928.237 k	38.1	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.2	$+0.0$	48.5	46.0	+2.5	Neutr
	$1.064 \mathrm{M}$	11.3	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	$+0.0$	21.7	46.0	-24.3	Neutr
\wedge	1.064 M	37.0	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	$+0.1$	$+0.0$	+0.2	$+0.0$	47.4	46.0	+1.4	Neutr
	$13.706 \mathrm{M}$	15.3	$\begin{array}{r} +10.0 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.2	$+0.0$	25.7	50.0	-24.3	Neutr
\wedge	13.706M	39.1	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	+0.1	$+0.0$	+0.2	$+0.0$	49.5	50.0	-0.5	Neutr
	$662.680 \mathrm{k}$ ve	11.1	$\begin{array}{r} +10.2 \\ +0.1 \end{array}$	+0.0	$+0.0$	+0.2	$+0.0$	21.6	46.0	-24.4	Neutr
\wedge	662.680k	36.4	$\begin{array}{r} +10.2 \\ +0.1 \end{array}$	+0.0	+0.0	+0.2	+0.0	46.9	46.0	+0.9	Neutr
	$1.898 \mathrm{M}$	11.1	$\begin{array}{r} +10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	21.6	46.0	-24.4	Neutr
\wedge	1.898 M	35.9	$\begin{array}{r} +10.2 \\ +0.1 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	46.4	46.0	+0.4	Neutr
	$8.328 \mathrm{M}$	14.8	$\begin{array}{r} \hline+10.3 \\ +0.2 \end{array}$	+0.1	+0.0	+0.1	+0.0	25.5	50.0	-24.5	Neutr
\wedge	8.328M	38.8	$\begin{array}{r} \hline+10.3 \\ +0.2 \end{array}$	+0.1	+0.0	+0.1	$+0.0$	49.5	50.0	-0.5	Neutr
	$862.662 \mathrm{k}$	10.4	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	+0.1	$+0.0$	$+0.2$	$+0.0$	20.9	46.0	-25.1	Neutr
\wedge	862.661k	37.0	$\begin{array}{r} +10.1 \\ +0.1 \\ \hline \end{array}$	+0.1	$+0.0$	+0.2	$+0.0$	47.5	46.0	+1.5	Neutr

Page 18 of 76

	$\begin{aligned} & 831.392 \mathrm{k} \\ & \mathrm{ve} \end{aligned}$	10.1	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	$+0.1$	$+0.0$	+0.2	$+0.0$	20.6	46.0	-25.4	Neutr
\wedge	831.392k	36.6	$\begin{array}{r} \hline+10.1 \\ +0.1 \end{array}$	+0.1	+0.0	+0.2	+0.0	47.1	46.0	+1.1	Neutr
63	$464.153 \mathrm{k}$ ve	10.0	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	$+0.0$	$+0.0$	+0.2	$+0.0$	20.6	46.6	-26.0	Neutr
\wedge	464.152k	35.5	$\begin{array}{r} \hline+10.3 \\ +0.1 \end{array}$	+0.0	+0.0	+0.2	$+0.0$	46.1	46.6	-0.5	Neutr
65	$14.508 \mathrm{M}$ ve	12.4	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$+0.2$	$+0.0$	+0.2	$+0.0$	22.9	50.0	-27.1	Neutr
\wedge	14.508M	38.9	$\begin{array}{r} \hline+10.0 \\ +0.1 \end{array}$	$+0.2$	$+0.0$	+0.2	$+0.0$	49.4	50.0	-0.6	Neutr
67	$\begin{aligned} & 12.797 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	12.0	$\begin{array}{r} \hline+10.0 \\ +0.2 \end{array}$	$+0.1$	+0.0	+0.1	$+0.0$	22.4	50.0	-27.6	Neutr
\wedge	12.797 M	38.6	$\begin{array}{r} \hline+10.0 \\ +0.2 \\ \hline \end{array}$	$+0.1$	$+0.0$	+0.1	$+0.0$	49.0	50.0	-1.0	Neutr

Test Setup Photo

LABORATORIES, INC.

15.215(c) Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 2211623 rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirent Communications, Inc.
Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order \#:
Test Type:
Tested By:
Software:

96898
Maximized Emissions
Randal Clark
EMITest 5.02.00

Date: 8/19/2015
Time: 15:01:55
Sequence\#: 30

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#

Test Conditions / Notes:

The EUT Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on a 1.5 m table with connections to peripheral devices typical for normal installation.
Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on. Radio 1 transmitting continuously at TX power $=30$ with modulation enabled.
Revision 1.2 board
Temperature: $24^{\circ} \mathrm{C}$
Relative Humidity: 40\%
Atmospheric Pressure: 101.7 kPa
Frequency Range Investigated: Fundamental
Test Procedure: ANSI C63.10 (2013)

Spirent Communications, Inc. WO\#: 96898 Sequence\#: 30 Date: 8/19/2015
15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter) Test Distance: 3 Meters Vertical

- Readings

O Peak Readings
\times QP Readings

* Average Readings
- Ambient

Software Version: 5.02.00
-1-15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
	ANO2872	Spectrum Analyzer	E4440A	$11 / 13 / 2013$	$11 / 13 / 2015$
AN03209	Preamp	83051 A	$3 / 20 / 2015$	$3 / 20 / 2017$	
AN01467	Horn Antenna-	3115	$9 / 16 / 2013$	$9 / 16 / 2015$	
	ANSI C63.5				
	Calibration			$5 / 13 / 2016$	
AN03227	Cable	$32026-29080-$ $5 / 13 / 2014$ Cable	ETSI-50T	$2 / 20 / 2014$	$2 / 20 / 2016$

Test Data Summary			
Frequency $(\mathbf{M H z})$	Modulation	Antenna Type / Gain	Measured 20dB BW $(\mathbf{k H z})$
2402	GFSK	Radio 1, Integral	929.6
2402	Pi/4 DQPSK	Radio 1, Integral	1308
2402	8 DPSK	Radio 1, Integral	1309
2442	GFSK	Radio 1, Integral	927.5
2442	Pi/4 DQPSK	Radio 1, Integral	1337
2442	8 DPSK	Radio 1, Integral	1310
2480	GFSK	Radio 1, Integral	930.5
2480	Pi/4 DQPSK	Radio 1, Integral	1304
2480	8 DPSK	Radio 1, Integral	1309

LABORATORIES, INC.

Plots

Low Channel, GFSK

Middle Channel, GFSK

High Channel, GFSK

LABORATORIES, INC.

Low Channel, 8DPSK

Middle Channel, 8DPSK

High Channel, 8DPSK

LABORATORIES, INC.

Low Channel, Pi4DQPSK

Middle Channel, Pi4DQPSK

High Channel, Pi4DQPSK

Test Setup Photo

$1-18 \mathrm{GHz}$

LABORATORIES, INC.

15.249(a) Field Strength of Fundamental

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 2211623 rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirent Communications, Inc.
Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order \#:
Test Type:
Tested By:
Software:

96898
Maximized Emissions
Randal Clark
EMITest 5.02.00

Date: 8/26/2015
Time: 11:14:26
Sequence\#: 32

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#	S/N

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on a 1.5 m table with connections to peripheral devices typical for normal installation.
Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on. Radio 1 transmitting continuously at TX power $=30$ with modulation enabled.
Revision 1.2 board

Temperature: $24^{\circ} \mathrm{C}$
Relative Humidity: 40\%
Atmospheric Pressure: 101.7 kPa
Frequency Range Investigated: Fundamental
Test Procedure: ANSI C63.10 (2013)

Spirent Communications, Inc. WO\#: 96898 Sequence\#: 32 Date: 8/26/2015
15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter) Test Distance: 3 Meters Vertical

