

Page 1 / 60

FCC SAR TEST REPORT

For

Autel Intelligent Tech. Corp., Ltd.

6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan, Shenzhen, China

- Product: PROFESSIONAL SCAN TOOL(Model: MaxiCheck
MX808TS),
AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM
(Model: MaxiCOM MK808TS),
AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM
(Model: MaxiDAS DS808TS),
AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM
(Model: MaxiPRO MP808TS),
COMPREHENSIVE TPMS TOOL(Model: MaxiTPMS TS608)FCC ID: WQ8MX808TS-17
- FCC ID : WQ8MX8081S-17
- Date of Receipt : 22th June. 2017
- Date of Test : 27th June. 2017
- Issued Date : 28th June. 2017
- **Report No.** : TS201708082

Report Version : V1.0

Issue By

Shenzhen Sunway Communication CO., LTD Testing Center

1/F,BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District, Shenzhen, Guangdong, China 518104,

Note: The test results relate only to the samples tested. This report shall not be reproduced in full, without the written approval of SUNWAY Testing Center.

 Report NO: TS201708082
 Page 2 / 60

TABLE OF CONTENS

1. Statement of Compliance	4
2. SAR Evaluation compliance	5
3. General Information:	6
3.1 EUT Description:	6
3.2 Test Environment:	6
4. SAR Measurement System:	7
4.1 Dasy4 System Description:	7
5. System Components:	8
6. EUT Test Position:	11
7. Tissue Simulating Liquid	14
7.1 The composition of the tissue simulating liquid:	14
7.2 Tissue Calibration Result:	14
8. SAR System Validation	15
8.1 Validation System:	15
8.2 Validation Dipoles:	15
8.3 Validation Result:	16
9. SAR Evaluation Procedures:	17
10. SAR Exposure Limits	19
10.1 Uncontrolled Environment	19
10.2 Controlled Environment	19
11. Measurement Uncertainty:	20
12. Conducted Power Measurement:	22
13. Antenna Location	24
14. Results and Test photos :	26
14.1 SAR result summary:	26
14.2 DUT photos:	27
15. Simultaneous TX SAR Considerations:	28
16. Equipment List:	29
Appendix A. System validation plots:	

Report NO: TS201708082	Page 3 / 60	
Appendix B. SAR Test plots:		32
Appendix C. Probe Calibration Data:		36
Appendix D. DAE Calibration Data:		47
Appendix E. Dipole Calibration Data:		50

Report NO: TS201708082

Page 4 / 60

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Exposure Position	Frequency Band	1g-SAR (W/kg)
Body	WLAN2.4G	0.520
(0mm Gap)	Bluetooth	0.246

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Report NO: TS201708082

Page 5 / 60

2. SAR Evaluation compliance

Brand Name:	AUTEL
Product description:	PROFESSIONAL SCAN TOOL(Model: MaxiCheck MX808TS), AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM (Model: MaxiCOM MK808TS), AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM (Model: MaxiDAS DS808TS), AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM (Model: MaxiPRO MP808TS), COMPREHENSIVE TPMS TOOL(Model: MaxiTPMS TS608)
Applicant:	Autel Intelligent Tech. Corp., Ltd.
Address:	6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan, Shenzhen, China
Manufacturer:	Autel Intelligent Tech. Corp., Ltd.
Address:	6th - 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan, Shenzhen, China
Applicable Standard:	FCC 47 CFR Part 2 (2.1093) ANSI/IEEE C95.1-1992 IEEE 1528-2013 FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 FCC KDB 865664 D02 SAR Reporting v01r02 FCC KDB 447498 D01 General RF Exposure Guidance v06 FCC KDB 648474 D04 Handset SAR v01r03 FCC KDB 248227 D01 Wi-Fi SAR v02r02 FCC KDB 616217 D04 SAR for laptop and tablets v01r02
Performed Date:	29th Aug. 2017
Test Engineer:	Li.zhao
Reviewed By	Tomy. Lill
Performed Location:	Shenzhen Sunway Communication CO.,LTD Testing Center 1/F,BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District,Shenzhen, Guangdong, China 518104 Tel: +86-755- 36615880 Fax: +86-755- 86525532

Report NO: TS201708082

Page 6 / 60

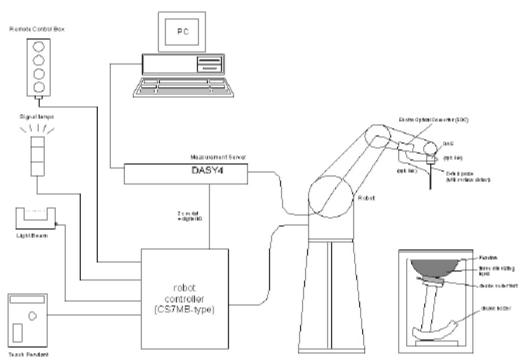
3. General Information:

3.1 EUT Description:

	EUT Information
Brand Name	AUTEL
Product description:	PROFESSIONAL SCAN TOOL(Model: MaxiCheck MX808TS), AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM (Model: MaxiCOM MK808TS), AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM (Model: MaxiDAS DS808TS), AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM (Model: MaxiPRO MP808TS), COMPREHENSIVE TPMS TOOL(Model: MaxiTPMS TS608)
Hardware Version	1
Software Version	1
	WLAN 2.4GHz Band: 2412 MHz ~ 2472 MHz
Tx Frequency	Bluetooth: 2402 MHz ~ 2480 MHz
	802.11b/g/n HT20
	Bluetooth V3.0+EDR
Mode	433.94MHz
	315MHz
	125KHz
Remark:	
1. 802.11n-HT40 is not sup	ported in 2.4GHz WLAN.
2. The tablet pc not support	ed Voice mode.

3.2 Test Environment:

Ambient conditions in the SAR laboratory:


Items	Required	Actual		
Temperature (℃)	18-25	22~23		
Humidity (%RH)	30-70	55~65		

Report NO: TS201708082

Page 7 / 60

4. SAR Measurement System:

4.1 Dasy4 System Description:

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection.
- > A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- > A computer operating Windows 2000 or Windows XP.
- > DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- > The SAM twin phantom enabling testing left-hand and right-hand usage.
- > The device holder for handheld mobile phones.
- > Tissue simulating liquid mixed according to the given recipes.
- > Validation dipole kits allowing to validate the proper functioning of the system.

