

Report No.: EED32M80160302

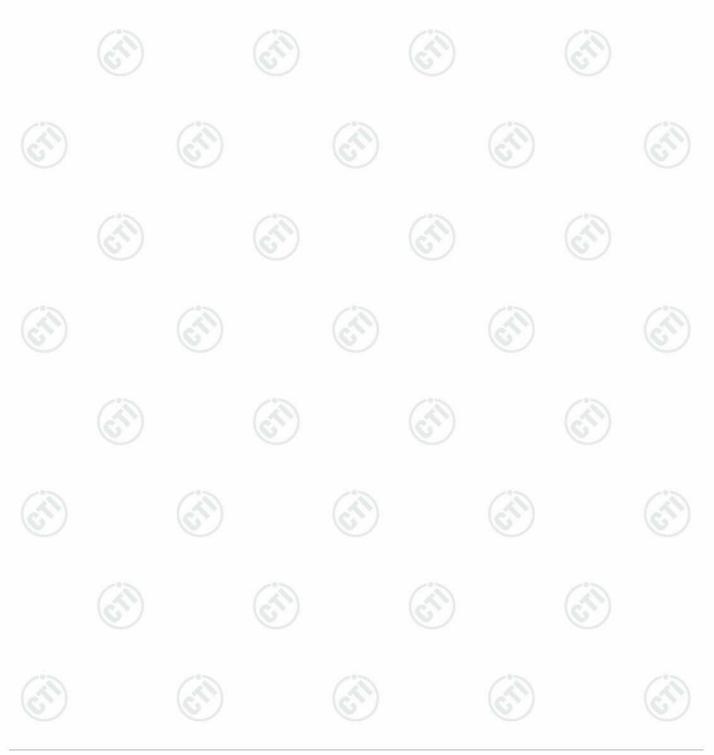
Product	:	INTELLIGENT AUTOMOTIVE DIAGNOSTIC ANALYZER,
Trade mark	:	INTELLIGENT KEY PROGRAMMING TOOL
Model/Type reference	:	D1 Lite, D1, IM1
Serial Number	÷	N/A
Report Number):	EED32M80160302
FCC ID	:	WQ8MAXIBASBT609
Date of Issue	:	Feb. 02, 2021
Test Standards	:	47 CFR Part 15 Subpart C
Test result	:	PASS

Prepared for: Autel Intelligent Tech. Corp., Ltd. 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, 518055,China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

2 Contents Page 6.2 AC Power Line Conducted Emissions......12



Page 3 of 62

3 Version

Versio	n No.	Date	9	Description	
0	0	Feb. 02, 2021		Original	
100	13				
S)	6	er).	(\mathcal{O})	(S)	67

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: D1 Lite, D1, IM1

Three models are the same except model name since the applicant changed for different market and customer, Only the model IM1 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models.

5 General Information

5.1 Client Information

	Applicant:	Autel Intelligent Tech. Corp., Ltd.
100	Address of Applicant:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan,Xueyuan Rd. Xili, Nanshan, Shenzhen, 518055, China
1	Manufacturer:	Autel Intelligent Tech. Corp., Ltd.
	Address of Manufacturer:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan,Xueyuan Rd. Xili, Nanshan, Shenzhen, 518055, China
	Factory 1:	Autel Intelligent Technology Corp., Ltd. Guangming Branch
	Address of Factory 1:	7F&6F, East Wing, Building 2, and 6F of Electronical Building, Yanxiang Industrial Zone, Gaoxin Rd, Dongzhou Community of Guangming New District, Shenzhen
	Factory 2:	AUTEL VIETNAM COMPANY LIMITED
1	Address of Factory 2:	4th Floor, Factory#6, Land#CN1, An Duong Industrial Zone, Hong Phong Township, An Duong County, Hai Phong, Viet Nam

5.2 General Description of EUT

Product Name:	INTELLIGENT AUTOMOTIVE INTELLIGENT KEY PROGRA		
Model No.:	IM1	장) (중)	
Add Model No.:	D1 Lite, D1		
Trade Mark:	OTOFIX		
Product Type:	🗌 Mobile 🛛 Portable	Fix Location	13
Bluetooth Version:	V4.2		6
Operation Frequency:	2402MHz~2480MHz	\sim	\sim
Modulation Technique:	Frequency Hopping Spread	I Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Number of Channel:	79	(S) (S)	
Hopping Channel Type:	Adaptive Frequency Hoppir	ng systems	
Antenna Type:	FPC antenna		
Antenna Gain:	3.8dBi		13
Power Supply:	SWITCHING AC/DC POWER ADAPTER	MODEL:GME10C-050200FUu INPUT:100-240V~,50/60Hz ,0.28A OUTPUT:5V2A,10W	(ST)
	Battery	Model: TB2021 Capacity: 5800mAh/22.33Wh Nominal Voltage: 3.85V	
Test Voltage:	Battery 3.85V	S) (S)	
Sample Received Date:	Dec. 29, 2020	0 0	
Sample tested Date:	Dec. 29, 2020 to Jan. 26, 2	021	-0-
(2)		(25)	(3)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2	Channel	Frequency		
The Lo	owest channel	2402MHz		
The M	liddle channel	2441MHz	(2)	
The Hi	ghest channel	2480MHz	(3)	

5.3 Test Configuration

EUT Test Software Settings		
Software:	BlueTool	
EUT Power Grade:	Default	
Use test software to set the lo	west frequency, the middle frequency a	nd the highest frequency keep
transmitting of the EUT.		
Mode	Channel	Frequency(MHz)
	CH0	2402
DH1/DH3/DH5	CH39	2441
	CH78	2480
(25)	CH0	2402
2DH1/2DH3/2DH5	CH39	2441
	CH78	2480
	CH0	2402
3DH1/3DH3/3DH5	CH39	2441
	CH78	2480
	(Gr)	

5.4 Test Environment

nt:				
nissions:				
22~25.0 °C	U		S	
50~55 % RH				
1010mbar				~~~
:				
22~25.0 °C		S		S
50~55 % RH				
1010mbar				
22~25.0 °C	6		S)	
50~55 % RH				
1010mbar				
r	50~55 % RH 1010mbar 3: 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	nissions: 22~25.0 °C 50~55 % RH 1010mbar 3: 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	nissions: 22~25.0 °C 50~55 % RH 1010mbar 3: 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	nissions: 22~25.0 °C 50~55 % RH 1010mbar 3: 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH

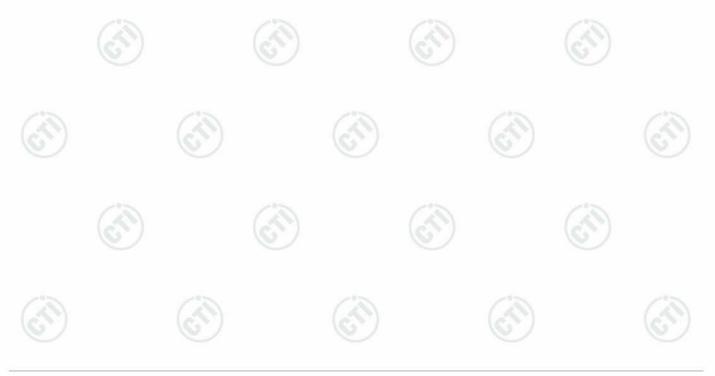
5.5 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated nent name	Manufacture mode		S/N serial number	Supplied by	Certification	
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC	

5.6 Test Location

All tests were performed at:


Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

ю.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Sourieus omission tost	4.3dB (30MHz-1GHz)
	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
		3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5.8 Equipment List

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021			
Temperature/ Humidity Indicator	Defu	TH128	1	<u> </u>				
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021			
Barometer	changchun	DYM3	1188	/	- 60			

		RF test s	ystem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(A)	(6	s)
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			(#
Power unit	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		- (0

		3M Semi/full-anec	hoic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/10711 112	(C)	9	9
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A	100	
Cable line	Fulai(6M)	SF106	5220/6A	1 A 84	(1
Cable line	Fulai(3M)	SF106	5216/6A	102-7	\Cs
Cable line	Fulai(3M)	SF106	5217/6A		

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020 01-08-2021	01-08-2021 01-07-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018 01-09-2021	01-16-2021 01-08-2024
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(3)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	25	- /
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		- (3
Cable line	Times	EMC104-NMNM- 1000	SN160710	\sim	-
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(<u>_</u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

6 Test results and Measurement Data

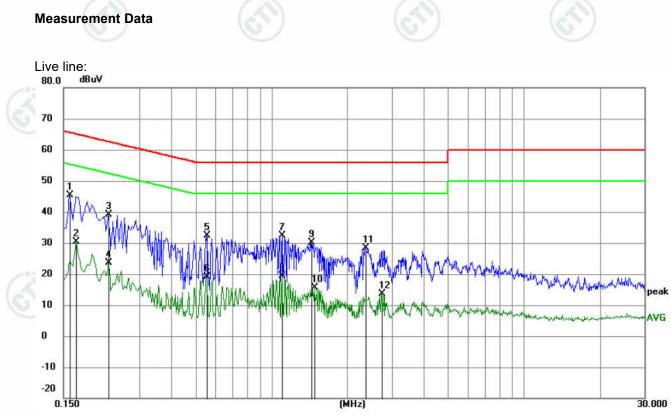
6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
responsible party shall be us antenna that uses a unique of so that a broken antenna car electrical connector is prohib 15.247(b) (4) requirement: The conducted output power antennas with directional gai section, if transmitting antenna power from the intentional ra	be designed to ensure that no antenna other than that furnished by the ed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or ited. Imit specified in paragraph (b) of this section is based on the use of its that do not exceed 6 dBi. Except as shown in paragraph (c) of this in as of directional gain greater than 6 dBi are used, the conducted output diator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Please see Internal photos
The antenna is PCB antenna	a. The best case gain of the antenna is 0dBi.
(ST)	