- Readings

O Peak Readings
\times QP Readings

* Average Readings
- Ambient

Software Version: 5.02.00
-1-15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02870	Spectrum Analyzer	E4440A	$1 / 6 / 2014$	$1 / 6 / 2016$
T2	AN03209	Preamp	83051 A	$3 / 20 / 2015$	$3 / 20 / 2017$
T3	AN01467	Horn Antenna-	3115	$9 / 16 / 2013$	$9 / 16 / 2015$
		ANSI C63.5			
T4	AN03227	Cablibration			$5 / 13 / 2016$
			$32026-29080-$	$5 / 13 / 2014$	
T5	ANP05305	Cable	ETSI-50T	$2 / 20 / 2014$	$2 / 20 / 2016$
T6	ANP06540	Cable	Heliax	$11 / 5 / 2013$	$11 / 5 / 2015$

10	2401.983M	79.0	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+28.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 138 \end{aligned}$	82.0	$94.0 \quad-12.0$ Low Channel Radio 1 thru 6 8DPSK	$\begin{gathered} \hline \text { Horiz } \\ 162 \end{gathered}$
11	2480.000M	78.8	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+27.9	$+0.0$	$\begin{gathered} +0.0 \\ 5 \end{gathered}$	81.7	$\quad 94.0 \quad-12.3$ High Channel Radio 1 thru 6 8DPSK	$\begin{array}{r} \hline \text { Verti } \\ 164 \end{array}$
12	2402.117M	78.7	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+28.0	$+0.0$	$+0.0$	81.7	$\quad 94.0$ Low Channel Radio 1 thru 6 Pi/4DQPSK	Horiz 147
13	2441.800M	78.6	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+28.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 344 \end{aligned}$	81.6	94.0 Mid Channel Radio 1 thru 6 GFSK	$\begin{array}{r} \hline \text { Verti } \\ 128 \end{array}$
14	2441.917M	78.5	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+28.0	$+0.0$	$+0.0$	81.5	$\quad 94.0 \quad-12.5$ Mid Channel Radio 1 thru 6 Pi/4DQPSK	$\begin{gathered} \hline \text { Verti } \\ 151 \end{gathered}$
15	2480.000M	77.7	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+27.9	$+0.0$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	80.6	$\quad 94.0 \quad-13.4$ High Channel Radio 1 thru 6 Pi/4DQPSK	$\begin{gathered} \hline \text { Verti } \\ 129 \end{gathered}$
16	2402.183M	77.1	$\begin{array}{r} \hline+0.0 \\ +2.7 \end{array}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+28.0	${ }^{+0.0}$	$\begin{gathered} +0.0 \\ 1 \end{gathered}$	80.1	$94.0 \quad-13.9$ Low Channel Radio 1 thru 6 8DPSK	$\begin{array}{r} \hline \text { Verti } \\ 171 \end{array}$
17	2401.933M	77.0	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+28.0	$+0.0$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	80.0	$94.0 \quad-14.0$ Low Channel Radio 1 thru 6 GFSK	$\begin{gathered} \hline \text { Verti } \\ 171 \end{gathered}$
18	2402.050M	76.9	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.5 \end{array}$	+28.0	$+0.0$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	79.9	$\quad 94.0 \quad-14.1$ Low Channel Radio 1 thru 6 Pi/4DQPSK	$\begin{array}{r} \hline \text { Verti } \\ 139 \end{array}$
19	2442.035M	72.5	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 171 \end{aligned}$	76.4	94.0 -17.6 Mid Channel Radio 1 8DPSK	$\begin{gathered} \hline \text { Horiz } \\ 132 \end{gathered}$
20	2442.130M	72.0	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 168 \end{aligned}$	75.9	94.0 $\quad-18.1$ Mid Channel Radio $1 \mathrm{Pi} / 4 \mathrm{DOPSK}$	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
21	2480.020M	71.7	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{gathered} -28.2 \\ +0.0 \end{gathered}$	+27.9	+1.5	$\begin{aligned} & \hline+0.0 \\ & 151 \end{aligned}$	75.6	$\begin{aligned} & 94.0 \quad-18.4 \\ & \text { High Channel } \\ & \text { Radio 1 8DPSK } \end{aligned}$	$\begin{gathered} \hline \text { Horiz } \\ 154 \end{gathered}$
22	2479.840M	71.6	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+27.9		$\begin{aligned} & \hline+0.0 \\ & 151 \end{aligned}$	75.5	$\quad 94.0 \quad-18.5$ High Channel Radio 1 Pi/4DQPSK	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
23	2479.830M	71.6	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} \hline-28.2 \\ +0.0 \end{array}$	+27.9	+1.5	$\begin{aligned} & \hline+0.0 \\ & 152 \end{aligned}$	75.5	$\begin{aligned} & 94.0 \quad-18.5 \\ & \text { High Channel } \\ & \text { Radio 1 GFSK } \end{aligned}$	$\begin{gathered} \text { Horiz } \\ 155 \end{gathered}$
24	2441.820M	71.5	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{gathered} -28.2 \\ +0.0 \end{gathered}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 171 \end{aligned}$	75.4	94.0 -18.6 Mid Channel Radio 1 GFSK	$\begin{gathered} \text { Horiz } \\ 135 \end{gathered}$

25	2402.210M	70.3	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{gathered} -28.2 \\ +0.0 \end{gathered}$	+28.0		$\begin{aligned} & \hline+0.0 \\ & 172 \end{aligned}$	74.2	$94.0 \quad-19.8$ Low Channel Radio 1 Pi/4DOPSK	$\begin{gathered} \text { Horiz } \\ 139 \end{gathered}$
26	2402.205M	70.1	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{gathered} -28.2 \\ +0.0 \end{gathered}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 171 \end{aligned}$	74.0	94.0 Low Channel Radio 1 GFSK	$\begin{gathered} \text { Horiz } \\ 138 \end{gathered}$
27	2401.995M	69.8	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+28.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 171 \end{aligned}$	73.7	$\begin{array}{ll}94.0 & -20.3 \\ \text { Low Channel Radio } \\ 1 \text { 8DPSK }\end{array}$	$\begin{gathered} \text { Horiz } \\ 138 \end{gathered}$
28	2480.020M	69.6	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} \hline-28.2 \\ +0.0 \end{array}$	+27.9	+1.5	$\begin{aligned} & \hline+0.0 \\ & 172 \end{aligned}$	73.5	$\quad 94.0 \quad-20.5$ High Channel Radio 18DPSK	$\begin{gathered} \hline \text { Verti } \\ 181 \end{gathered}$
29	2479.825M	69.5	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+27.9	+1.5	$\begin{aligned} & \hline+0.0 \\ & 172 \end{aligned}$	73.4	$\quad 94.0 \quad-20.6$ High Channel Radio 1 GFSK	$\begin{array}{r} \hline \text { Verti } \\ 179 \end{array}$
30	2479.865M	69.4	$\begin{array}{r} \hline+0.0 \\ +2.7 \end{array}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+27.9	+1.5	$\begin{aligned} & \hline+0.0 \\ & 175 \end{aligned}$	73.3	$\quad 94.0 \quad-20.7$ High Channel Radio 1 Pi/4DQPSK	$\begin{gathered} \hline \text { Verti } \\ 182 \end{gathered}$
31	2442.140M	68.8	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{gathered} -28.2 \\ +0.0 \end{gathered}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 176 \end{aligned}$	72.7	$94.0 \quad-21.3$ Mid Channel Radio 1 Pi/4DQPSK	$\begin{array}{r} \hline \text { Verti } \\ 183 \end{array}$
32	2442.085M	68.7	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 174 \end{aligned}$	72.6	$\begin{array}{ll}94.0 & -21.4 \\ \text { Mid Channel } & \text { Radio } \\ 1 \text { GFSK }\end{array}$	$\begin{array}{r} \hline \text { Verti } \\ 181 \end{array}$
33	2441.920M	68.6	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} -28.2 \\ +0.0 \end{array}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 176 \end{aligned}$	72.5	94.0 -21.5 Mid Channel Radio 1 8DPSK	$\begin{array}{r} \hline \text { Verti } \\ 196 \end{array}$
34	2401.995M	66.8	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{gathered} -28.2 \\ +0.0 \end{gathered}$	+28.0		$\begin{aligned} & \hline+0.0 \\ & 175 \end{aligned}$	70.7	94.0 -23.3 Low Channel Radio 1 8DPSK	$\begin{array}{r} \hline \text { Verti } \\ 196 \end{array}$
35	2402.200M	66.7	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} \hline-28.2 \\ +0.0 \end{array}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 175 \end{aligned}$	70.6	94.0 $\quad-23.4$ Low Channel Radio 1 Pi/4DOPSK	$\begin{array}{r} \hline \text { Verti } \\ 196 \end{array}$
36	2402.165M	66.4	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	$\begin{gathered} -28.2 \\ +0.0 \end{gathered}$	+28.0	+1.4	$\begin{aligned} & \hline+0.0 \\ & 180 \end{aligned}$	70.3	$\begin{array}{lc}94.0 & -23.7 \\ \text { Low Channel Radio } \\ 1 \text { GFSK }\end{array}$	$\begin{array}{r} \hline \text { Verti } \\ 196 \end{array}$