Report NO: TS201708082

Page 8 / 60

5. System Components:

> DASY4 Measurement Server:

Calibration: No calibration required.

> DATA Acquisition Electronics (DAE):

Calibration: Recommended once a year

Dosimetric Probes:

Calibration: Recommended once a year

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The data acquisition electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Model: EX3DV4,

Frequency: 10MHz to 6G, Linearity:±0.2dB, Dynamic Range: 10 µW/g to100 mW/g Directivity:

 \pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Report NO: TS201708082

Page 9 / 60

Light Beam unit:

Calibration: No calibration required.

SAM Twin Phantom:

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm.

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

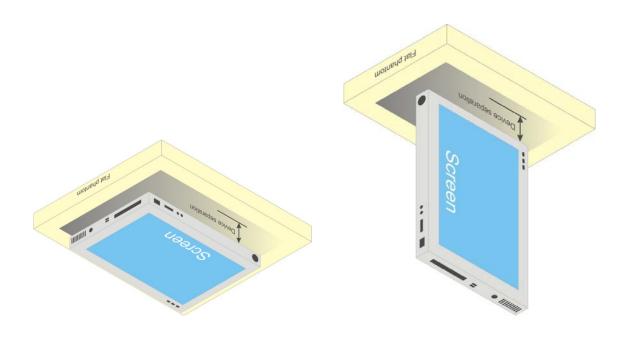
- Left hand
- Right hand
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELI4 Phantom:

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. Shell Thickness: 2 ± 0.2 mm (sagging: <1%) Filling Volume: Approx. 30 liters Dimensions: Major ellipse axis: 600 mm Minor axis: 400 mm

> Device Holder for SAM Twin Phantom:


The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered

SHENZHEN SUNWAY COMMUNICATION CO.,LTD Report NO: TS201708082 Page 11 / 60

6. EUT Test Position:

This EUT was tested in five different positions. They are front/back/edge1/edge2/edge4 of the EUT with phantom 0 mm gap,

Illustration for Lap-touching Position

<DUT Setup Photos>

Back with Phantom 0 mm Gap

Front with Phantom 0 mm Gap

Edge 1 with Phantom 0 mm Gap

Edge 2 with Phantom 0 mm Gap

Report NO: TS201708082

Page 13 / 60

Edge 4 with Phantom 0 mm Gap

Report NO: TS201708082

Page 14 / 60

7. Tissue Simulating Liquid

7.1 The composition of the tissue simulating liquid:

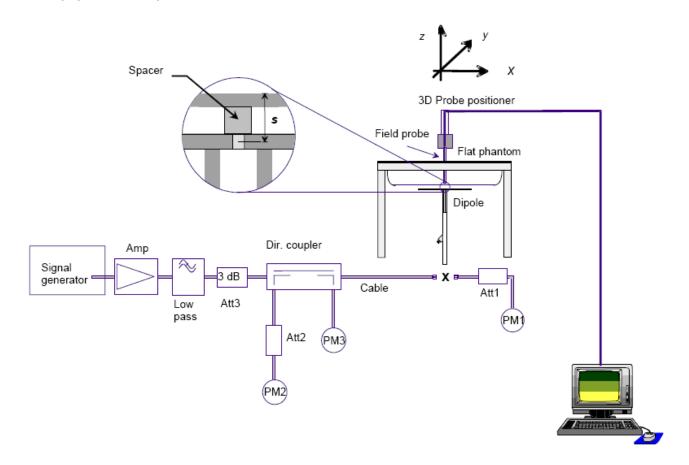
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency	Water	Sugar	Cellulose	Salt	Salt Preventol DGBE Conductivity		Permittivity	
(MHz)	(%)	(%)	(%) (%) (%) (σ)		(σ)	(εr)		
For Body								
2450	68.6	0	0	0	0	31.4	1.95	52.7

7.2 Tissue Calibration Result:

Frequency		Dielectric I	Parameters	Tiagua Tamp	
Frequency (MHz)	Description	Permittivity	Conductivity	Tissue Temp. (℃)	Date
		(ɛr)	(σ)	(0)	
2450	Reference	52.7±5%	1.95±5%	NA	
	Relefence	(50.065~55.335)	(1.8525~2.0475)	INA	2017/06/27
(Body)	Measurement	50.9	1.88	22.3	

Liquid depth in the ELI4 Phantom (2450 MHz) (depth>15cm)


Report NO: TS201708082

Page 15 / 60

8. SAR System Validation

8.1 Validation System:

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

8.2 Validation Dipoles:

The dipoles used is based on the IEEE-1528/EN62209-1 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE-1528/EN62209-1 and FCC Supplement C.

Report NO: TS201708082

Page 16 / 60

8.3 Validation Result:

Frequency (MHz)	Description	SAR(1g) W/Kg	SAR(10g) W/Kg	Tissue Temp. (℃)	Date
2450	Reference	51.8±10%	24.2±10%	NA	2017/06/27
(Body)		(46.62~56.98)	(21.78~26.62)		2017/00/27
(BOUY)	Measurement	54.8	25.52	22.3	

Report NO: TS201708082

Page 17 / 60

9. SAR Evaluation Procedures:

The procedure for assessing the average SAR value consists of the following steps:

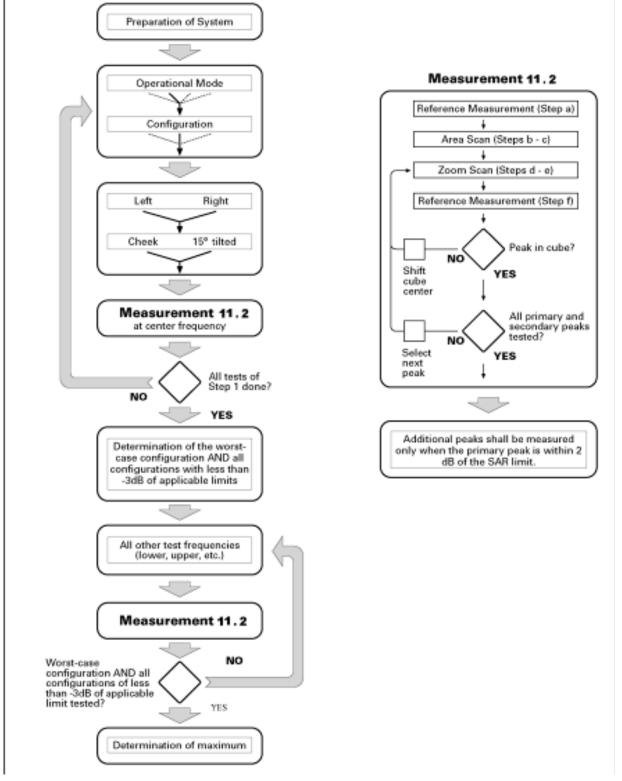
> Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user.