6.2 AC Power Line Conducted Emissions

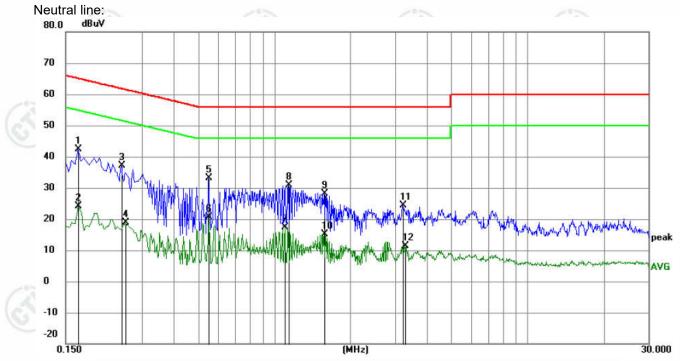
Test Requirement:	47 CFR Part 15C Section 15.2	207	
Test Method:	ANSI C63.10: 2013		\sim
Test Frequency Range:	150kHz to 30MHz		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto	13
Limit:		Limit (dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test Setup:			
	AC Mains	AE USN2 A Ground Reference Plane	Test Receiver
Test Procedure:	 The mains terminal disturbution. The EUT was connected to Impedance Stabilization Nation impedance. The power calls connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An eventical ground reference plane of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground reference plane. 	AC power source the etwork) which provide oles of all other units of N 2, which was bonded the way as the LISN 1 f et outlet strip was use SN provided the ration and for floor-standing a ound reference plane th a vertical ground reference plane was bonded to the 1 was placed 0.8 m f to a ground reference and reference plane. The	rough a LISN 1 (Line s a $50\Omega/50\mu$ H + 5Ω linea of the EUT were ed to the ground for the unit being ed to connect multiple g of the LISN was not lic table 0.8m above the rrangement, the EUT was , efference plane. The rear nd reference plane. The he horizontal ground rom the boundary of the e plane for LISNs This distance was
	between the closest points the EUT and associated ec 5) In order to find the maximu equipment and all of the in	quipment was at least m emission, the relati	0.8 m from the LISN 2. ve positions of




	ANSI C63.10: 2013 on conducted measurement.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Results:	Pass

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1590	35.44	9.87	45.31	65.52	-20.21	peak	
2	0.1680	20.60	9.87	30.47	55.06	-24.59	AVG	
3	0.2265	29.26	9.92	39.18	62.58	-23.40	peak	
4	0.2265	13.72	9.92	23.64	52.58	-28.94	AVG	
5	0.5550	22.35	10.02	32.37	56.00	-23.63	peak	
6	0.5550	9.12	10.02	19.14	46.00	-26.86	AVG	
7	1.1040	22.48	9.83	32.31	56.00	-23.69	peak	
8	1.1040	9.56	9.83	19.39	46.00	-26.61	AVG	
9	1.4370	20.28	9.81	30.09	56.00	-25.91	peak	
10	1.4865	5.85	9.81	15.66	46.00	-30.34	AVG	
11	2.3460	18.67	9.79	28.46	56.00	-27.54	peak	
12	2.7285	3.76	9.79	13.55	46.00	-32.45	AVG	
Star 1		VE's"	1	1	SAT 7		1	SAT 1

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1680	32.51	9.87	42.38	65.06	-22.68	peak	
2	0.1680	14.31	9.87	24.18	55.06	-30.88	AVG	
3	0.2490	27.25	9.97	37.22	61.79	-24.57	peak	
4	0.2580	8.78	9.99	18.77	51.50	-32.73	AVG	
5	0.5505	23.01	10.01	33.02	56.00	-22.98	peak	
6	0.5505	10.62	10.01	20.63	46.00	-25.37	AVG	
7	1.1040	7.50	9.83	17.33	46.00	-28.67	AVG	
8	1.1355	20.99	9.82	30.81	56.00	-25.19	peak	
9	1.5720	18.22	9.81	28.03	56.00	-27.97	peak	
10	1.5720	5.25	9.81	15.06	46.00	-30.94	AVG	
11	3.2235	14.52	9.79	24.31	56.00	-31.69	peak	
12	3.2820	1.67	9.79	11.46	46.00	-34.54	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Control Control Control Control Control Power Power Supply TemPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSk modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSk$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

6.4 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Control Power Supply Temperature Cabinet Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	NA
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of π /4DQPSI modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

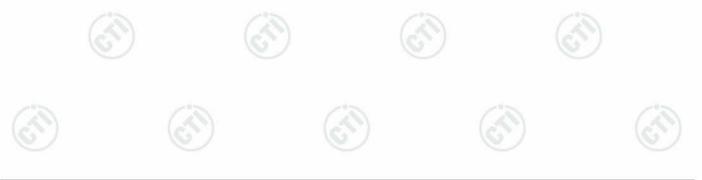
6.5 Carrier Frequency Separation

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Computer Power Supph TelmERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
0.	Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Comp
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously.
	 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel.
	 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 6. Record the measurement data in report.
Limit:	 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel.
Limit: Test Mode:	 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 6. Record the measurement data in report. Frequency hopping systems in the 2400-2483.5 MHz band shall use at

6.7 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply TEMPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit
	continuously. 3. Enable the EUT hopping function.
	 4. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected
	 dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. 5. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A

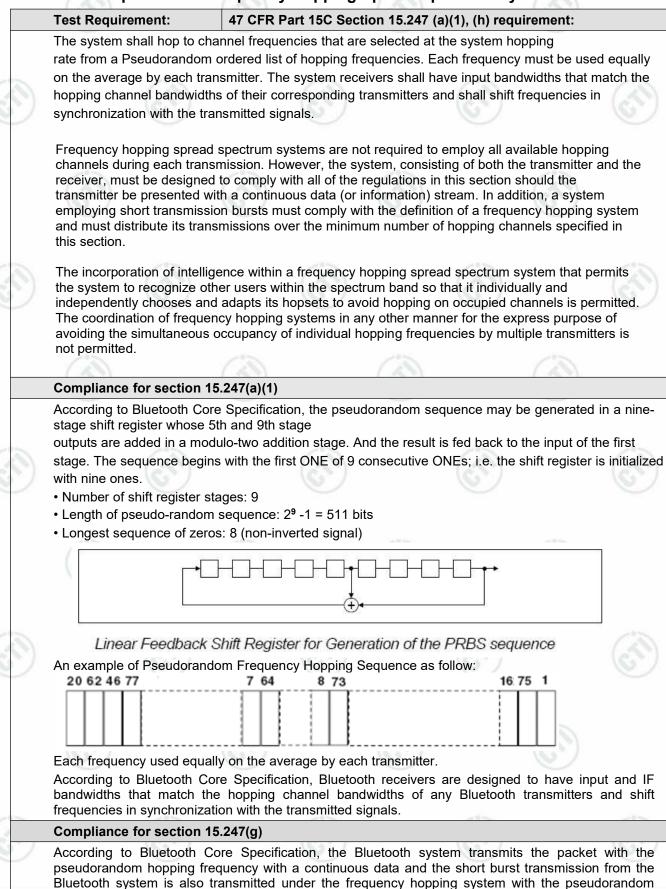


6.8 Band edge Measurements

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Control Control Power Supph Power Tel/PERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 Set to the maximum power setting and enable the EUT transm continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emission must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
ś	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that i produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of π /4DQPSI
		modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.

6.9 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
(CN)	Test Setup:	Control Computer Computer Power Suppy TelePERATURE CABINET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Ś	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
0	Test Results:	Refer to Appendix A



6.10Other requirements Frequency Hopping Spread Spectrum System

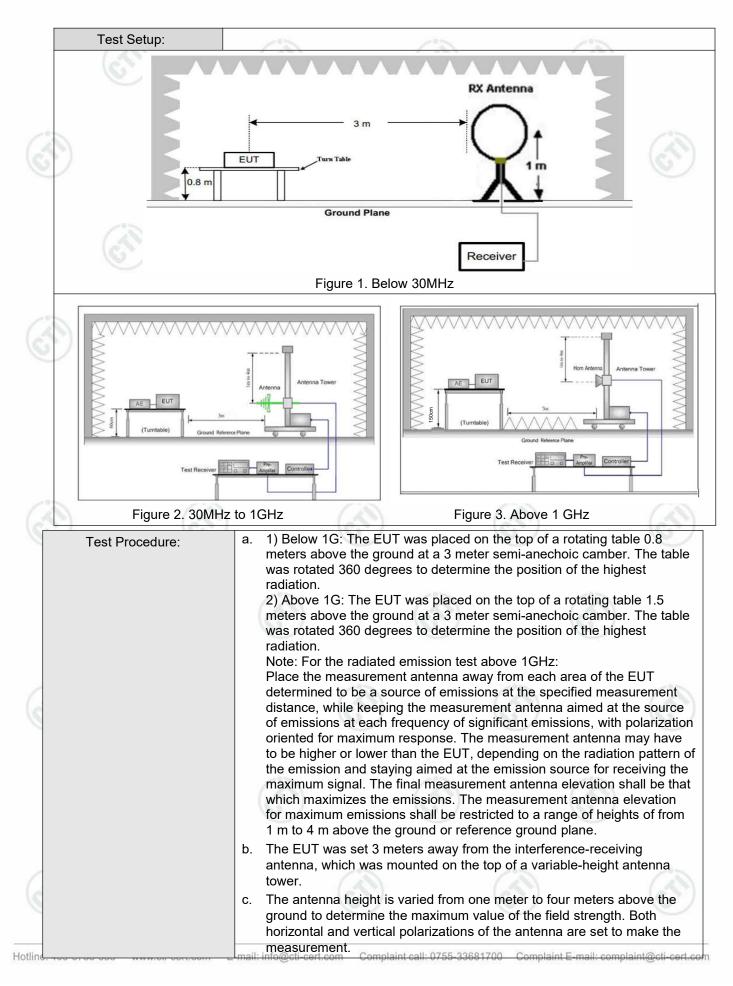
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