Test Data

```
Mid Channel Radio 1-6 GFSK (Worst Case fundamental emisssions) - Lim adj for correction factors Ref Level \(96.99 \mathrm{~dB} \mu \mathrm{~V}\) ATTEN 0 dB
RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec
Marker: \(\mathbf{2 . 4 4 2 G H z ~} 81.2377 \mathrm{~dB} \mu \mathrm{~V}\)
```


Middle Channel, GFSK

Mid Channel Radio 1 8DPSK (Worst case fundamental emissions) - Limit is adjusted for correction factors. Ref Level $98.19 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB OFFSET: 1.2 dB
RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec
Marker: $2.442 \mathrm{GHz} 72.5297 \mathrm{~dB} \mu \mathrm{~V}$

Middle Channel, 8DPSK

Test Equipment - Voltage Variations

Asset \#	Description	Model	Manufacturer	Cal Date	Cal Due
2872	Spectrum Analyzer	Agilent	E4440A	$11 / 13 / 2013$	$11 / 13 / 2015$
3209	Preamp	Agilent	83051 A	$3 / 20 / 2015$	$3 / 20 / 2017$
3227	Cable	Astrolab	$32026-29080-29080-84$	$5 / 13 / 2014$	$5 / 13 / 2016$
P06540	Cable	Andrews	Heliax	$11 / 5 / 2013$	$11 / 5 / 2015$
1467	Horn Antenna	EMCO	3115	$9 / 16 / 2013$	$9 / 16 / 2015$
P06655	DC Power Supply	Maxtra	MA-305D	$4 / 17 / 2014$	$4 / 17 / 2016$
3514	Multimeter	Fluke	87	$11 / 25 / 2014$	$11 / 25 / 2016$

Test Data Summary - Voltage Variations

Frequency (MHz)	Modulation	$\begin{gathered} \mathrm{V}_{\text {Minimum }} \\ (\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {Nominal }} \\ (\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {Maximum }} \\ (\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m}) \end{gathered}$	Max Deviation from $V_{\text {Nominal }}(\mathrm{dB})$
Single Transmitter					
2402	GFSK	74.0	74.0	73.9	0.1
2402	Pi/4 DQPSK	74.2	74.2	74.3	0.1
2402	8 DPSK	73.7	73.7	73.7	0
2442	GFSK	75.2	75.4	75.2	0.2
2442	Pi/4 DQPSK	75.8	75.9	75.8	0.1
2442	8 DPSK	76.6	76.4	76.4	0.2
2480	GFSK	75.6	75.5	75.5	0.1
2480	Pi/4 DQPSK	75.7	75.5	75.8	0.3
2480	8 DPSK	75.7	75.6	75.5	0.1
Multi-Transmitter					
2402	GFSK	79.7	80.0	80.0	0.3
2402	Pi/4 DQPSK	81.6	81.7	81.4	0.3
2402	8 DPSK	81.7	82.0	81.8	0.3
2442	GFSK	85.2	84.4	85.1	0.8
2442	Pi/4 DQPSK	82.9	83.0	83.0	0.1
2442	8 DPSK	83.4	83.1	83.3	0.3
2480	GFSK	84.6	83.9	84.5	0.7
2480	Pi/4 DQPSK	82.9	82.9	83.2	0.3
2480	8 DPSK	81.6	82.4	81.7	0.8

Measurements performed at input voltage Vnominal $\pm 15 \%$.

$\mathrm{V}_{\text {Nominal }}:$	12 VDC
$\mathrm{V}_{\text {Minimum }}:$	10.2
$\mathrm{~V}_{\text {Maximum }}:$	13.8

Test Setup Photo

1 -18GHz

15.249(a)\&(d) Radiated Spurious Emissions / Band Edge

Test Conditions / Setup / Data

Test Location: CKC Laboratories, Inc. • 2211623 rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirent Communications, Inc.
Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order \#:
Test Type:
Tested By:
Software:

96898
Maximized Emissions
Michael Atkinson
EMITest 5.02.00

Date: 8/28/2015
Time: 11:30:02
Sequence\#: 47

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on an 80 cm table with connections to peripheral devices typical for normal installation.
Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on. Radio 1 transmitting continuously at TX power $=30$ with modulation enabled.
Investigated Radio 1-6 transmitting.

Revision 1.2 board

Temperature: $24^{\circ} \mathrm{C}$
Relative Humidity: 36\%
Atmospheric Pressure: 102.1 kPa

Frequency Range Investigated: $9 \mathrm{kHz}-30 \mathrm{MHz}$
Test Procedure: ANSI C63.10 (2013)
No emissions observed within 20dB of the limit.

Spirent Communications, Inc. WO\#: 96898 Sequence\#: 47 Date: 8/28/2015
15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter) Test Distance: 3 Meters Vertical

- Readings

O Peak Readings
\times QP Readings

* Average Readings
- Ambient

Software Version: 5.02.00
-1-15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter)

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00052	Loop Antenna	6502	$5 / 20 / 2014$	$5 / 20 / 2016$
T2	ANP05305	Cable	ETSI-50T	$2 / 20 / 2014$	$2 / 20 / 2016$
T3	ANP06540	Cable	Heliax	$11 / 5 / 2013$	$11 / 5 / 2015$
	AN02872	Spectrum Analyzer	E4440A	$11 / 13 / 2013$	$11 / 13 / 2015$

Measu	nent Data	Reading listed by margin.				Test Distance: 3 Meters					
\#	$\begin{aligned} & \text { Freq } \\ & \text { MHz } \end{aligned}$	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \hline \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	$12.702 \mathrm{M}$ P	26.1	+8.7	$+0.1$	$+0.0$		-40.0	-5.1	29.5	-34.6	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
2	$12.702 \mathrm{M}$	26.1	+8.7	+0.1	+0.0		$\begin{aligned} & \hline-40.0 \\ & 359 \end{aligned}$	-5.1	29.5	-34.6	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
\wedge	12.700 M	28.2	+8.7	+0.1	+0.0		-40.0	-3.0	29.5	-32.5	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
4	2.784 M	23.4	+9.5	$+0.1$	$+0.0$		-40.0	-7.0	29.5	-36.5	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
5	4.790M	19.3	+9.5	+0.1	+0.0		-40.0	-11.1	29.5	-40.6	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
6	303.000k	47.1	+9.5	+0.0	+0.0		$\begin{gathered} -80.0 \\ 4 \end{gathered}$	-23.4	18.0	-41.4	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
7	18.600 M	19.4	+7.9	+0.2	+0.0		-40.0	-12.5	29.5	-42.0	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
8	5.525 M	17.8	+9.5	+0.1	+0.0		$\begin{aligned} & \hline-40.0 \\ & 358 \\ & \hline \end{aligned}$	-12.6	29.5	-42.1	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
9	20.100 M	17.4	+7.6	+0.2	+0.0		-40.0	-14.8	29.5	-44.3	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
10	12.600 M	14.1	+8.7	+0.1	+0.0		$\begin{aligned} & \hline-40.0 \\ & 360 \end{aligned}$	-17.1	29.5	-46.6	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
11	19.475 M	14.5	+7.8	+0.2	+0.0		$\begin{aligned} & \hline-40.0 \\ & 360 \end{aligned}$	-17.5	29.5	-47.0	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$
12	24.000 k	59.8	+12.5	+0.0	+0.0		$\begin{gathered} \hline-80.0 \\ 68 \end{gathered}$	-7.7	40.0	-47.7	$\begin{array}{r} \hline \text { Vert } \\ 99 \\ \hline \end{array}$

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirent Communications, Inc.
Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order \#: 96898 Date: 8/24/2015
Test Type: Maximized Emissions
Time: 15:35:17
Tested By: Michael Atkinson
Sequence\#: 34
Software: EMITest 5.02.00
Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on an 80 cm table with connections to peripheral devices typical for normal installation.
Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on. Radio 1 transmitting continuously at TX power $=30$ with modulation enabled.
Investigated Radio 1-6 transmitting continuously at TX power $=30$.