Zoom Scan


Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 7 x 7 x 7 points (5mmx5mmx5mm) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

Power Drift Measurement

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement.

Report NO: TS201708082

Page 18 / 60

Block diagram of the tests to be performed

Report NO: TS201708082

Page 19 / 60

10. SAR Exposure Limits

10.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

10.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Report NO: TS201708082

Page 20 / 60

11. Measurement Uncertainty:

NO	Source	Uncert. ai(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand. Uncert. ui (1g)	Stand. Uncert. ui (10g)	Veff
1	Repeat	0.04	Ν	1	1	1	0.04	0.04	9
nstrument									
2	Probe calibration	7.5	Ν	2	1	1	3.75	3.75	×
3	Axial isotropy	0.9	R	√3	0.7	0.7	0.4	0.4	∞
4	Hemispherical isotropy	9.6	R	√3	0.7	0.7	3.9	3.9	ø
5	Boundary effect	1.0	R	12	1	1	0.6	0.6	×
6	Linearity	0.9	R	$\sqrt{3}$	1	1	0.5	0.5	×
7	Detection limits	1.0	R	√3	1	1	0.6	0.6	×
8	Readout electronics	0.3	Ν	1	1	1	0.3	0.3	8
9	Response time	0.8	R	√3	1	1	0.5	0.5	×
10	Integration time	2.6	R	√3	1	1	1.5	1.5	×
11	Ambient noise	3.0	R	√3	1	1	1.7	1.7	œ
12	Ambient reflections	3.0	R	√3	1	1	1.7	1.7	8
13	Probe positioner mech. restrictions	0.4	R	√3	1	1	0.2	0.2	ø
14	Probe positioning with respect to phantom shell	2.9	R	√3	1	1	1.7	1.7	∞
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	×
Test	sample related								
16	Device positioning	3.8	N	1	1	1	3.8	3.8	99

9

SHENZHEN SUNWAY COMMUNICATION CO.,LTD

Report NO: TS201708082

Page 21 / 60

17	Device holder	5.1	Ν	1	1	1	5.1	5.1	5
18	Drift of output power	5.0	R	√3	1	1	2.9	2.9	∞
Phan	tom and set-up								
19	Phantom uncertainty	4.0	R	√3	1	1	2.3	2.3	8
20	Liquid conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	∞
21	Liquid conductivity (meas)	2.5	Ν	1	0.64	0.43	1.6	1.2	∞
22	Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.5	∞
23	Liquid Permittivity (meas)	2.5	Ν	1	0.6	0.49	1.5	1.2	∞
24	Liquid conductivity— temperature uncertainty	4.6	R	√3	0.78	0.71	2.1	1.9	8
25	Liquid permittivity— temperature uncertainty	4.6	R	√3	0.23	0.26	0.6	0.7	8
Corr	ibined standard		RSS	U _c	$=\sqrt{\sum_{i=1}^{n}C_{i}}$	$\int_{1}^{2} U_{i}^{2}$	12.4%	12.1%	236
Expa (P=9	anded uncertainty 95%)		U = k U	/ _c , k= 2	2		22.6%	22.4%	

Report NO: TS201708082

Page 22 / 60

12. Conducted Power Measurement:

Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)	Test Rate Data	Duty Cycle used for SAR testing
	1	2412	16.11	1 Mbps	
802.11b	6	2437	16.64	1 Mbps	
	11	2462	16.38	1 Mbps	
	1	2412	15.35	6 Mbps	
802.11g	6	2437	15.63	6 Mbps	100%
	11	2462	15.82	6 Mbps	
	1	2412	14.13	6.5 Mbps	
802.11n(20MHz)	6	2437	14.23	6.5 Mbps	
	11	2462	14.18	6.5 Mbps	

<WLAN 2.4GHz Conducted Power>

Note:

1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation* $distances \le 50$ mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Mode	Frequency (GHz)	Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
802.11b	2.437	18	63.10	5	19.70	3.0
802.11g	2.437	17	50.12	5	15.65	3.0

2. Base on the result of note1, RF exposure evaluation of 802.11 b mode is required.

3. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.

4. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Report NO: TS201708082

Page 23 / 60

<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)	Duty Cycle used for SAR testing
	0	2402	12.01	
GFSK	39	2441	11.89	
	78	2480	11.87	
	0	2402	11.66	
π/4DQPSK	39	2441	11.75	85%
	78	2480	11.89	
	0	2402	11.64	
8DPSK	39	2441	11.59	
	78	2480	11.78	

Frequency (MHz)	Conducted Average Power (dBm)
433.94	-20.97
315	-25.23
0.125	-12.84

Note:

1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation* $distances \le 50$ mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation

• The result is rounded to one decimal place for comparison

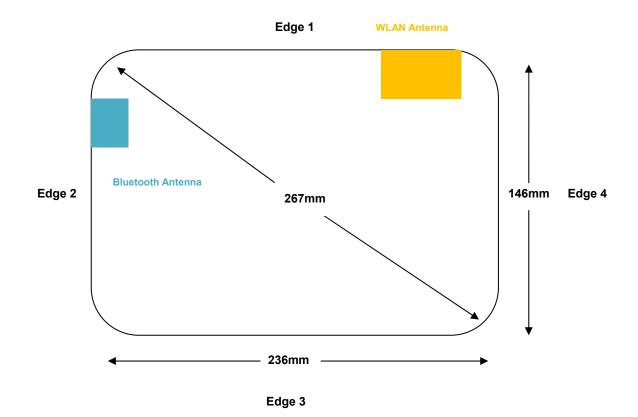
Per KDB 447498 D01, the SAR test exclusion thresholds for frequencies below 100 MHz at *test separation distances* ≤ 50 mm are determined by KDB 447498 D01 Appendix C

2. For 433.94MHz Transmitter. The calculate formula is

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}]=[-20.97dBm/5mm]^*[\sqrt{f(0.43394GHz)}]= [0.007998mW/5mm]^*[\sqrt{f(0.43394GHz)}]=0.001<3.0.$ For 315MHz Transmitter. The calculate formula is

 $[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [\sqrt{f(GHz)}]=[-25.23dBm/5mm]^*[\sqrt{f(0.315GHz)}]= [0.002999mW/5mm]^*[\sqrt{f(0.315GHz)}]= 0.0003 < 3.0.$

For 0.125MHz Transmitter. The calculate formula is


-12.84dBm=0.052mW<711mW.