6.11 Radiated Spurious Emission & Restricted bands

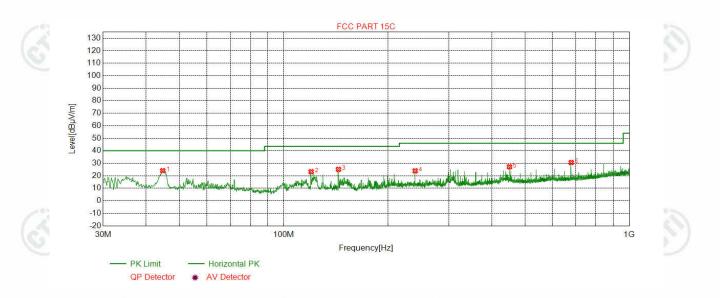
-	1 - 0 A. W. L	1		1			N. L.		
	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	205	67)		
	Test Method:	ANSI C63.10: 2013							
	Test Site:	Measurement Distance	: 3m	(Semi-Anech	oic Cham	ber)			
2	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark		
3		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
		0.009MHz-0.090MH	z	Average	10kHz	: 30kHz	Average		
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	: 30kHz	Quasi-peak		
		0.110MHz-0.490MH	z	Peak	10kHz	: 30kHz	Peak		
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average		
		0.490MHz -30MHz		Quasi-peak	10kHz	: 30kHz	Quasi-peak		
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak		
				Peak	1MHz	3MHz	Peak		
		Above 1GHz	Peak	1MHz	10kHz	Average			
	Limit:	Frequency		eld strength provolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)		
		0.009MHz-0.490MHz	24	400/F(kHz)	-	-	300		
		0.490MHz-1.705MHz	24	000/F(kHz)	-		30		
		1.705MHz-30MHz		30	-	6	30		
		30MHz-88MHz		100	40.0	Quasi-peak	3		
		88MHz-216MHz		150	43.5	Quasi-peak	3		
		216MHz-960MHz	10	200	46.0	Quasi-peak	3		
		960MHz-1GHz)	500	54.0	Quasi-peak	3		
		Above 1GHz		500	54.0	Average	3		
		Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							



	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was completed.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass
	Final Test Mode:

A

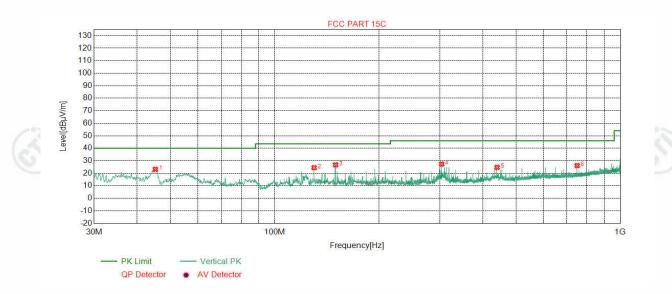
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

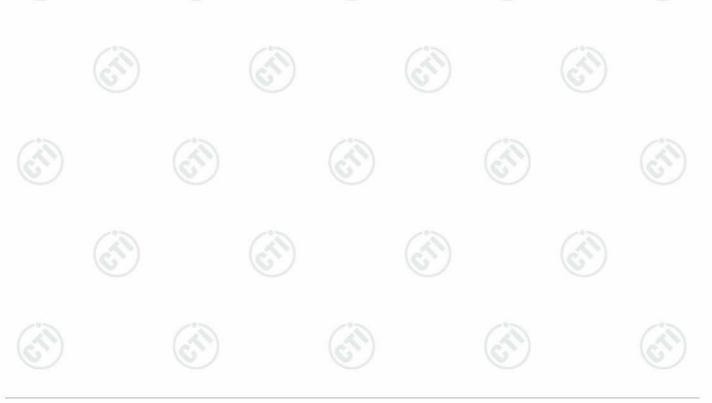


6.11.1 Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, GFSK Channel 2441MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

					- A -							
	Mode:			GFSK 1	Fransmitting	l			Channel:		2441	
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	44.6485	13.14	0.75	-31.69	41.88	24.08	40.00	15.92	Pass	Н	PK
6	2	120.0250	9.20	1.30	-32.07	44.87	23.30	43.50	20.20	Pass	Н	PK
	3	143.9864	7.34	1.41	-31.99	48.37	25.13	43.50	18.37	Pass	Н	PK
	4	240.0260	11.94	1.84	-31.90	42.06	23.94	46.00	22.06	Pass	Н	PK
	5	449.9550	16.20	2.51	-31.89	40.35	27.17	46.00	18.83	Pass	Н	PK
	6	678.9949	19.63	3.11	-32.10	39.98	30.62	46.00	15.38	Pass	Н	PK
	7	45.1335	13.20	0.75	-31.72	40.95	23.18	40.00	16.82	Pass	V	PK
	8	130.0170	7.70	1.33	-32.02	47.48	24.49	43.50	19.01	Pass	V	PK
	9	150.0010	7.55	1.45	-32.01	49.74	26.73	43.50	16.77	Pass	V	PK
	10	304.0524	13.29	2.07	-31.60	43.62	27.38	46.00	18.62	Pass	V	PK
(11	439.9630	16.04	2.48	-31.88	38.07	24.71	46.00	21.29	Pass	V	PK
	12	750.0060	20.35	3.29	-32.04	34.55	26.15	46.00	19.85	Pass	V	PK





Page 29 of 62

/	Mode:			GFSK ⁻	GFSK Transmitting						2441	
(NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	45.1335	13.20	0.75	-31.72	40.95	23.18	40.00	16.82	Pass	V	PK
	2	130.0170	7.70	1.33	-32.02	47.48	24.49	43.50	19.01	Pass	V	PK
	3	150.0010	7.55	1.45	-32.01	49.74	26.73	43.50	16.77	Pass	V	PK
	4	304.0524	13.29	2.07	-31.60	43.62	27.38	46.00	18.62	Pass	V	PK
	5	439.9630	16.04	2.48	-31.88	38.07	24.71	46.00	21.29	Pass	V	PK
	6	750.0060	20.35	3.29	-32.04	34.55	26.15	46.00	19.85	Pass	V	PK
1	1970						1	R Course		20	200	

6.11.2 Transmitter Emission above 1GHz

	Mode	: :		GFSK Tr	ansmitting				Channel:		2402	
1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ś	1	1358.6359	28.26	2.83	-42.72	49.07	37.44	74.00	36.56	Pass	Н	PK
	2	1764.0764	30.14	3.26	-42.69	48.69	39.40	74.00	34.60	Pass	Н	PK
	3	2296.7297	32.12	3.80	-43.15	49.90	42.67	74.00	31.33	Pass	Н	PK
	4	3232.0155	33.29	4.52	-43.10	47.79	42.50	74.00	31.50	Pass	Н	PK
	5	4378.0919	34.33	4.53	-42.85	47.68	43.69	74.00	30.31	Pass	Н	PK
	6	6372.2248	35.87	5.39	-42.52	48.97	47.71	74.00	26.29	Pass	Н	PK
	7	1197.0197	28.10	2.66	-42.89	49.57	37.44	74.00	36.56	Pass	V	PK
	8	1765.0765	30.15	3.26	-42.70	48.57	39.28	74.00	34.72	Pass	V	PK
2	9	3203.0135	33.28	4.64	-43.10	50.28	45.10	74.00	28.90	Pass	V	PK
ć	10	3939.0626	33.75	4.34	-43.01	49.08	44.16	74.00	29.84	Pass	V	PK
5	11	4803.1202	34.50	4.55	-42.80	53.43	49.68	74.00	24.32	Pass	V	PK
	12	7206.2804	36.31	5.81	-42.16	49.75	49.71	74.00	24.29	Pass	V	PK