Revision 1.2 board

Temperature: $24^{\circ} \mathrm{C}$
Relative Humidity: 36\%
Atmospheric Pressure: 102.1 kPa

Frequency Range Investigated: $30-1000 \mathrm{MHz}$
Test Procedure: ANSI C63.10 (2013)

Spirent Communications, Inc. WO\#: 96898 Sequence\#: 34 Date: 8/24/2015
15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter) Test Distance: 3 Meters Vertical

- Readings

O Peak Readings
\times QP Readings

* Average Readings
* Ambient

Software Version: 5.02.00
1-15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter)

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02307	Preamp	8447 D	$3 / 14 / 2014$	$3 / 14 / 2016$
T2	AN01996	Biconilog Antenna	CBL6111C	$7 / 16 / 2014$	$7 / 16 / 2016$
T3	AN03227	Cable	$32026-29080-$ $29080-84$	$5 / 13 / 2014$	$5 / 13 / 2016$
			RG214	$12 / 1 / 2014$	$12 / 1 / 2016$
T4	ANP05360	Cable	RG-214	$2 / 21 / 2014$	$2 / 21 / 2016$
T5	ANP05963	Cable	Spectrum Analyzer	E4440A	$11 / 13 / 2013$
T6	AN02872			$11 / 13 / 2015$	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\#		Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \end{aligned}$	T3 dB	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Margin dB	Polar Ant
	1	87.931 M	55.1	-27.8	+8.8	+0.4	+0.5	$+0.0$	37.4	40.0	-2.6	Vert
QP				+0.4	+0.0			15				99
\wedge		87.931 M	52.8	-27.8	+8.8	+0.4	+0.5	+0.0	35.1	40.0	-4.9	Vert
				+0.4	+0.0			360				175
	3	479.941 M	49.7	-28.0	+17.9	+0.6	+1.4	+0.0	42.7	46.0	-3.3	Vert
	QP			+1.1	+0.0			351				100
\wedge ^ 479.940 M			57.0	-28.0	+17.9	+0.6	+1.4	+0.0	50.0	46.0	+4.0	Vert
				+1.1	+0.0			77				200
	5	89.675M	56.5	-27.8	+9.1	+0.4	+0.5	+0.0	39.1	43.5	-4.4	Vert
	QP			+0.4	+0.0			355				99
\wedge		89.675 M	60.2	-27.8	+9.1	+0.4	$+0.5$	+0.0	42.8	43.5	-0.7	Vert
				+0.4	+0.0			227				99
		40.859 M	48.9	-28.0	+13.5	+0.3	+0.3	+0.0	35.3	40.0	-4.7	Vert
		QP		+0.3	+0.0							101
\wedge		40.836 M	53.1	-28.0	+13.5	+0.3	+0.3	+0.0	39.5	40.0	-0.5	Vert
				+0.3	+0.0			359				99
		81.094 M	54.0	-27.9	+7.9	+0.3	+0.5	+0.0	35.2	40.0	-4.8	Vert
QP				+0.4	+0.0							99
\wedge		81.090 M	56.8	-27.9	+7.9	+0.3	+0.5	+0.0	38.0	40.0	-2.0	Vert
				+0.4	+0.0							99
	11	479.971 M	47.9	-28.0	+17.9	+0.6	+1.4	+0.0	40.9	46.0	-5.1	Horiz
QP				+1.1	+0.0			122				159
${ }^{\wedge}$		479.971 M	65.7	-28.0	+17.9	+0.6	+1.4	+0.0	58.7	46.0	+12.7	Horiz
				+1.1	+0.0			267				150
		45.129 M	49.4	-28.0	+11.2	+0.3	+0.3	+0.0	33.5	40.0	-6.5	Vert
QP				+0.3	+0.0							99
\wedge		45.129 M	53.5	-28.0	+11.2	+0.3	+0.3	+0.0	37.6	40.0	-2.4	Vert
				+0.3	+0.0			359				99
	15	98.316 M	53.2	-27.8	+9.9	+0.4	+0.6	+0.0	36.7	43.5	-6.8	Vert
	QP			+0.4	+0.0			55				99
\wedge		98.361 M	54.8	-27.8	+9.9	+0.4	+0.6	+0.0	38.3	43.5	-5.2	Vert
				+0.4	+0.0							99

Page 45 of 76

39	267.790M	47.4	$\begin{gathered} -27.1 \\ +0.7 \end{gathered}$	$\begin{array}{r} \hline+13.1 \\ +0.0 \end{array}$	+0.5	+1.0	+0.0	35.6	46.0	-10.4	$\begin{gathered} \hline \text { Horiz } \\ 103 \end{gathered}$
40	61.542 M	49.8	-27.9	+6.6	+0.3	+0.4	+0.0	29.5	40.0	-10.5	Vert
			+0.3	+0.0			359				99
41	94.020 M	49.8	-27.8	+9.5	+0.4	+0.6	+0.0	32.9	43.5	-10.6	Horiz
			+0.4	+0.0							201
42	774.000 M	36.8	-27.7	+22.1	+0.8	+1.8	+0.0	35.2	46.0	-10.8	Horiz
			+1.4	+0.0			343				144
43	344.070M	44.1	-27.2	+15.0	+0.6	+1.1	+0.0	34.5	46.0	-11.5	Vert
			+0.9	+0.0			360				175
44	214.310M	46.7	-27.2	+10.4	+0.5	+0.9	+0.0	31.9	43.5	-11.6	Vert
			+0.6	+0.0			360				175
45	430.000 M	42.1	-27.8	+17.1	+0.6	+1.3	+0.0	34.3	46.0	-11.7	Horiz
			+1.0	+0.0			261				144
46	116.339M	46.2	-27.7	+11.4	+0.4	+0.6	+0.0	31.4	43.5	-12.1	Vert
			+0.5	+0.0							99
47	331.920M	43.4	-27.1	+14.7	+0.6	+1.1	+0.0	33.6	46.0	-12.4	Vert
			+0.9	+0.0			360				175
48	$\begin{aligned} & \text { 960.001M } \\ & \text { QP } \\ & \hline \end{aligned}$	40.2	-27.3	+23.9	+0.9	+2.1	+0.0	41.4	54.0	-12.6	Horiz
			+1.6	+0.0			229				130
\wedge	960.001 M	50.7	-27.3	+23.9	+0.9	+2.1	+0.0	51.9	54.0	-2.1	Horiz
			+1.6	+0.0			142				152
50	960.288M	40.1	-27.3	+23.9	+0.9	+2.1	+0.0	41.3	54.0	-12.7	Vert
			+1.6	+0.0			360				200
51	510.024 M	39.6	-28.1	+18.4	+0.7	+1.4	+0.0	33.1	46.0	-12.9	Vert
			+1.1	+0.0			137				200
52	265.100M	44.3	-27.1	+13.0	+0.5	+1.0	+0.0	32.4	46.0	-13.6	Vert
			+0.7	+0.0			360				175
53	$\begin{aligned} & 945.035 \mathrm{M} \\ & \text { QP } \\ & \hline \end{aligned}$	30.8	-27.3	+23.8	+0.9	+2.1	+0.0	31.8	46.0	-14.2	Vert
			+1.5	+0.0			360				150
\wedge	945.104M	44.3	-27.3	+23.8	+0.9	+2.1	+0.0	45.3	46.0	-0.7	Vert
			+1.5	+0.0							
							327				200
55	368.620 M	40.5	-27.4	+15.7	+0.6	+1.2	+0.0	31.5	46.0	-14.5	Vert175
			+0.9	+0.0			360				
56	404.820 M	39.7	-27.6	+16.6	+0.6	+1.2	+0.0	31.5	46.0	-14.5	Vert
			+1.0	+0.0			360				175