3. Base on the result of note 2, RF exposure evaluation of 433.94MHz, 315MHz and 0.125MHz are not required.

Report NO: TS201708082

Page 24 / 60

13. Antenna Location

Front View

	Dista	nce of The Ar	ntenna to the l	EUT surface and	ledge	
Antennas	Front	Back	Edge 1	Edge 2	Edge 3	Edge 4
WLAN	0mm	0mm	0mm	196mm	130mm	15mm
Bluetooth	0mm	0mm	20mm	0mm	96mm	210mm

General Note: Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- · f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation

Report NO: TS201708082

Page 25 / 60

Modulation	Frequency (GHz)	Position	Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds	Standalone SAR Exclusion
	2.437	Front	18	63.10	5	19.70	3.0	no
	2.437	Back	18	63.10	5	19.70	3.0	no
WLAN	2.437	Edge1	18	63.10	5	19.70	3.0	no
2.4G	2.437	Edge2	18	63.10	196	0.50	3.0	yes
	2.437	Edge3	18	63.10	130	0.76	3.0	yes
	2.437	Edge4	18	63.10	15	6.57	3.0	no
	2.402	Front	14	25.12	5	7.85	3.0	no
	2.402	Back	14	25.12	5	7.85	3.0	no
Bluetooth	2.402	Edge1	14	25.12	20	1.96	3.0	yes
Divelooli	2.402	Edge2	14	25.12	5	7.85	3.0	no
	2.402	Edge3	14	25.12	96	0.41	3.0	yes
	2.402	Edge4	14	25.12	210	0.19	3.0	yes

Remark:

1. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

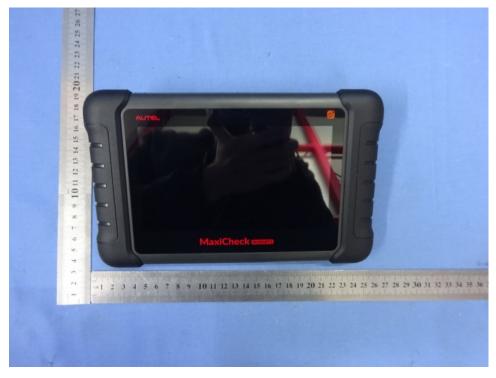
2. Per KDB 648474, if overall diagonal dimension of the display section of a tablet lager than 20 cm, no need consider Hotspot mode.

Report NO: TS201708082

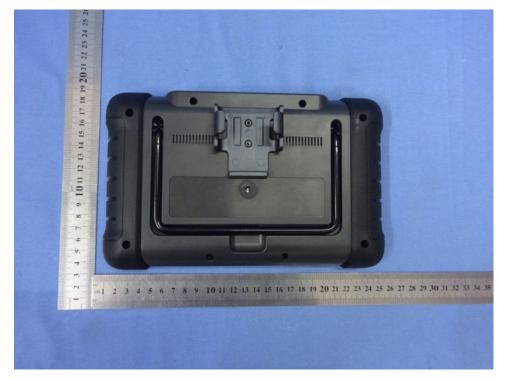
Page 26 / 60

14. Results and Test photos :

14.1 SAR result summary:


Body (0mm between DUT and Flat Phantom)

Test C	ase of Bod	у	Meas.	Target		Duty	Meas. SAR	Scale	Power	
Band	Test Position	СН	Power (dBm)	Power (dBm)	Factor	Cycle Factor	(W/kg) 1g Avg.	SAR (W/kg)	Drift <±0.2 dB	Plot
	Front	Ch6	16.64	18.00	1.368	1	0.083	0.114	0.15	
WLAN	Back	Ch6	16.64	18.00	1.368	1	0.261	0.357	-0.11	
2.4G	Edge 1	Ch6	16.64	18.00	1.368	1	0.38	0.520	0.08	#1
	Edge 4	Ch6	16.64	18.00	1.368	1	0.057	0.078	-0.09	
	Front	Ch0	12.01	14.00	1.580	1.176	0.028	0.044	0.15	
Bluetooth	Back	Ch0	12.01	14.00	1.580	1.176	0.016	0.025	0.13	
	Edge 2	Ch0	12.01	14.00	1.580	1.176	0.156	0.246	-0.08	#2


Note: Referring to KDB 248227 D01 802.11 Wi-Fi SAR v02r02 the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, so SAR is not required for the 2.4GHz OFDM.

14.2 DUT photos:

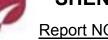
Front

Back

Report NO: TS201708082

Page 28 / 60

15. Simultaneous TX SAR Considerations:


For the EUT, the WLAN antenna and Bluetooth antenna not support Simultaneous transmission.

Report NO: TS201708082

Page 29 / 60

16. Equipment List:

NO.	Instrument	Manufacturer	Model	S/N	Cal. Date	Cal. Due Date
1	E-field Probe	Speag	EX3DV4	3836	Jul 7 th 2016	Jul 6 th 2017
2	Dielectric Probe Kit	Speag	DAK	1038	N/A	N/A
3	DAE	Speag	DAE4	760	Jun 24 th 2016	Jun 23 th 2017
4	Robot	Stabuli	TX60L	N/A	N/A	N/A
5	Device Holder	Speag	SD000H0 1HA	N/A	N/A	N/A
6	Vector Network	Agilent	E5071C	MY461076 15	Jul 7 th 2016	Jul 6 th 2017
7	Signal Generator	Agilent	E4438C	MY490722 79	Jul 7 th 2016	Jul 6 th 2017
8	Amplifier	Mini-circult	ZHL-42W	QA098002	N/A	N/A
9	Power Meter	Agilent	N1419A	MY500015 63	Jul 8 th 2016	Jul 7 th 2017
10	Power Meter	Agilent	E4416A	MY451008 30	July 7 th 2016	July 6 th 2017
11	Power Sensor	Agilent	N8481H	MY510200 10	Jul 8 th 2016	Jul 7 th 2017
12	Power Sensor	Agilent	E9323A	US404101 34	July 7 th 2016	July 6 th 2017
13	Directional Coupler	Agilent	772D	MY461512 75	Jul 7 th 2016	Jul 6 th 2017
14	Directional Coupler	Agilent	778D	MY482206 07	Jul 7 th 2016	Jul 6 th 2017
15	Dipole 2450MHz	Speag	D2450V2	955	Jan 8 th 2015	Jan 7 th 2018