		100		215 215						- 255		
	Mod	e:		GFSK 1	Fransmittin	g			Channel:		2441	
	N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1197.0197	28.10	2.66	-42.89	49.57	37.44	74.00	36.56	Pass	Н	PK
2	2	1765.0765	30.15	3.26	-42.70	48.57	39.28	74.00	34.72	Pass	Н	PK
2	3	3203.0135	33.28	4.64	-43.10	50.28	45.10	74.00	28.90	Pass	Н	PK
	4	3939.0626	33.75	4.34	-43.01	49.08	44.16	74.00	29.84	Pass	Н	PK
	5	4803.1202	34.50	4.55	-42.80	53.43	49.68	74.00	24.32	Pass	Н	PK
	6	7206.2804	36.31	5.81	-42.16	49.75	49.71	74.00	24.29	Pass	Н	PK
	7	1420.6421	28.32	2.92	-42.77	50.21	38.68	74.00	35.32	Pass	V	PK
	8	2192.9193	31.97	3.65	-43.16	52.48	44.94	74.00	29.06	Pass	V	PK
	9	3510.0340	33.41	4.48	-43.10	48.47	43.26	74.00	30.74	Pass	V	PK
	10	5014.1343	34.51	4.84	-42.79	50.79	47.35	74.00	26.65	Pass	V	PK
2	11	6140.2093	35.83	5.25	-42.57	49.12	47.63	74.00	26.37	Pass	V	PK
6	12	7668.3112	36.53	6.19	-42.13	48.65	49.24	74.00	24.76	Pass	V	PK

								201		
		GFSK ⁻	Fransmittin	g			Channel	:	2480	
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1278.0278	28.18	2.72	-42.81	50.56	38.65	74.00	35.35	Pass	н	PK
1696.0696	29.69	3.20	-42.67	49.80	40.02	74.00	33.98	Pass	Н	PK
2289.7290	32.11	3.80	-43.15	49.84	42.60	74.00	31.40	Pass	Н	PK
2568.9569	32.51	4.09	-43.10	50.69	44.19	74.00	29.81	Pass	н	PK
3422.0281	33.37	4.50	-43.10	48.97	43.74	74.00	30.26	Pass	Н	PK
5007.1338	34.51	4.83	-42.80	50.55	47.09	74.00	26.91	Pass	н	PK
1402.2402	28.30	2.90	-42.68	49.95	38.47	74.00	35.53	Pass	V	PK
1795.4795	30.35	3.31	-42.71	52.40	43.35	74.00	30.65	Pass	V	PK
2719.1719	32.75	4.13	-43.10	49.69	43.47	74.00	30.53	Pass	V	PK
3785.0523	33.63	4.36	-43.04	49.71	44.66	74.00	29.34	Pass	V	PK
5001.1334	34.50	4.82	-42.80	50.77	47.29	74.00	26.71	Pass	V	PK
6090.2060	35.82	5.25	-42.58	49.46	47.95	74.00	26.05	Pass	V	PK
	Freq. [MHz] 1278.0278 1696.0696 2289.7290 2568.9569 3422.0281 5007.1338 1402.2402 1795.4795 2719.1719 3785.0523 5001.1334	Freq. [MHz] Ant Factor [dB] 1278.0278 28.18 1696.0696 29.69 2289.7290 32.11 2568.9569 32.51 3422.0281 33.37 5007.1338 34.51 1402.2402 28.30 1795.4795 30.35 2719.1719 32.75 3785.0523 33.63 5001.1334 34.50	GFSK Freq. [MHz] Ant Factor [dB] Cable loss [dB] 1278.0278 28.18 2.72 1696.0696 29.69 3.20 2289.7290 32.11 3.80 2568.9569 32.51 4.09 3422.0281 33.37 4.50 5007.1338 34.51 4.83 1402.2402 28.30 2.90 1795.4795 30.35 3.31 2719.1719 32.75 4.13 3785.0523 33.63 4.36 5001.1334 34.50 4.82	GFSK Transmittin Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] 1278.0278 28.18 2.72 -42.81 1696.0696 29.69 3.20 -42.67 2289.7290 32.11 3.80 -43.15 2568.9569 32.51 4.09 -43.10 3422.0281 33.37 4.50 -43.10 5007.1338 34.51 4.83 -42.80 1402.2402 28.30 2.90 -42.68 1795.4795 30.35 3.31 -42.71 2719.1719 32.75 4.13 -43.10 3785.0523 33.63 4.36 -43.04 5001.1334 34.50 4.82 -42.80	GFSK Transmitting Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBµV] 1278.0278 28.18 2.72 -42.81 50.56 1696.0696 29.69 3.20 -42.67 49.80 2289.7290 32.11 3.80 -43.15 49.84 2568.9569 32.51 4.09 -43.10 50.69 3422.0281 33.37 4.50 -43.10 48.97 5007.1338 34.51 4.83 -42.68 49.95 1402.2402 28.30 2.90 -42.68 49.95 1795.4795 30.35 3.31 -42.71 52.40 2719.1719 32.75 4.13 -43.10 49.69 3785.0523 33.63 4.36 -43.04 49.71 5001.1334 34.50 4.82 -42.80 50.77	GFSK TransmittingFreq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Reading [dBµV]Level [dBµV]1278.027828.182.72-42.8150.5638.651696.069629.693.20-42.6749.8040.022289.729032.113.80-43.1549.8442.602568.956932.514.09-43.1050.6944.193422.028133.374.50-43.1048.9743.745007.133834.514.83-42.8050.5547.091402.240228.302.90-42.6849.9538.471795.479530.353.31-42.7152.4043.352719.171932.754.13-43.1049.6943.473785.052333.634.36-43.0449.7144.665001.133434.504.82-42.8050.7747.29	GFSK TransmittingFreq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]1278.027828.182.72-42.8150.5638.6574.001696.069629.693.20-42.6749.8040.0274.002289.729032.113.80-43.1549.8442.6074.002568.956932.514.09-43.1050.6944.1974.003422.028133.374.50-43.1048.9743.7474.001402.240228.302.90-42.6849.9538.4774.001795.479530.353.31-42.7152.4043.3574.002719.171932.754.13-43.0449.6943.4774.003785.052333.634.82-42.8050.7747.2974.00	GFSK Transmitting Channel Freq. [MHZ] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Margin [dB] 1278.0278 28.18 2.72 -42.81 50.56 38.65 74.00 35.35 1696.0696 29.69 3.20 -42.67 49.80 40.02 74.00 33.98 2289.7290 32.11 3.80 -43.15 49.84 42.60 74.00 31.40 2568.9569 32.51 4.09 -43.10 50.69 44.19 74.00 29.81 3422.0281 33.37 4.50 -43.10 48.97 43.74 74.00 30.26 5007.1338 34.51 4.83 -42.80 50.55 47.09 74.00 35.53 1795.4795 30.35 3.31 -42.71 52.40 43.35 74.00 30.55 2719.1719 32.75 4.13 -43.10 49.69 43.47 74.00 30.53 3785.0523	GFSK TansmittingChannet:Channet:Freq. [MH2]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dBµV/m]Result1278.027828.182.72-42.8150.5638.6574.0035.35Pass1696.069629.693.20-42.6749.8040.0274.0033.98Pass2289.729032.113.80-43.1549.8442.6074.0031.40Pass2568.956932.514.09-43.1050.6944.1974.0029.81Pass3422.028133.374.50-43.1048.9743.7474.0030.26Pass5007.133834.514.83-42.8050.5547.0974.0030.53Pass1402.240228.302.90-42.6849.9538.4774.0030.53Pass1795.479530.353.31-42.7152.4043.3574.0030.53Pass2719.171932.754.13-43.1049.6943.4774.0030.53Pass3785.052333.634.36-43.0449.7144.6674.0029.34Pass5001.133434.504.82-42.8050.7747.2974.0026.71Pass	GFSK TersenittingGFSK TersenittingChannel:2480Freq. [MHZ]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity1278.027828.182.72-42.8150.5638.6574.0035.35PassH1696.069629.693.20-42.6749.8040.0274.0033.98PassH2289.729032.113.80-43.1549.8442.6074.0031.40PassH2568.956932.514.09-43.1050.6944.1974.0029.81PassH3422.028133.374.50-43.1048.9743.7474.0030.26PassH3007.133834.514.83-42.8050.5547.0974.0030.53PassH1402.240228.302.90-42.6849.9538.4774.0030.55PassV1795.479530.353.31-42.7152.4043.3574.0030.53PassV2719.171932.754.13-43.1049.6943.4774.0030.53PassV3785.052333.634.36-43.0449.7144.6674.0020.41PassV5001.133434.504.82-42.8050.7747.2974.0026.71PassV

Mode:	:		π/4DQP	SK Transm	nitting			Channel	:	2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1400.8401	28.30	2.90	-42.68	50.86	39.38	74.00	34.62	Pass	н	PK
2	2006.7007	31.71	3.48	-43.20	49.44	41.43	74.00	32.57	Pass	Н	PK
3	2549.1549	32.48	4.09	-43.10	51.46	44.93	74.00	29.07	Pass	н	PK
4	3892.0595	33.71	4.34	-43.01	49.78	44.82	74.00	29.18	Pass	Н	PK
5	5014.1343	34.51	4.84	-42.79	50.58	47.14	74.00	26.86	Pass	Н	PK
6	7722.3148	36.51	6.25	-42.14	49.16	49.78	74.00	24.22	Pass	н	PK
7	1376.6377	28.28	2.86	-42.71	50.39	38.82	74.00	35.18	Pass	V	PK
8	2949.7950	33.12	4.40	-43.10	49.34	43.76	74.00	30.24	Pass	V	PK
9	3772.0515	33.62	4.36	-43.05	50.45	45.38	74.00	28.62	Pass	V	PK
10	4997.1331	34.50	4.82	-42.80	51.21	47.73	74.00	26.27	Pass	V	PK
11	6919.2613	36.07	5.85	-42.25	48.52	48.19	74.00	25.81	Pass	V	PK
12	8913.3942	37.51	6.38	-42.00	48.05	49.94	74.00	24.06	Pass	V	PK