57	80.990M	44.3	$\begin{array}{r} -27.9 \\ +0.4 \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	+0.3	$+0.5$	$+0.0$	25.4	40.0	-14.6	$\begin{gathered} \text { Horiz } \\ 201 \end{gathered}$
58	266.310M	43.0	-27.1	+13.0	+0.5	+1.0	$+0.0$	31.1	46.0	-14.9	Horiz
QP			+0.7	+0.0							103
\wedge	266.310 M	51.7	-27.1	+13.0	$+0.5$	+1.0	$+0.0$	39.8	46.0	-6.2	Horiz
			+0.7	+0.0			351				124
60	192.930M	44.7	-27.4	+9.3	$+0.5$	+0.8	+0.0	28.5	43.5	-15.0	Horiz
			+0.6	+0.0			274				124
61	35.250 M	34.2	-28.0	+16.6	+0.3	+0.3	+0.0	23.7	40.0	-16.3	Horiz
			+0.3	+0.0			30				200
62	40.878M	36.1	-28.0	+13.5	+0.3	+0.3	+0.0	22.5	40.0	-17.5	Horiz
			+0.3	+0.0			-8				200
63	42.474M	36.1	-28.0	+12.6	+0.3	+0.3	$+0.0$	21.6	40.0	-18.4	Horiz
			+0.3	+0.0			-8				200
64	69.144 M	37.8	-27.8	+6.4	+0.3	+0.4	$+0.0$	17.5	40.0	-22.5	Horiz
			+0.4	+0.0			-8				200
65	61.752 M	35.3	-27.9	+6.6	+0.3	+0.4	$+0.0$	15.0	40.0	-25.0	Horiz
			+0.3	+0.0			-8				200

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirent Communications, Inc.
Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order \#: 96898
Test Type: Maximized Emissions
Date: 8/28/2015
Time: 14:42:27
Tested By:
Software:
Michael Atkinson
Sequence\#: 33

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

\section*{Support Equipment:
 | Device | Manufacturer | Model \# |
| :--- | :--- | :--- |}

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on a 1.5 m table with connections to peripheral devices typical for normal installation.
Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on. Radio 1 transmitting continuously at TX power $=30$ with modulation enabled.
Investigated Radio 1-6 transmitting continuously at TX power $=30$, as well as intermodulation effects between 2 radios near the same frequency.

Revision 1.2 board

Temperature: $24^{\circ} \mathrm{C}$
Relative Humidity: 40\%
Atmospheric Pressure: 101.7 kPa

Frequency Range Investigated: $1-26 \mathrm{GHz}$
Test Procedure: ANSI C63.10 (2013)

Spirent Communications, Inc. WO\#: 96898 Sequence\#\#: 33 Date: 8/28/2015
15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter) Test Distance: 3 Meters Vertical

- Readings

O Peak Readings
\times QP Readings

* Average Readings
- Ambient

Software Version: 5.02.00
1-15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter)

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/13/2013	11/13/2015
T2	AN03227	Cable	$\begin{aligned} & 32026-29080- \\ & 29080-84 \end{aligned}$	5/13/2014	5/13/2016
T3	AN03209	Preamp	83051A	3/20/2015	3/20/2017
T4	AN01467	Horn AntennaANSI C63.5 Calibration	3115	9/16/2013	9/16/2015
T5	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
T6	AN03122	Cable	$\begin{aligned} & 32026-2-29801- \\ & 36 \end{aligned}$	5/13/2014	5/13/2016
T7	AN02763-69	Waveguide	Multiple	5/21/2014	5/21/2016
T8	ANP06678	Cable	$\begin{aligned} & 32026-29801- \\ & 29801-144 \end{aligned}$	9/18/2014	9/18/2016
T9	AN02742	Active Horn Antenna	$\begin{aligned} & \text { AMFW-5F- } \\ & \text { 18002650-20- } \\ & \text { 10P } \end{aligned}$	1/14/2015	1/14/2017

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

10 4804.182M	40.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$+0.0$	44.6	$\begin{gathered} 54.0 \\ L(\operatorname{rad} 1-6) \end{gathered}$	-9.4	$\begin{gathered} \hline \text { Vert } \\ 150 \end{gathered}$
11 4959.748M	39.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	43.5	$\begin{gathered} 54.0 \\ \mathrm{Hrad}(1-6) \end{gathered}$	-10.5	$\begin{array}{r} \hline \text { Vert } \\ 148 \end{array}$
124803.790 M	39.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	43.2	$\begin{gathered} 54.0 \\ L(\operatorname{rad} 1-6) \end{gathered}$	-10.8	$\begin{gathered} \text { Horiz } \\ 155 \end{gathered}$
$\begin{aligned} & 13 \begin{array}{l} 4804.010 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	31.5	$\begin{aligned} & +0.0 \\ & +3.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{aligned} & \text { Low } \\ & \text { L4.0 } \end{aligned}$	-13.6	$\begin{gathered} \hline \text { Vert } \\ 179 \end{gathered}$
$\wedge 4804.000 \mathrm{M}$	34.2	$\begin{aligned} & \hline+0.0 \\ & +3.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 275 \end{aligned}$	43.1	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-10.9	$\begin{array}{r} \hline \text { Vert } \\ 129 \end{array}$
$\begin{aligned} & 15 \text { 4804.000M } \\ & \text { Ave } \end{aligned}$	30.6	$\begin{aligned} & +0.0 \\ & +3.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 120 \end{aligned}$	39.5	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-14.5	$\begin{gathered} \text { Horiz } \\ 152 \end{gathered}$
^ 4803.990M	33.4	$\begin{aligned} & \hline+0.0 \\ & +3.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-29.2 \\ +0.0 \end{array}$	$\begin{array}{r} +32.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 128 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-11.7	Horiz 184
17 4883.820M	30.0	$\begin{aligned} & \hline+0.0 \\ & +3.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+32.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 300 \end{aligned}$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-14.7	$\begin{gathered} \text { Horiz } \\ 194 \end{gathered}$
$\begin{aligned} & 18 \text { 4883.980M } \\ & \text { Ave } \end{aligned}$	29.9	$\begin{aligned} & \hline+0.0 \\ & +3.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-29.2 \\ +0.0 \end{array}$	$\begin{array}{r} +32.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 59 \end{aligned}$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-14.8	$\begin{gathered} \hline \text { Vert } \\ 169 \end{gathered}$
$\wedge 4883.980 \mathrm{M}$	32.3	$\begin{aligned} & +0.0 \\ & +3.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} +32.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 288 \end{aligned}$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-12.4	$\begin{array}{r} \hline \text { Vert } \\ 178 \end{array}$
$\begin{array}{cc} \hline 20 & 14776.000 \\ M \end{array}$	30.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$+0.0$	38.7	54.0 $H(\operatorname{rad~1-6})$	-15.3	Vert 147
$\begin{aligned} & 21 \text { 4960.000M } \\ & \text { Ave } \end{aligned}$	29.0	$\begin{aligned} & +0.0 \\ & +4.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-29.2 \\ +0.0 \end{array}$	$\begin{array}{r} +32.5 \\ +0.0 \end{array}$	$\begin{gathered} +0.0 \\ 57 \end{gathered}$	38.5	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-15.5	$\begin{array}{r} \hline \text { Vert } \\ 154 \end{array}$
$\wedge 4960.000 \mathrm{M}$	30.4	$\begin{aligned} & \hline+0.0 \\ & +4.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} +32.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-14.1	$\begin{array}{r} \text { Vert } \\ 155 \end{array}$
$\wedge 4960.093 \mathrm{M}$	31.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{array}{r} 54.0 \\ \operatorname{imod~H} \end{array}$	-17.9	$\begin{array}{r} \hline \text { Vert } \\ 175 \end{array}$
$\begin{array}{cc} 24 & 13256.000 \\ & M \end{array}$	31.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.6 \end{aligned}$	$+0.0$	38.5	54.0 $L(\operatorname{rad~1-6)}$	-15.5	Horiz 139
$\begin{array}{cc} 25 & 13616.000 \\ & M \end{array}$	30.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +5.7 \end{aligned}$	+0.0	38.5	54.0 $M(\operatorname{rad} 1-6)$	-15.5	Vert 136
$\begin{aligned} & 261799.954 \mathrm{M} \\ & \text { Ave } \end{aligned}$	36.7	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +27.0 \\ +0.0 \end{array}$	$+0.0$	38.4	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-15.6	$\begin{array}{r} \hline \text { Vert } \\ 167 \end{array}$