Report NO: TS201708082

Page 30 / 60

Appendix A. System validation plots:

Date: 6/27/2017

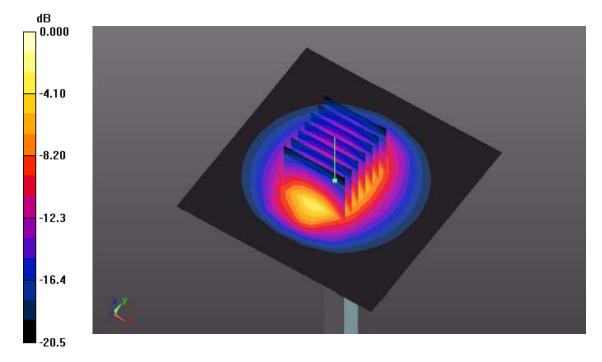
Test Laboratory: SUNWAY COMMUNICATION CO., LTD.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 955 Program Name: System Performance Check at 2450 MHz Body

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.88 mho/m; ϵ_r = 50.9; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3836; ConvF(7.20, 7.20, 7.20); Calibrated: 7/7/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 16.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.9 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.38 mW/g

Maximum value of SAR (measured) = 15.9 mW/g

Report NO: TS201708082

Page 31 / 60

0 dB = 15.9mW/g

Report NO: TS201708082

Page 32 / 60

Appendix B. SAR Test plots:

#1

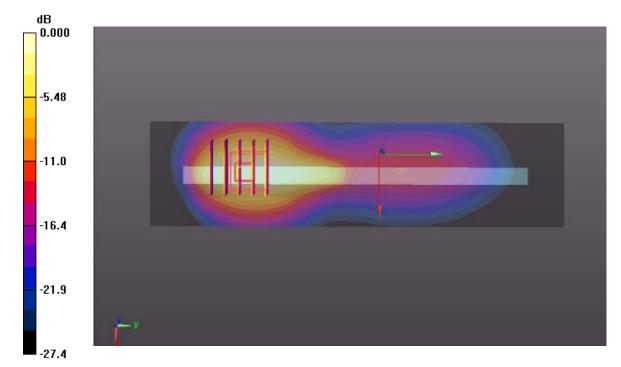
Date: 6/27/2017

Test Laboratory: SUNWAY COMMUNICATION CO., LTD.

WLAN2.4G_802.11b_Edge 1_0mm_Ch6

Communication System: 802.11; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.87 mho/m; ϵ_r = 50.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3836; ConvF(7.20, 7.20, 7.20); Calibrated: 7/7/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Edge 1/Area Scan (51x151x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.61 mW/g

Edge 1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.28 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.65 W/kg SAR(1 g) = 0.38 mW/g; SAR(10 g) = 0.17 mW/g Maximum value of SAR (measured) = 0.58 mW/g

Report NO: TS201708082

Page 33 / 60

0 dB = 0.58 mW/g

Report NO: TS201708082

Page 34 / 60

#2

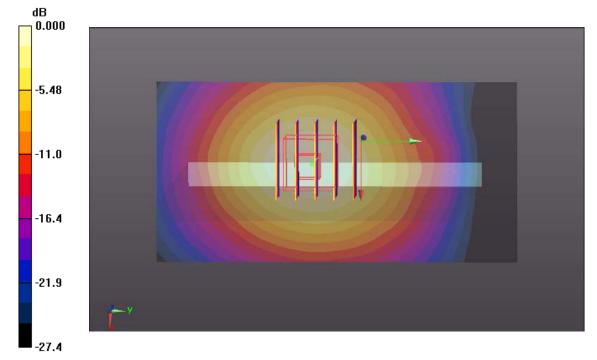
Date: 6/27/2017

Test Laboratory: SUNWAY COMMUNICATION CO., LTD.

Bluetooth_GFSK_Edge 2_0mm_Ch0

Communication System: 802.11; Frequency: 2402 MHz;Duty Cycle: 1:1.2 Medium parameters used: f = 2402 MHz; σ = 1.76 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3836; ConvF(7.20, 7.20, 7.20); Calibrated: 7/7/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn760; Calibrated: 6/24/2016
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Edge 2/Area Scan (51x101x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.31 mW/g

Edge 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.21 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.35 W/kg SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.102 mW/g Maximum value of SAR (measured) = 0.28 mW/g

Report NO: TS201708082

Page 35 / 60

0 dB = 0.28mW/g

Report NO: TS201708082

Page 36 / 60

Appendix C. Probe Calibration Data:

	TI		e a g	CNAS 校准
Tel: +86	o.51 Xueyua 5-10-623046 cttl@chinatt	33-2218 Fax: +8	ict, Beijing, 100191, China 6-10-62304633-2209 www.chinattl.cn	CALIBRAT CNAS LOS
Client	Sunv		Certificate No: Z16-9	7101
CALIBRATI	and the second second	States and a state of the		A CONTRACTOR OF
OALIDIAII				
Object		EX3DV4	- SN:3836	
Calibration Proced	ure(s)	FD-Z11-2	2 004 01	
			on Procedures for Dosimetric E-field Probes	
Calibration date:		July 07, 2		
			aceability to national standards, which reali	
humidity<70%.			ne closed laboratory facility: environment	temperature(22±3)°C and
		A	,	
Primary Standards		ID# (Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power Meter N	IRP2	ID # (Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Primary Standards Power Meter N Power sensor N	IRP2 RP-Z91	ID # (101919 101547	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777)	Jun-17 Jun-17
Primary Standards Power Meter N Power sensor N Power sensor N	RP2 RP-Z91 RP-Z91	ID # (101919 101547 101548	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777)	Jun-17 Jun-17 Jun-17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt	IRP2 RP-Z91 RP-Z91 ttenuator	ID # (101919 101547 101548 18N50W-10dB	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL,No.J16X01547)	Jun-17 Jun-17 Jun-17 Mar-18
Power sensor N Power sensor N Reference10dBAt Reference20dBAt	IRP2 RP-Z91 RP-Z91 ttenuator ttenuator	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe	IRP2 RP-Z91 RP-Z91 ttenuator ttenuator	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt	IRP2 RP-Z91 RP-Z91 ttenuator ttenuator	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4	IRP2 RP-Z91 RP-Z91 ttenuator ttenuator EX3DV4	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe	IRP2 RP-Z91 RP-Z91 ttenuator ttenuator EX3DV4	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4 Secondary Standa	IRP2 RP-Z91 RP-Z91 Itenuator Itenuator EX3DV4 ards IG3700A	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID #	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4 Secondary Standa SignalGeneratorM	IRP2 RP-Z91 RP-Z91 Itenuator Itenuator EX3DV4 ards IG3700A E5071C	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17 Jan -17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4 Secondary Standa SignalGeneratorM	IRP2 RP-Z91 RP-Z91 Itenuator EX3DV4 ards IG3700A E5071C	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894)	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4 Secondary Standa SignalGeneratorM Network Analyzer	IRP2 RP-Z91 RP-Z91 Itenuator EX3DV4 ards IG3700A E5071C	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17 Jan -17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4 Secondary Standa SignalGeneratorM Network Analyzer Calibrated by: Reviewed by:	IRP2 RP-Z91 RP-Z91 Itenuator EX3DV4 ards IG3700A E5071C	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying Qi Dianyuan	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.DAE4-1331_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer SAR Project Leader	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17 Jan -17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4 Secondary Standa SignalGeneratorM Network Analyzer Calibrated by: Reviewed by:	IRP2 RP-Z91 RP-Z91 Itenuator EX3DV4 ards IG3700A E5071C	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -16 Jan -17 Scheduled Calibration Jun-17 Jan -17
Primary Standards Power Meter N Power sensor N Power sensor N Reference10dBAt Reference20dBAt Reference Probe DAE4 Secondary Standa SignalGeneratorM Network Analyzer Calibrated by: Reviewed by: Approved by:	IRP2 RP-Z91 RP-Z91 Itenuator EX3DV4 ards IG3700A E5071C	ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying Qi Dianyuan Lu Bingsong	Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.DAE4-1331_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer SAR Project Leader	Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -18 Aug-16 Jan -17 Scheduled Calibration Jun-17 Jan -17 Signature

Certificate No: Z16-97101

Page 1 of 11

Report NO: TS201708082

Page 37 / 60

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 $\theta = 0$ is normal to probe axis $\eta = 0$ is normal to probe axis $\theta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

- Methods Applied and Interpretation of Parameters:
- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97101

Page 2 of 11

Report NO: TS201708082

Page 38 / 60

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Probe EX3DV4

SN: 3836

Calibrated: July 07, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z16-97101

Page 3 of 11

Report NO: TS201708082

Page 39 / 60

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3836

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.40	0.46	0.43	±10.8%
DCP(mV) ^B	93.2	100.2	98.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	167.8	±2.0%
		Υ	0.0	0.0	1.0		182.5	
		Ζ	0.0	0.0	1.0		176.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z16-97101

Page 4 of 11

Report NO: TS201708082

Page 40 / 60

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3836

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.43	9.43	9.43	0.30	0.80	±12%
835	41.5	0.90	9.42	9.42	9.42	0.15	1.58	±12%
900	41.5	0.97	9.03	9.03	9.03	0.15	1.46	±12%
1750	40.1	1.37	8.04	8.04	8.04	0.14	1.63	±12%
1900	40.0	1.40	7.60	7.60	7.60	0.16	1.59	±12%
2300	39.5	1.67	7.45	7.45	7.45	0.53	0.68	±12%
2450	39.2	1.80	7.07	7.07	7.07	0.54	0.71	±12%
2600	39.0	1.96	6.96	6.96	6.96	0.61	0.66	±12%
5200	36.0	4.66	5.32	5.32	5.32	0.40	1.42	±13%
5300	35.9	4.76	5.13	5.13	5.13	0.40	1.40	±13%
5500	35.6	4.96	4.85	4.85	4.85	0.40	1.35	±13%
5600	35.5	5.07	4.59	4.59	4.59	0.40	1.45	±13%
5800	35.3	5.27	4.71	4.71	4.71	0.40	1.45	±13%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z16-97101

Page 5 of 11

Report NO: TS201708082

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3836

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.38	9.38	9.38	0.30	0.85	±12%
835	55.2	0.97	9.25	9.25	9.25	0.17	1.44	±12%
900	55.0	1.05	8.95	8.95	8.95	0.14	1.60	±12%
1750	53.4	1.49	7.64	7.64	7.64	0.17	1.71	±12%
1900	53.3	1.52	7.33	7.33	7.33	0.18	1.80	±12%
2300	52.9	1.81	7.45	7.45	7.45	0.51	0.80	±12%
2450	52.7	1.95	7.20	7.20	7.20	0.62	0.70	±12%
2600	52.5	2.16	6.99	6.99	6.99	0.52	0.79	±12%
5200	49.0	5.30	4.83	4.83	4.83	0.50	1.25	±13%
5300	48.9	5.42	4.60	4.60	4.60	0.50	1.35	±13%
5500	48.6	5.65	4.32	4.32	4.32	0.50	1.35	±13%
5600	48.5	5.77	4.20	4.20	4.20	0.50	1.40	±13%
5800	48.2	6.00	4.30	4.30	4.30	0.50	1.30	±13%

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

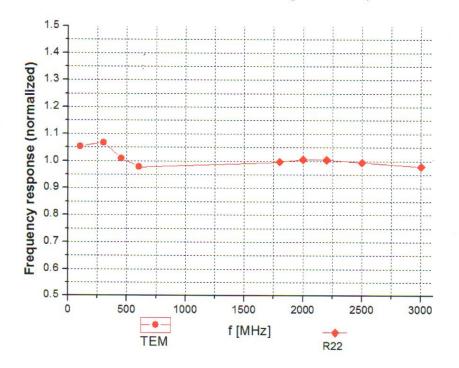
^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z16-97101