Mode:	:		π/4DQI	PSK Trans	mitting			Channel	:	2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarit y	Remark
1	1299.6300	28.20	2.75	-42.79	50.50	38.66	74.00	35.34	Pass	Н	PK
2	1626.8627	29.24	3.11	-42.84	49.28	38.79	74.00	35.21	Pass	Н	PK
3	1810.2810	30.45	3.33	-42.73	49.04	40.09	74.00	33.91	Pass	Н	PK
4	2526.5527	32.44	4.06	-43.09	50.44	43.85	74.00	30.15	Pass	Н	PK
5	3352.0235	33.34	4.52	-43.10	48.75	43.51	74.00	30.49	Pass	Н	PK
6	4372.0915	34.32	4.53	-42.85	48.12	44.12	74.00	29.88	Pass	Н	PK
7	1315.8316	28.22	2.77	-42.77	49.81	38.03	74.00	35.97	Pass	V	PK
8	1863.8864	30.80	3.39	-42.86	48.92	40.25	74.00	33.75	Pass	V	PK
9	2691.9692	32.71	4.12	-43.11	49.86	43.58	74.00	30.42	Pass	V	PK
10	3554.0369	33.44	4.43	-43.08	48.59	43.38	74.00	30.62	Pass	V	PK
11	5015.1343	34.52	4.84	-42.80	50.93	47.49	74.00	26.51	Pass	V	PK
12	7398.2932	36.50	5.85	-42.12	49.33	49.56	74.00	24.44	Pass	V	PK
			1.1			1	10	1. J.		100	1.1

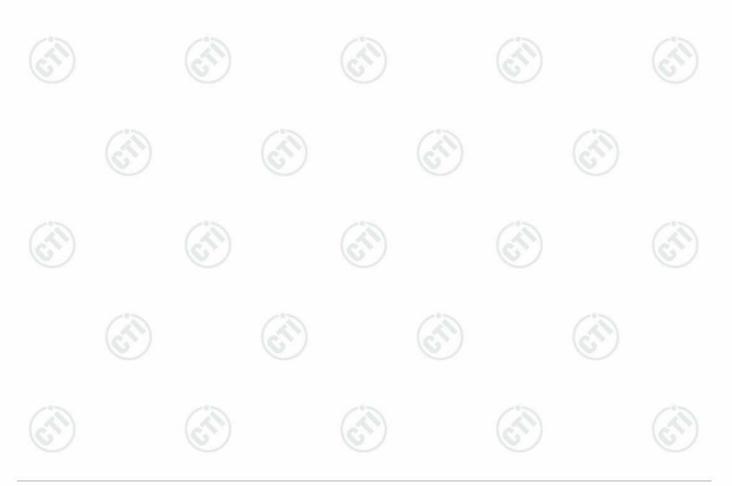
Mode:			π/4DQF	PSK Trans	mitting		Channel	:	2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarit y	Remark
1	1209.2209	28.11	2.66	-42.88	48.78	36.67	74.00	37.33	Pass	Н	PK
2	1720.8721	29.86	3.21	-42.67	48.94	39.34	74.00	34.66	Pass	Н	PK
3	2398.1398	32.26	3.91	-43.12	50.38	43.43	74.00	30.57	Pass	Н	PK
4	3421.0281	33.37	4.51	-43.11	47.97	42.74	74.00	31.26	Pass	Н	PK
5	5004.1336	34.50	4.82	-42.79	51.42	47.95	74.00	26.05	Pass	Н	PK
6	7380.2920	36.48	5.85	-42.12	49.59	49.80	74.00	24.20	Pass	Н	PK
7	1163.8164	28.06	2.68	-42.92	49.15	36.97	74.00	37.03	Pass	V	PK
8	1866.6867	30.82	3.39	-42.87	48.06	39.40	74.00	34.60	Pass	V	PK
9	3559.0373	33.45	4.42	-43.09	47.78	42.56	74.00	31.44	Pass	V	PK
10	5026.1351	34.53	4.85	-42.79	50.87	47.46	74.00	26.54	Pass	V	PK
11	7386.2924	36.49	5.85	-42.13	48.81	49.02	74.00	24.98	Pass	V	PK
12	8795.3864	37.25	6.36	-42.00	49.00	50.61	74.00	23.39	Pass	V	PK
					(A		6	100		10	1

Page 33 of 62

Mode:			8DPSK	Transmitti	ng		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1405.2405	28.31	2.91	-42.71	50.70	39.21	74.00	34.79	Pass	Н	PK
2	2465.1465	32.35	3.99	-43.10	50.75	43.99	74.00	30.01	Pass	Н	PK
3	3765.0510	33.61	4.36	-43.05	49.57	44.49	74.00	29.51	Pass	Н	PK
4	5007.1338	34.51	4.83	-42.80	50.54	47.08	74.00	26.92	Pass	Н	PK
5	7434.2956	36.53	5.85	-42.11	48.46	48.73	74.00	25.27	Pass	Н	PK
6	8840.3894	37.35	6.41	-42.00	48.87	50.63	74.00	23.37	Pass	Н	PK
7	1477.4477	28.38	2.97	-43.01	50.58	38.92	74.00	35.08	Pass	V	PK
8	2572.1572	32.52	4.09	-43.10	50.83	44.34	74.00	29.66	Pass	V	PK
9	3806.0537	33.64	4.37	-43.04	49.36	44.33	74.00	29.67	Pass	V	PK
10	5006.1337	34.51	4.83	-42.80	51.58	48.12	74.00	25.88	Pass	V	PK
11	6361.2241	35.87	5.43	-42.53	48.81	47.58	74.00	26.42	Pass	V	PK
12	7729.3153	36.51	6.25	-42.15	48.85	49.46	74.00	24.54	Pass	V	PK

Mode:			8DPSK	Transmitti	ng		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1245.0245	28.15	2.68	-42.85	49.72	37.70	74.00	36.30	Pass	Н	PK
2	1702.2702	29.73	3.20	-42.65	49.35	39.63	74.00	34.37	Pass	Н	PK
3	2351.1351	32.19	3.86	-43.13	49.46	42.38	74.00	31.62	Pass	Н	PK
4	3544.0363	33.44	4.45	-43.10	48.51	43.30	74.00	30.70	Pass	Н	PK
5	5016.1344	34.52	4.84	-42.80	50.36	46.92	74.00	27.08	Pass	Н	PK
6	7499.3000	36.60	5.96	-42.10	49.34	49.80	74.00	24.20	Pass	Н	PK
7	1321.0321	28.22	2.78	-42.76	50.40	38.64	74.00	35.36	Pass	V	PK
8	1791.6792	30.33	3.31	-42.72	51.25	42.17	74.00	31.83	Pass	V	PK
9	2914.1914	33.06	4.39	-43.10	49.49	43.84	74.00	30.16	Pass	V	PK
10	5039.1359	34.54	4.87	-42.79	50.05	46.67	74.00	27.33	Pass	V	PK
11	7288.2859	36.39	5.83	-42.14	49.01	49.09	74.00	24.91	Pass	V	PK
12	8564.3710	36.74	6.33	-42.00	49.31	50.38	74.00	23.62	Pass	V	PK
6		de			(2)			201		6	

Hotline: 400-6788-333

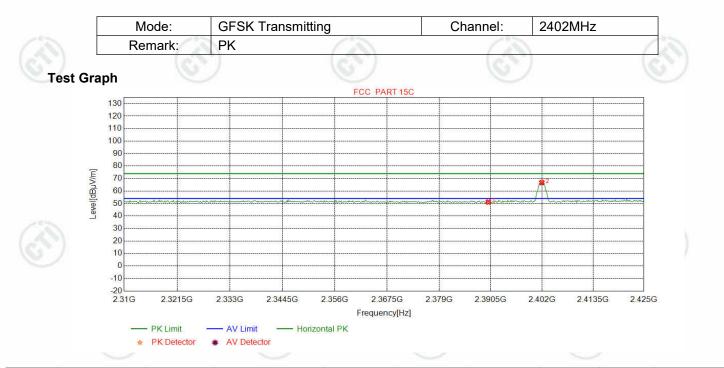

Page 34 of 62

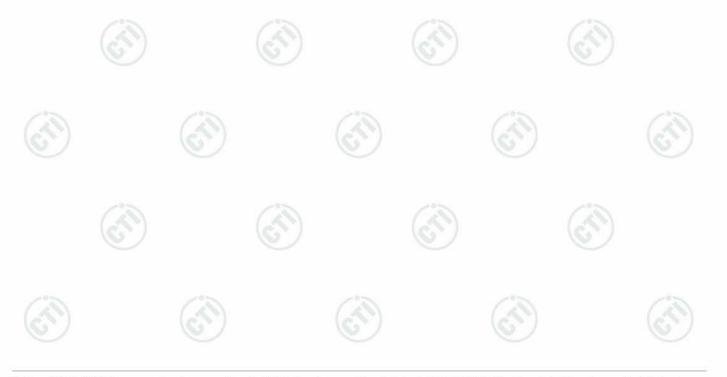
Mode	:		8DPSK Transmitting						Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1201.2201	28.10	2.66	-42.89	49.76	37.63	74.00	36.37	Pass	н	PK	
2	1639.4639	29.32	3.13	-42.81	49.19	38.83	74.00	35.17	Pass	Н	PK	
3	2553.3553	32.49	4.09	-43.10	50.19	43.67	74.00	30.33	Pass	н	PK	
4	3421.0281	33.37	4.51	-43.11	48.55	43.32	74.00	30.68	Pass	н	PK	
5	4996.1331	34.50	4.82	-42.80	50.02	46.54	74.00	27.46	Pass	н	PK	
6	7320.2880	36.42	5.85	-42.14	49.45	49.58	74.00	24.42	Pass	н	PK	
7	1228.4228	28.13	2.67	-42.86	49.52	37.46	74.00	36.54	Pass	V	PK	
8	1798.2798	30.37	3.32	-42.71	51.66	42.64	74.00	31.36	Pass	V	PK	
9	3083.0055	33.23	4.76	-43.10	48.34	43.23	74.00	30.77	Pass	V	PK	
10	3861.0574	33.69	4.36	-43.03	48.89	43.91	74.00	30.09	Pass	V	PK	
11	4996.1331	34.50	4.82	-42.80	50.24	46.76	74.00	27.24	Pass	V	PK	
12	7478.2986	36.58	5.91	-42.10	48.51	48.90	74.00	25.10	Pass	V	PK	

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low.