Page 51 of 76

	$\begin{aligned} & \text { 1800.000M } \\ & \text { Ave } \end{aligned}$	36.6	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{gathered} -28.8 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-15.7	$\begin{array}{r} \hline \text { Vert } \\ 173 \end{array}$
28	$\begin{gathered} 13928.000 \\ \mathrm{M} \end{gathered}$	30.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +5.7 \end{aligned}$	$\begin{gathered} +0.0 \\ 54 \\ \hline \end{gathered}$	38.1	54.0 $M(\operatorname{rad} 1-6)$	-15.9	Horiz 153
29	$\begin{gathered} 15072.000 \\ \mathrm{M} \end{gathered}$	30.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +6.0 \end{aligned}$	+0.0	38.0	54.0 $L(\operatorname{rad} 1-6)$	-16.0	Horiz 139
	$\begin{gathered} 14440.000 \\ \mathrm{M} \end{gathered}$	30.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 359 \\ & \hline \end{aligned}$	37.9	54.0 $H(\operatorname{rad~1-6)}$	-16.1	Horiz 147
	$\begin{aligned} & 1799.962 \mathrm{M} \\ & \text { Ave } \end{aligned}$	35.6	$\begin{aligned} & \hline+0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	+0.0	37.3	$\text { Mid }^{54.0}$	-16.7	$\begin{array}{r} \hline \text { Vert } \\ 143 \end{array}$
\wedge	1800.000 M	35.9	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{aligned} & \quad 54.0 \\ & \text { High } \end{aligned}$	-16.4	$\begin{array}{r} \hline \text { Vert } \\ 137 \end{array}$
33	4955.879M	32.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	37.2	$\begin{array}{r} 54.0 \\ \operatorname{imod} \mathrm{H} \end{array}$	-16.8	$\begin{array}{r} \hline \text { Vert } \\ 175 \end{array}$
34	4883.540M	32.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 283 \end{aligned}$	37.1	$\begin{array}{r} 54.0 \\ \operatorname{imod~M} \end{array}$	-16.9	$\begin{gathered} \hline \text { Vert } \\ 188 \end{gathered}$
35	4884.163M	32.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 219 \end{aligned}$	36.7	$\begin{array}{r} 54.0 \\ \operatorname{imod} \mathrm{M} \end{array}$	-17.3	$\begin{gathered} \text { Horiz } \\ 153 \end{gathered}$
36	4807.630M	32.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 189 \end{aligned}$	36.7	$\begin{gathered} 54.0 \\ \operatorname{imod} L \end{gathered}$	-17.3	Horiz 141
37	1799.700M	35.0	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 27 \end{aligned}$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-17.3	$\begin{array}{r} \hline \text { Vert } \\ 178 \end{array}$
38	4807.820M	32.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 193 \end{aligned}$	36.5	$\begin{gathered} 54.0 \\ \operatorname{imod} L \end{gathered}$	-17.5	$\begin{array}{r} \hline \text { Vert } \\ 141 \end{array}$
39	1800.500M	34.6	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-17.7	$\begin{array}{r} \hline \text { Vert } \\ 186 \end{array}$
40	4804.230M	31.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 111 \end{aligned}$	36.0	$\begin{gathered} 54.0 \\ \operatorname{imod} L \end{gathered}$	-18.0	Horiz 141
	$\begin{aligned} & \text { 4883.966M } \\ & \text { Ave } \end{aligned}$	26.3	$\begin{aligned} & +0.0 \\ & +3.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+32.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 78 \end{aligned}$	35.6	$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-18.4	Horiz 199
	$\begin{aligned} & \text { 4883.966M } \\ & \text { Ave } \end{aligned}$	26.3	$\begin{aligned} & +0.0 \\ & +3.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.2 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+32.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 78 \end{aligned}$			-18.4	$\begin{gathered} \text { Horiz } \\ 242 \end{gathered}$
\wedge	4883.902M	39.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \end{aligned}$	$+0.0$	44.0	$\begin{gathered} 54.0 \\ M(\operatorname{rad~1-6)} \end{gathered}$	-10.0	Horiz 129

Page 52 of 76

Page 53 of 76

61	1109.900M	35.9	$\begin{aligned} & +0.0 \\ & +1.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 342 \end{aligned}$	34.2	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-19.8	$\begin{array}{r} \hline \text { Vert } \\ 137 \end{array}$
62	$\begin{gathered} 11392.000 \\ \mathrm{M} \end{gathered}$	27.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +5.1 \end{aligned}$	+0.0	34.2	54.0 $\mathrm{H}(\operatorname{rad~1-6)}$	-19.8	Vert 147
	$\begin{aligned} & 1799.990 \mathrm{M} \\ & \text { Ave } \end{aligned}$	32.3	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$	34.0	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-20.0	$\begin{gathered} \text { Horiz } \\ 200 \end{gathered}$
\wedge	1800.000M	33.3	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-19.0	$\begin{gathered} \text { Horiz } \\ 204 \end{gathered}$
65	7133.000M	28.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 131 \end{aligned}$	33.8	$\begin{gathered} 54.0 \\ L(\operatorname{rad} 1-6) \end{gathered}$	-20.2	$\begin{gathered} \text { Horiz } \\ 138 \end{gathered}$
66	1110.000M	35.4	$\begin{aligned} & +0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 81 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-20.3	$\begin{gathered} \text { Horiz } \\ 204 \end{gathered}$
67	3464.000M	30.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \end{aligned}$	+0.0	33.7	$\begin{gathered} 54.0 \\ \mathrm{~L}(\operatorname{rad} 1-6) \end{gathered}$	-20.3	$\begin{gathered} \text { Horiz } \\ 153 \end{gathered}$
68	1200.300M	35.0	$\begin{aligned} & +0.0 \\ & +1.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \end{array}$	+0.0		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-20.4	$\begin{array}{r} \hline \text { Vert } \\ 178 \end{array}$
69	3090.000M	30.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 326 \end{aligned}$	33.5	$\begin{gathered} 54.0 \\ \mathrm{~L}(\operatorname{rad} 1-6) \end{gathered}$	-20.5	$\begin{array}{r} \hline \text { Vert } \\ 154 \end{array}$
70	1289.700M	31.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 136 \end{aligned}$	33.3	$\begin{gathered} 54.0 \\ \mathrm{~L}(\operatorname{rad} 1-6) \end{gathered}$	-20.7	$\begin{gathered} \text { Horiz } \\ 159 \end{gathered}$
71	8630.000M	27.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	33.2	$\begin{gathered} 54.0 \\ L(\operatorname{rad~1-6)} \end{gathered}$	-20.8	$\begin{array}{r} \hline \text { Vert } \\ 154 \end{array}$
72	7221.000M	27.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 209 \end{aligned}$		$\begin{gathered} 54.0 \\ M(\operatorname{rad} 1-6) \end{gathered}$	-20.8	$\begin{gathered} \text { Horiz } \\ 153 \end{gathered}$
73	3068.000M	29.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.6 \end{aligned}$			$\begin{gathered} 54.0 \\ \mathrm{H}(\operatorname{rad~1-6)} \end{gathered}$	-21.0	Horiz 147
74	1439.900M	30.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 220 \end{aligned}$	32.6	$\begin{gathered} 54.0 \\ L(\operatorname{rad} 1-6) \end{gathered}$	-21.4	$\begin{array}{r} \hline \text { Vert } \\ 176 \end{array}$
75	5359.000M	27.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{gathered} 54.0 \\ \mathrm{H}(\operatorname{rad~1-6)} \end{gathered}$	-21.6	$\begin{array}{r} \hline \text { Vert } \\ 147 \end{array}$
76	1439.600M	30.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 166 \end{aligned}$		$\begin{gathered} 54.0 \\ \mathrm{H}(\operatorname{rad~1-6)} \end{gathered}$	-21.6	$\begin{array}{r} \hline \text { Vert } \\ 147 \end{array}$
77	1109.400M	34.0	$\begin{aligned} & +0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \end{array}$	$+0.0$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-21.7	$\begin{array}{r} \hline \text { Vert } \\ 178 \end{array}$