Page 6 of 11

Report NO: TS201708082

Page 42 / 60



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

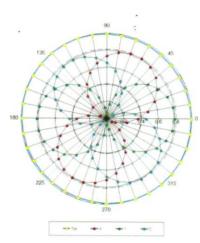
Certificate No: Z16-97101

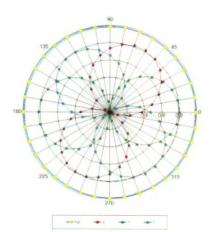
Page 7 of 11

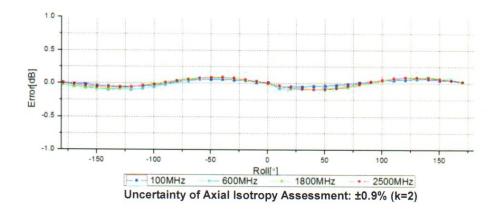
Report NO: TS201708082

Page 43 / 60

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209


 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

Certificate No: Z16-97101

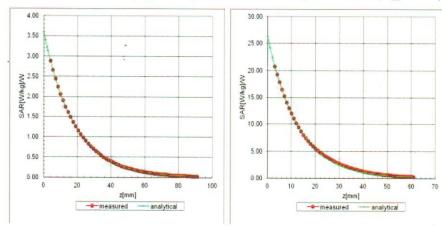
Page 8 of 11

Report NO: TS201708082

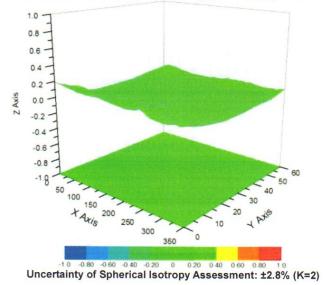
Page 44 / 60

Report NO: TS201708082

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

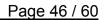

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1900 MHz, WGLS R22(H_convF)


Deviation from Isotropy in Liquid

Certificate No: Z16-97101

Page 10 of 11

Report NO: TS201708082

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3836

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	47.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z16-97101

Page 11 of 11

Appendix D. DAE Calibration Data:

T		e a g		CNA	中国认可国际互认
Add: No.51 Xu Tel: +86-10-62: E-mail: cttl@ch	304633-2218 Fax:	TION LABORATORY strict, Beijing, 100191, China +86-10-62304633-2209 ://www.chinattl.cn	- Contraction		CALIBRATI CNAS L057
Client : Sur	nway		Certificate N	lo: Z16-97100	
CALIBRATION	CERTIFICA	TE			
Object	DAE4	- SN: 760			
Calibration Procedure(s)	FD-71	1-2-002-01			
		ation Procedure for th	ne Data Acquisiti	on Electronics	
Calibration date:	June 2	24, 2016			
All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	sed (M&TE critical			nent temperature	
Process Calibrator 753	1971018	06-July-15 (CTTL, No:	J15X04257)	July-16	
	Name	Function		Signatura	
Calibrated by:	Yu Zongying	SAR Test Engine	er	Signature	
Reviewed by:	Qi Dianyuan	SAR Project Lea		20	
Approved by:	Lu Bingsong	Deputy Director	of the laboratory	fre are i	5
				ued: June 25, 201	
This calibration certificate	e shall not be repro	duced except in full wit	hout written appro	val of the laborato	ory.

Certificate No: Z16-97100

Page 1 of 3

Report NO: TS201708082

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z16-97100

Page 2 of 3

Report NO: TS201708082

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

 A/D - Converter Resolution nominal

 High Range:
 1LSB =
 6.1μV ,
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV ,
 full range =
 -1.....+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	403.785 ± 0.15% (k=2)	405.082 ± 0.15% (k=2)	405.373 ± 0.15% (k=2)
Low Range	3.97148 ± 0.7% (k=2)	3.98467 ± 0.7% (k=2)	3.96141 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	248.5°±1°

Certificate No: Z16-97100

Page 3 of 3

Report NO: TS201708082

Page 50 / 60

Appendix E. Dipole Calibration Data:

Engineering AG Ceughausstrasse 43, 8004 Zuric	ry of .h. Switzerland		Canden sulans distalances
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatorie	is to the EA	Accreditation No.: SCS 0108
Client SMQ (Auden)			to: D2450V2-955_Jan15/2
CALIBRATION C	ERTIFICATE	E (Replacement of No: I	02450V2-955_Jan15)
Object .	D2450V2 - SN: 9	55	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits at	oove 700 MHz
Calibration date:	January 08, 2015	5	
The measurements and the unce	artainties with confidence p	ional standards, which realize the physical u robability are given on the following pages a	ind are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	artainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages r ry facility: environment temperature (22 ± 3)	ind are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	artainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A	attainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	ord are part of the certificate. °C and humidity < 70%. Scheduled Calibration Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	atainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783 MY41092317	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	"C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	"C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	PC and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8" Primary Standards Power sensor EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5057.2 / 06327	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	"C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M8" Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 GB37480704 GB37480704 GB37480704 GB37480704 GB37292783 MY41092317 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 3206 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	And are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 3206	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	*C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Aug-15 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5068 (20k) SN: 606 SN: 601 ID #	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	And are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	artainties with confidence p cted in the closed laboration TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 601 ID # 100005	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	*C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Aug-15 Aug-15 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	artainties with confidence p cted in the closed laboration TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 5068 (20k) SN: 601 ID # 100005	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	*C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Aug-15 Aug-15 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	artainties with confidence p cted in the closed laboration TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205, Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-15) 18-Oct-01 (in house check Oct-14)	Ind are part of the certificate. Ind numidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
The measurements and the unce	rtainties with confidence p cted in the closed laboration TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Ind are part of the certificate. Ind numidity < 70%. Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D2450V2-955_Jan15/2

Page 1 of 8

Report NO: TS201708082

Page 51 / 60

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-955_Jan15/2

Page 2 of 8

Report NO: TS201708082

Page 52 / 60

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

+*	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.12 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-955_Jan15/2

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω + 3.5 jΩ		
Return Loss	- 24.9 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.2 Ω + 4.9 jΩ	
Return Loss	- 26.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.165 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	August 05, 2014		