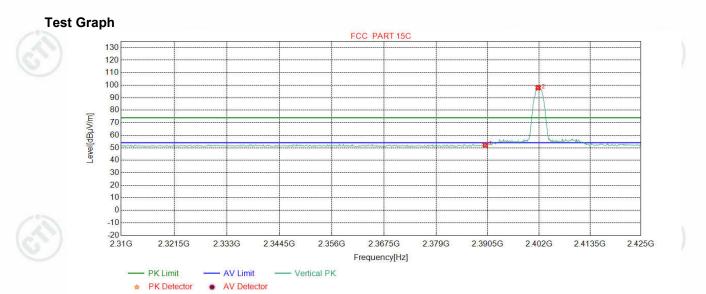


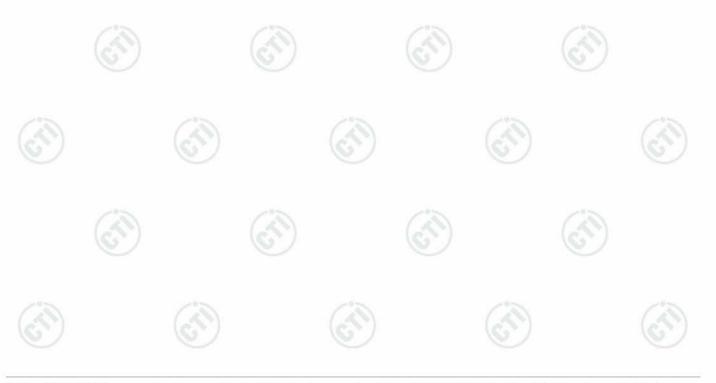


6.11.3 Transmitter Emission at Band edges

Test plot as follows:

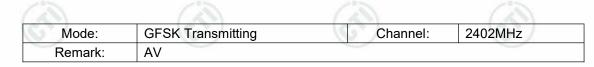
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.71	51.21	74.00	22.79	Pass	Horizontal
2	2401.9712	32.26	13.31	-43.12	64.33	66.78	74.00	7.22	Pass	Horizontal

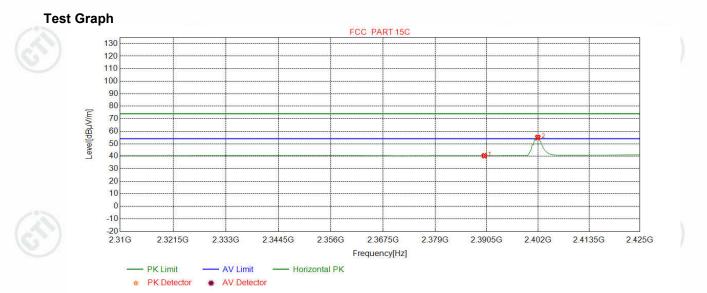




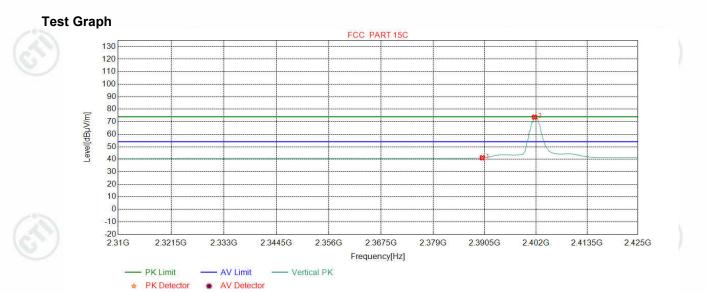
 Mode:
 GFSK Transmitting
 Channel:
 2402MHz

 Remark:
 PK


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.78	52.28	74.00	21.72	Pass	Vertical
2	2401.8273	32.26	13.31	-43.12	95.49	97.94	74.00	-23.94	Pass	Vertical



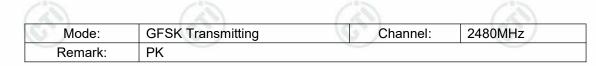
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	37.93	40.43	54.00	13.57	Pass	Horizontal
2	2401.9712	32.26	13.31	-43.12	52.60	55.05	54.00	-1.05	Pass	Horizontal
		1.1				•			9	

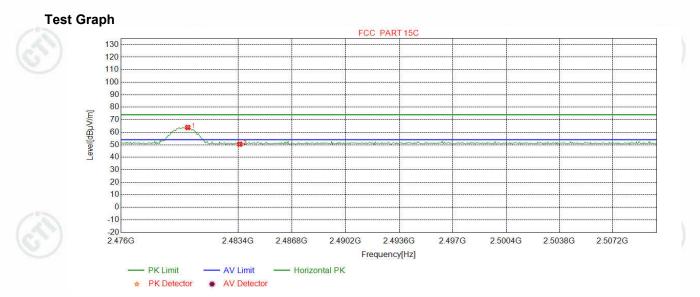


 Mode:
 GFSK Transmitting
 Channel:
 2402MHz

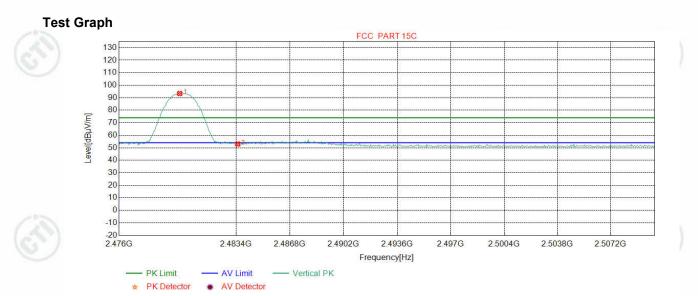
 Remark:
 AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.65	41.15	54.00	12.85	Pass	Vertical
2	2401.6834	32.26	13.31	-43.12	71.22	73.67	54.00	-19.67	Pass	Vertical
1		1				•			1	10





	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2480.2128	32.37	13.39	-43.10	61.14	63.80	74.00	10.20	Pass	Horizontal
	2	2483.5000	32.38	13.38	-43.11	47.83	50.48	74.00	23.52	Pass	Horizontal
1		•	1.5						•	1	10 m

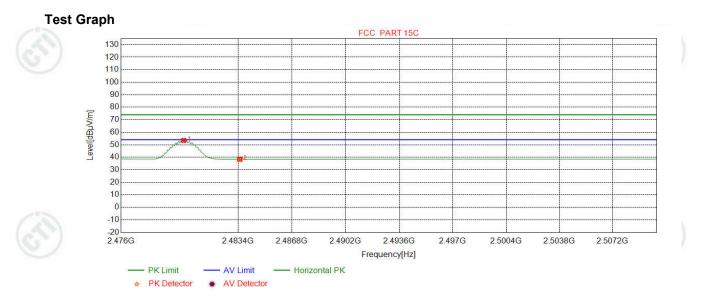


 Mode:
 GFSK Transmitting
 Channel:
 2480MHz

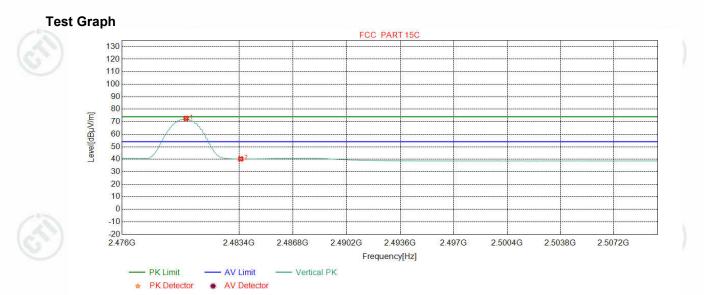
 Remark:
 PK

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.8298	32.37	13.39	-43.10	90.69	93.35	74.00	-19.35	Pass	Vertical
	2	2483.5000	32.38	13.38	-43.11	50.38	53.03	74.00	20.97	Pass	Vertical
1	1		1							1	