Page 54 of 76

78	1199.300M	33.5	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	32.1	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-21.9	$\begin{gathered} \hline \text { Vert } \\ 137 \end{gathered}$
79	2130.000 M	28.3	$\begin{aligned} & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.4 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+28.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$	32.0	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-22.0	Horiz 99
80	2189.600M	28.1	$\begin{aligned} & +0.0 \\ & +2.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.3 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+28.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$	32.0	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-22.0	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
81	3948.000M	28.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{gathered} 54.0 \\ M(\operatorname{rad~1-6)} \end{gathered}$	-22.1	$\begin{gathered} \hline \text { Vert } \\ 136 \end{gathered}$
82	1799.400M	30.1	$\begin{aligned} & \hline+0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 23 \end{aligned}$	31.8	$\begin{aligned} & \text { Mid } \\ & \hline \text { M4.0 } \end{aligned}$	-22.2	$\begin{gathered} \text { Horiz } \\ 133 \end{gathered}$
83	1109.520M	33.4	$\begin{aligned} & \hline+0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-22.3	Horiz 180
84	1800.680M	29.9	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+27.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-22.4	Horiz 180
85	2160.000M	27.8	$\begin{aligned} & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.3 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+28.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$	31.5	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-22.5	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
86	2108.800M	28.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 310 \end{aligned}$	31.4	$\begin{gathered} 54.0 \\ M(\operatorname{rad~1-6)} \end{gathered}$	-22.6	$\begin{gathered} \text { Horiz } \\ 153 \end{gathered}$
87	1614.600M	29.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \end{aligned}$	$+0.0$		$\begin{gathered} 54.0 \\ \mathrm{M}(\operatorname{rad~1-6)} \end{gathered}$	-22.6	$\begin{array}{r} \hline \text { Vert } \\ 136 \end{array}$
88	1289.800M	29.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$	31.3	$\begin{gathered} 54.0 \\ \mathrm{H}(\mathrm{rad} \mathrm{1-6)} \end{gathered}$	-22.7	Horiz 147
89	1740.100M	29.8	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+26.6 \\ +0.0 \end{array}$	+0.0		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-22.8	$\begin{array}{r} \hline \text { Vert } \\ 186 \end{array}$
90	1200.000M	32.5	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.4 \\ +0.0 \end{array}$	+0.0	31.1	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-22.9	$\begin{gathered} \text { Horiz } \\ 204 \end{gathered}$
91	1995.400M	28.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.1 \end{aligned}$			$\begin{gathered} 54.0 \\ M(\operatorname{rad~1-6)} \end{gathered}$	-23.1	$\begin{gathered} \hline \text { Vert } \\ 136 \end{gathered}$
92	1140.100M	32.5	$\begin{aligned} & +0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \end{array}$	$+0.0$	30.8	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-23.2	$\begin{array}{r} \hline \text { Vert } \\ 186 \end{array}$
93	1439.560M	31.8	$\begin{aligned} & +0.0 \\ & +2.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -29.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+24.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-23.3	$\begin{gathered} \text { Horiz } \\ 180 \end{gathered}$
94	1049.700M	32.5	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.2 \\ +0.0 \end{array}$	$+0.0$	30.6	$\begin{aligned} & \text { 54.0 } \\ & \text { Mid } \end{aligned}$	-23.4	$\begin{gathered} \text { Vert } \\ 178 \end{gathered}$

Page 55 of 76

95	2340.100M	26.8	$\begin{aligned} & \hline+0.0 \\ & +2.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.2 \\ +0.0 \end{array}$	$\begin{array}{r} +28.0 \\ +0.0 \end{array}$			$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-23.4	$\begin{array}{r} \hline \text { Vert } \\ 186 \end{array}$
96	1049.400M	32.0	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.2 \\ +0.0 \end{array}$	$+0.0$	30.1	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-23.9	$\begin{array}{r} \hline \text { Vert } \\ 186 \end{array}$
97	2339.600M	26.3	$\begin{array}{r} +0.0 \\ +2.6 \\ +0.0 \\ +0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.2 \\ +0.0 \end{array}$	$\begin{array}{r} +28.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 293 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-23.9	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
98	3599.500M	23.9	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.5 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+29.7 \\ +0.0 \end{array}$	$+0.0$	30.1	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-23.9	$\begin{gathered} \hline \text { Vert } \\ 125 \end{gathered}$
99	2070.000M	26.4	$\begin{aligned} & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.5 \\ +0.0 \end{array}$	$\begin{array}{r} +28.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 359 \end{aligned}$	30.0	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-24.0	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
100	1079.600M	31.4	$\begin{aligned} & +0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \end{array}$	$+0.0$	29.7	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-24.3	$\begin{array}{r} \hline \text { Vert } \\ 186 \end{array}$
101	2040.000M	25.8	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.5 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+28.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 359 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-24.6	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
102	1140.000M	30.8	$\begin{aligned} & +0.0 \\ & +1.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} -28.8 \\ +0.0 \end{gathered}$	$\begin{array}{r} +24.3 \\ +0.0 \end{array}$	$+0.0$	29.1	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-24.9	$\begin{gathered} \text { Horiz } \\ 204 \end{gathered}$
103	1290.000M	30.4	$\begin{aligned} & +0.0 \\ & +1.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline-28.9 \\ +0.0 \end{gathered}$	$\begin{array}{r} +24.5 \\ +0.0 \end{array}$	$+0.0$		$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-24.9	$\begin{gathered} \hline \text { Horiz } \\ 204 \end{gathered}$
104	2280.000M	25.1	$\begin{array}{r} +0.0 \\ +2.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.2 \\ +0.0 \end{array}$	$\begin{array}{r} +28.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 357 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-25.0	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
	$\begin{aligned} & 1109.967 \mathrm{M} \\ & \text { Ave } \end{aligned}$	30.3	$\begin{array}{r} +0.0 \\ +1.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 25 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { High } \end{gathered}$	-25.4	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
\wedge	1109.900M	33.8	$\begin{array}{r} \hline+0.0 \\ +1.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 184 \end{aligned}$	32.1	$\text { Mid }^{54.0}$	-21.9	$\begin{gathered} \hline \text { Horiz } \\ 133 \end{gathered}$
107	2010.000M	24.8	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.5 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+28.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 359 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-25.6	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
108	2100.000M	24.6	$\begin{aligned} & +0.0 \\ & +2.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.4 \\ +0.0 \end{array}$	$\begin{array}{r} +28.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 359 \end{aligned}$	28.3	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-25.7	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
109	1080.000M	29.7	$\begin{array}{r} +0.0 \\ +1.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.3 \\ +0.0 \end{array}$			$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-26.0	$\begin{gathered} \hline \text { Horiz } \\ 204 \end{gathered}$
110	1439.400M	29.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +2.1 \\ +0.0 \end{array}$	$\begin{aligned} & +1.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-29.0 \\ +0.0 \end{array}$	$\begin{gathered} +24.6 \\ +0.0 \end{gathered}$	$+0.0$	27.9	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-26.1	$\begin{gathered} \hline \text { Vert } \\ 186 \end{gathered}$
111	1050.000M	29.6	$\begin{array}{r} +0.0 \\ +1.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-28.8 \\ +0.0 \end{array}$	$\begin{array}{r} +24.2 \\ +0.0 \end{array}$	${ }^{+0.0}$	27.7	$\begin{gathered} 54.0 \\ \text { Low } \end{gathered}$	-26.3	$\begin{gathered} \text { Horiz } \\ 204 \end{gathered}$

Page 56 of 76

Page 57 of 76

Band Edge

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive, SE Suite A • Bothell, WA 98021 • 800-500-4EMC (4362)
Customer: Spirent Communications, Inc.
Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order \#:
Test Type:
Tested By:
Software:

96898
Maximized Emissions
Randal Clark
EMITest 5.02.00

Date: 9/1/2015
Time: 10:53:13
Sequence\#: 31

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#

Test Conditions / Notes:

The EUT is Call Performance and Voice Quality testing equipment utilizing 6 independent Bluetooth radios.
The EUT is supported on a 1.5 m table with connections to peripheral devices typical for normal installation. Cables are attached to the 6 audio ports with no termination.
Preliminary testing determined the configuration utilized is representative of worst case.
The laptop computer is located outside the testing area and provides software control of the equipment using software: SDK Version 122.