Report NO: TS201708082

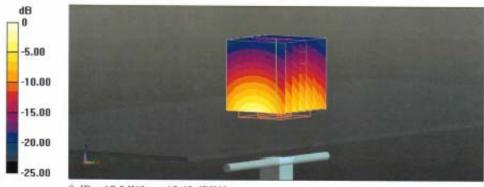
Page 54 / 60

Date: 08.01.2015

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 955


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63, 19-2011)

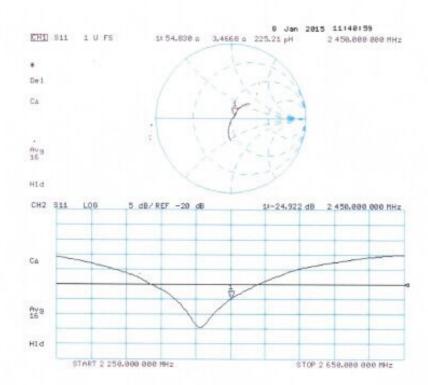
DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg


Certificate No: D2450V2-955_Jan15/2

Page 5 of 8

Report NO: TS201708082

Page 55 / 60

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-955_Jan15/2

Page 6 of 8

Report NO: TS201708082

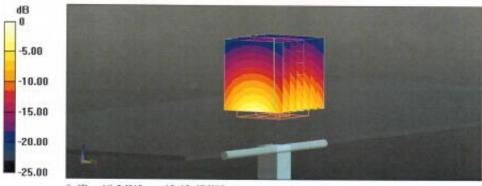
Page 56 / 60

Date: 08.01.2015

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 955

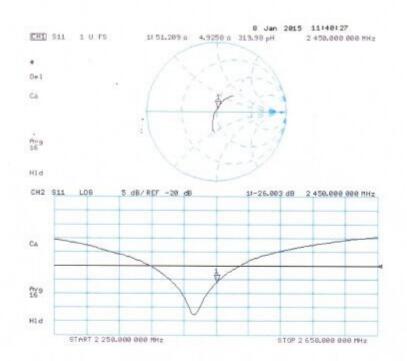

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.17, 4.17, 4.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.96 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.36 W/kg Maximum value of SAR (measured) = 18.3 W/kg


0 dB = 18.3 W/kg = 12.62 dBW/kg

Certificate No: D2450V2-955_Jan15/2

Page 7 of 8

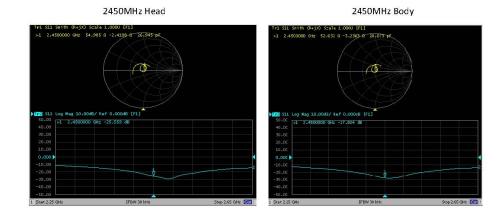
Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-955_Jan15/2

Page 8 of 8

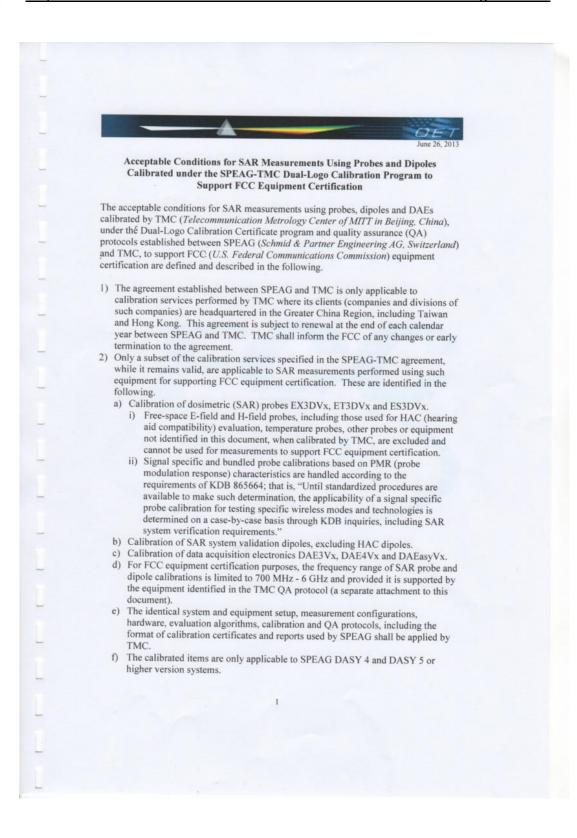
Report NO: TS201708082

Page 58 / 60

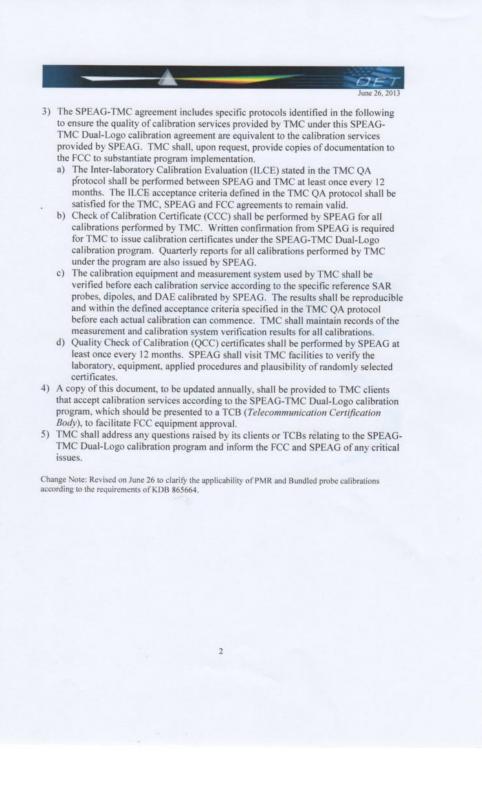

D2450V2, serial no. 955 Extended Dipole Calibrations

Referring to KDB 865664D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D2450V2, serial no. 955								
	2450 Head			2450 Body				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)
2015-1-8	-24.9		54.8		-26.0		51.2	
2016-1-2	-26.1	-4.8	55.6	0.8	-27.1	-4.2	52.1	0.9
2016-12-20	-25.6	-2.8	55.0	0.2	-27.8	-6.9	52.6	1.4


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data>- D2450V2, serial no. 955


Report NO: TS201708082

Page 59 / 60

Report NO: TS201708082

Page 60 / 60

*****END OF REPORT*****