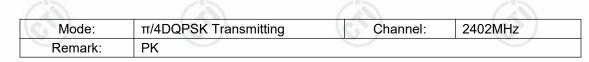
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.9574	32.37	13.39	-43.10	50.78	53.44	54.00	0.56	Pass	Horizontal
	2	2483.5000	32.38	13.38	-43.11	35.74	38.39	54.00	15.61	Pass	Horizontal
1		•	1.5							1	10

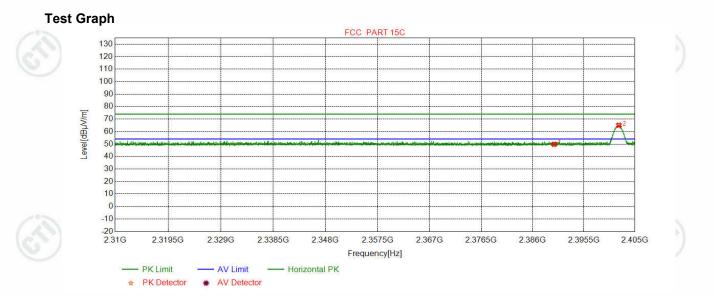


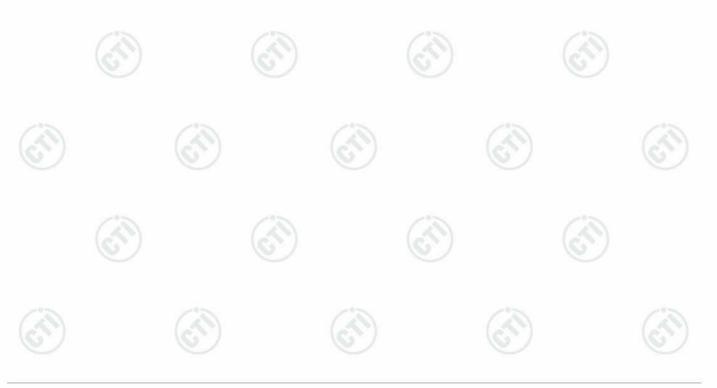
 Mode:
 GFSK Transmitting
 Channel:
 2480MHz

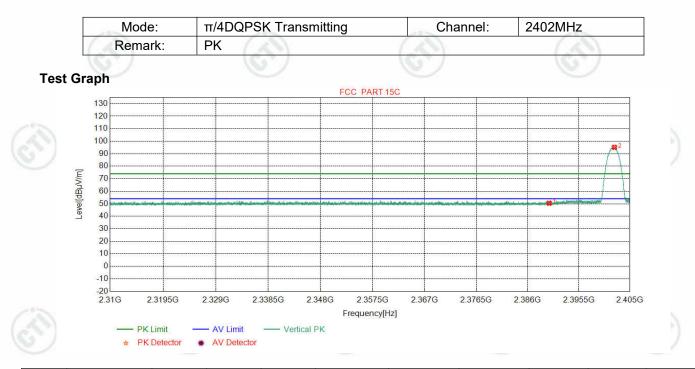
 Remark:
 AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	69.96	72.62	54.00	-18.62	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.62	40.27	54.00	13.73	Pass	Vertical
1.0	N	10		•						



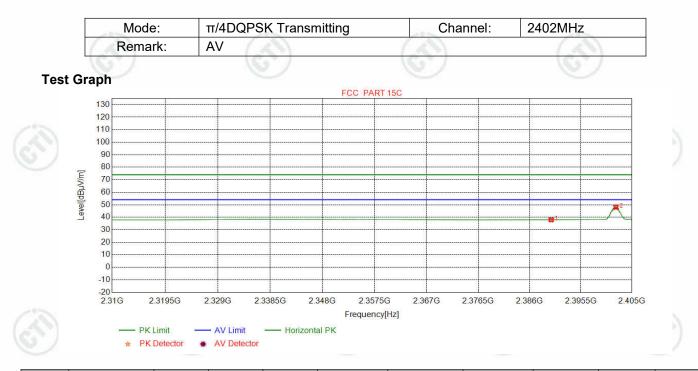




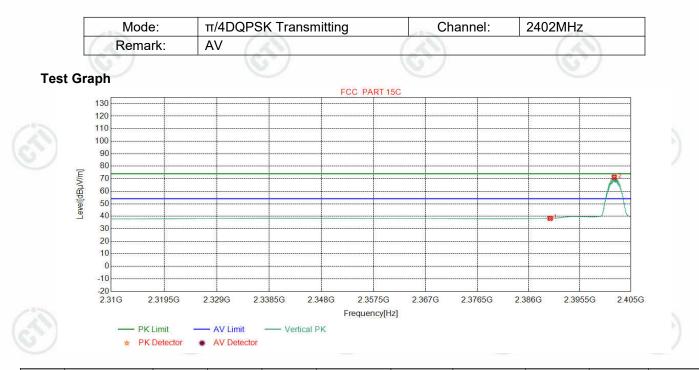


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.31	49.81	74.00	24.19	Pass	Horizontal
2	2402.0231	32.26	13.31	-43.12	62.60	65.05	74.00	8.95	Pass	Horizontal

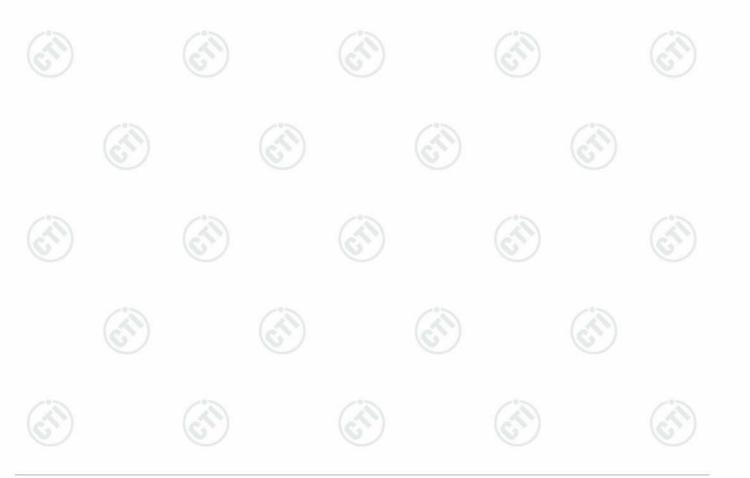
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.92	50.42	74.00	23.58	Pass	Vertical
2	2402.1245	32.26	13.31	-43.12	92.64	95.09	74.00	-21.09	Pass	Vertical

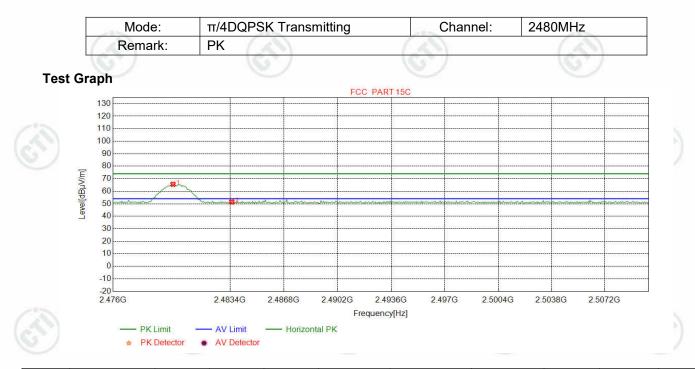


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

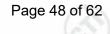


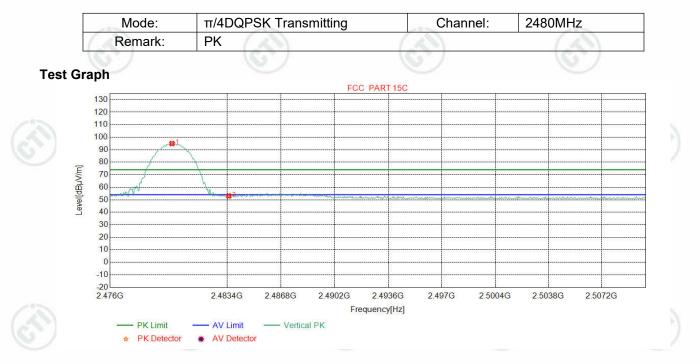
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.49	37.99	54.00	16.01	Pass	Horizontal
2	2402.0231	32.26	13.31	-43.12	45.61	48.06	54.00	5.94	Pass	Horizontal

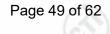


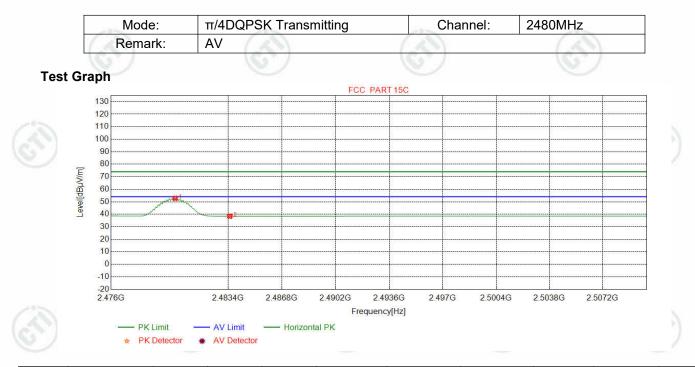


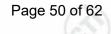
I	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	35.83	38.33	54.00	15.67	Pass	Vertical
	2	2401.9028	32.26	13.31	-43.12	68.81	71.26	54.00	-17.26	Pass	Vertical