EUT Configuration:
Max DC power.
All Radios powered on.
Radio 1 transmitting continuously at TX power $=30$ with modulation enabled.
Revision 1.2 board
Temperature: $24^{\circ} \mathrm{C}$
Relative Humidity: 40\%
Atmospheric Pressure: 101.7 kPa
Frequency Range Investigated: Band Edge
Test Procedure: ANSI C63.10 (2013)
Worst case polarity recorded.

Spirent Communications, Inc. WO\#: 96898 Sequence\#: 31 Date: 9/1/2015
15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter) Test Distance: 3 Meters Vertical

- Readings

O Peak Readings
\times QP Readings

* Average Readings
- Ambient

Software Version: 5.02.00
-1-15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 13 / 2013$	$11 / 13 / 2015$
T2	AN03209	Preamp	83051 A	$3 / 20 / 2015$	$3 / 20 / 2017$
T3	AN01467	Horn Antenna-	3115	$9 / 16 / 2013$	$9 / 16 / 2015$
		ANSI C63.5			
T4	Calibration				
T5	AN03227	Cable	$32026-29080-$ $29080-84 ~$	$5 / 13 / 2014$	$5 / 13 / 2016$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\#$ Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	T2 dB	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
$\begin{aligned} & 12400.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	35.2	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	39.1	$\quad 54.0 \quad-14.9$ Radio 1-6 TX on same channel - 8DSPK	Horiz
$\begin{aligned} & 2 \text { 2400.000M } \\ & \text { Ave } \end{aligned}$	33.7	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	$+0.0$	37.6	$\quad 54.0 \quad-16.4$ Radio 1-6 TX on same channel - Pi/4 DQPSK	Horiz
$\wedge 2400.000 \mathrm{M}$	51.7	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	55.6	$\quad 54.0 \quad+1.6$ Radio 1-6 TX on same channel - 8DPSK	Horiz
$\wedge 2400.000 \mathrm{M}$	50.7	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	54.6	$\quad 54.0 \quad+0.6$ Radio 1-6 TX on same channel - $\mathrm{Pi} / 4$ DQPSK	Horiz
$\wedge 2400.000 \mathrm{M}$	40.8	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	44.7	$\quad 54.0$ -9.3 Radio 1\&2 IMOD 8DPSK	Horiz
$\wedge 2400.000 \mathrm{M}$	40.6	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	$+0.0$	44.5	$\quad 54.0 \quad-9.5$ Radio 1-6 TX on same channel - GFSK	Horiz
$\wedge 2400.000 \mathrm{M}$	40.6	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	44.5	54.0 Radio 1\&2 IMOD Pi/4 DQPSK	Horiz
^ 2400.000M	40.1	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	44.0	$54.0 \quad-10.0$ Radio 1 8DPSK	Horiz
$\wedge 2400.000 \mathrm{M}$	39.5	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	43.4	$\quad 54.0$ Radio 1 Pi/4 DQPSK	Horiz
${ }^{\wedge} 2400.000 \mathrm{M}$	34.8	$\begin{array}{r} \hline+0.0 \\ +2.7 \\ \hline \end{array}$	-28.2	+28.0	+1.4	+0.0	38.7	54.0 ${ }^{-15.3}$ Radio 1 GFSK	Horiz
$\wedge 2400.000 \mathrm{M}$	34.4	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	-28.2	+28.0	+1.4	+0.0	38.3	$\quad 54.0 \quad-15.7$ Radio $1 \& 2$ IMOD GFSK	Horiz

12	2483.500 M	32.3	+0.0 +2.7	-28.2	+27.9	+1.5	+0.0	36.2	54.0 Radio 1-6 TX on same channel -	Horiz
GFSK										

Plots

GFSK

High Channel Radio 1 GFSK Band Edge (maximized emissions) - Limit adjusted for correction factors. - Peak Measurement Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec Marker: $2.484 \mathrm{GHz} 22.8337 \mathrm{~dB} \mu \mathrm{~V}$

$\bigwedge_{\text {Testing the Future }}$
LABORATORIES, INC.

MultiChannel Test: Radio 182 GFSK Two Tone intermodulation. Limt adjusted for correction factors. - Peak Measurement Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB
 RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec
 Marker: $2.4 \mathrm{GHz} 34.4067 \mathrm{~dB} \mu \mathrm{~V}$

MultiChannel Test: Radio 182 GFSK Two Tone Intermodulation. Limt adjusted for correction factors. - Peak Measurement Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB
RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec
Marker: $2.484 \mathrm{GHz} \quad 28.7487 \mathrm{~dB} \mu \mathrm{~V}$

8DPSK

 1 MTesting the Future
LABORATORIES, INC.

$1 \mathrm{M}_{\text {Testing the Future }}$
LABORATORIES, INC.

High Channel Radio 1 8DPSK Band Edge (maximized emissions) - Limit adjusted for correction factors. - Peak Measurement. Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB
RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec Marker: $2.484 \mathrm{GHz} 30.0877 \mathrm{~dB} \mu \mathrm{~V}$

Multichannel Test: Radio 182 8DPSK Two Tone Intermodulation. Limt adjusted for correction factors. - Peak Measurement Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB
RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec
Marker: $2.4 \mathrm{GHz} 40.7527 \mathrm{~dB} \mu \mathrm{~V}$

- 15.249 Carrier and Spurious Emissions [$2400-2483.5 \mathrm{MHz}$ Transmitter)

```
MultiChannel Test: Radio 182 8DPSK Two Tone Intermodulation. Limt adjusted for correction factors. - Peak Measurement
Ref Level 96.99 dB\muV ATTEN 0 dB
RES BW: 1.0MHz VID BW: 3.0MHz SWP: 20.0msec
Marker: 2.484GHz 28.3967dB\muV
```


Pi4DQPSK

 1 Mesting the Future
LABORATORIES, INC.

 Whemomome
LABORATORIES, INC.

High Channel Radio 1 PV4 DQPSK Band Edge (maximized emissions) - Limit adjusted for correction factors. - Peak Measurem Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB
RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec
Marker: $2.484 \mathrm{GHz} 23.8587 \mathrm{~dB} \mu \mathrm{~V}$

MultiChannel Test: Radio 182 PV/4 DQPSK Two Tone intermodulation. Limt adjusted for correction factors. - Peak Measureme Ref Level $96.99 \mathrm{~dB} \mu \mathrm{~V}$ ATTEN 0 dB
RES BW: 1.0 MHz VID BW: 3.0 MHz SWP: 20.0 msec
Marker: $2.4 \mathrm{GHz} \quad 40.5807 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$

- 15.249 Carrier and Spurious Emissions ($2400-2483.5 \mathrm{MHz}$ Transmitter)

Test Setup Photos

$9 \mathrm{kHz}-30 \mathrm{MHz}$

CMC M M Testing the Future

$18-26 G H z$

SUPPLEMENTAL INFORMATION

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mathrm{\mu V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V/m)}$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: \times QPReadings
 Software Version: 5.02.00