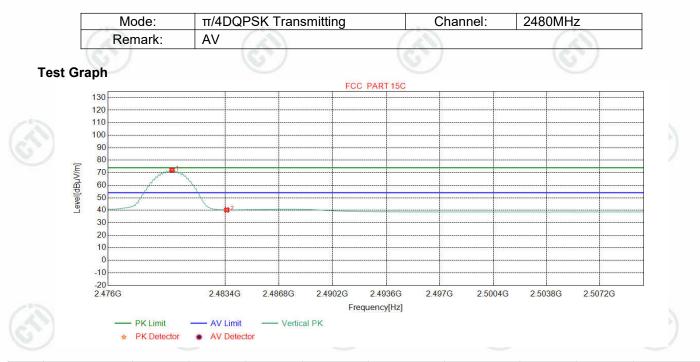


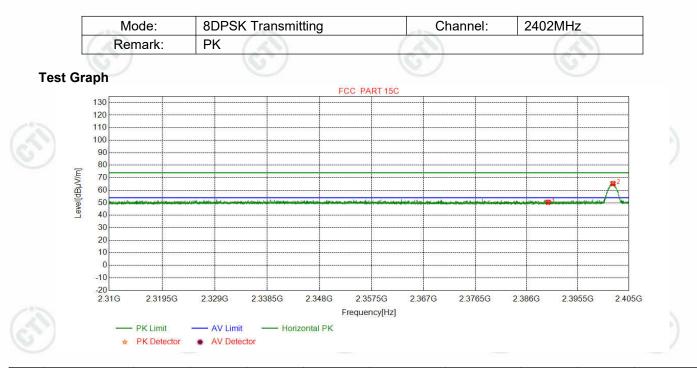

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.7872	32.37	13.39	-43.10	62.88	65.54	74.00	8.46	Pass	Horizontal
[2	2483.5000	32.38	13.38	-43.11	48.76	51.41	74.00	22.59	Pass	Horizontal



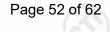

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	92.25	94.91	74.00	-20.91	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	50.41	53.06	74.00	20.94	Pass	Vertical

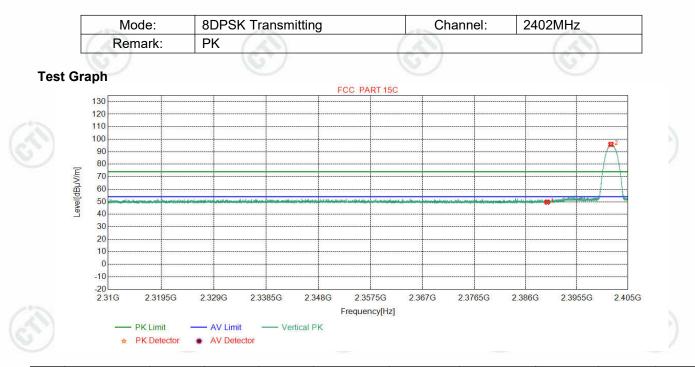



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	50.08	52.74	54.00	1.26	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	35.72	38.37	54.00	15.63	Pass	Horizontal

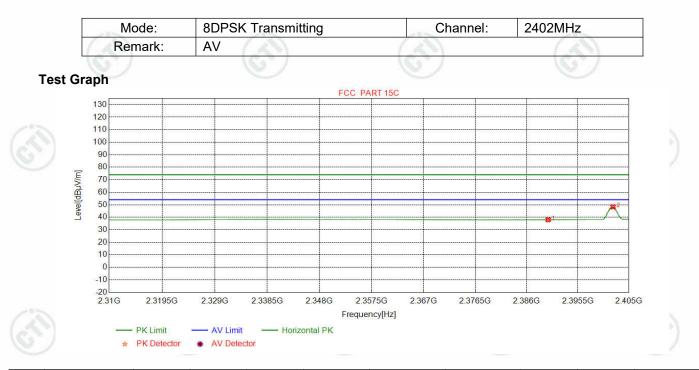


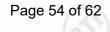
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	69.43	72.09	54.00	-18.09	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.60	40.25	54.00	13.75	Pass	Vertical



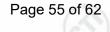

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.85	50.35	74.00	23.65	Pass	Horizontal
2	2402.0358	32.26	13.31	-43.12	62.90	65.35	74.00	8.65	Pass	Horizontal

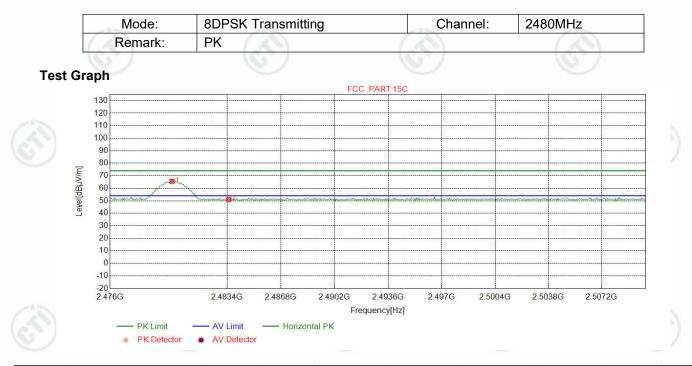
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.21	49.71	74.00	24.29	Pass	Vertical
2	2401.8458	32.26	13.31	-43.12	93.41	95.86	74.00	-21.86	Pass	Vertical

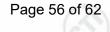


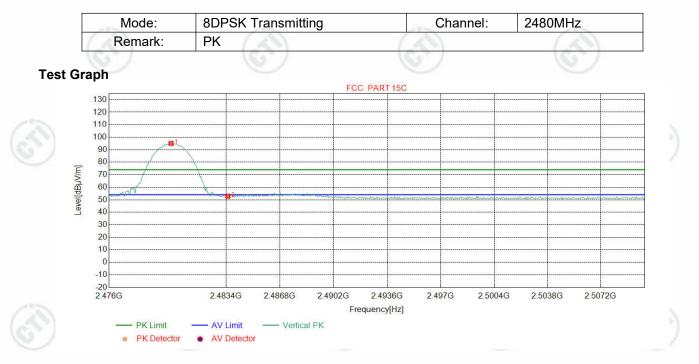


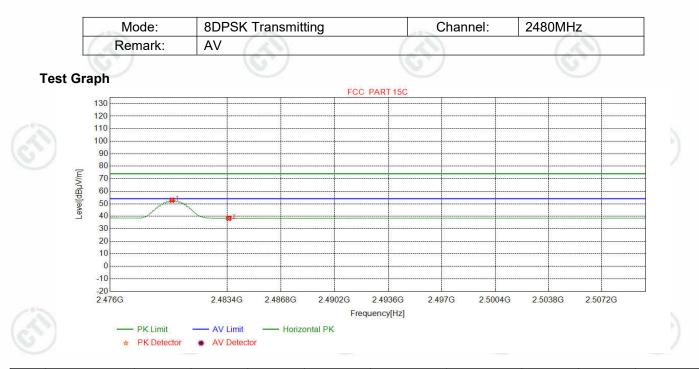
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.53	38.03	54.00	15.97	Pass	Horizontal
2	2402.0295	32.26	13.31	-43.12	45.91	48.36	54.00	5.64	Pass	Horizontal



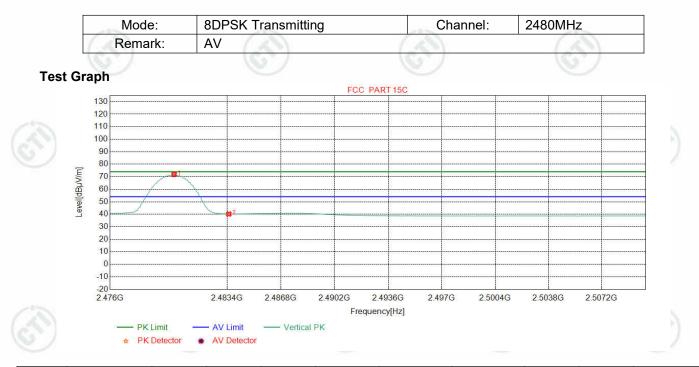

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.81	38.31	54.00	15.69	Pass	Vertical
2	2402.0358	32.26	13.31	-43.12	68.61	71.06	54.00	-17.06	Pass	Vertical




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	62.86	65.52	74.00	8.48	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.36	51.01	74.00	22.99	Pass	Horizontal

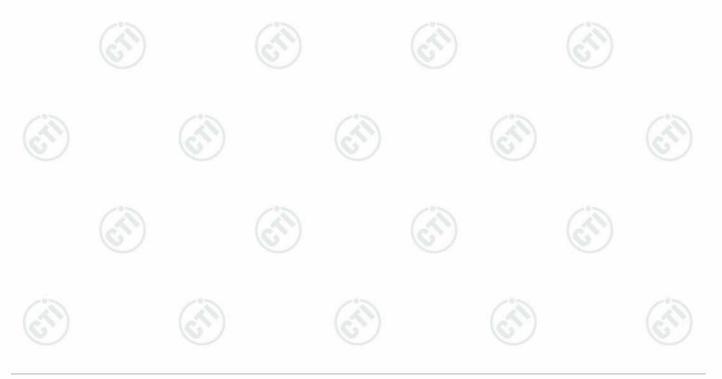


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	92.37	95.03	74.00	-21.03	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	50.17	52.82	74.00	21.18	Pass	Vertical



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	50.22	52.88	54.00	1.12	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	35.75	38.40	54.00	15.60	Pass	Horizontal

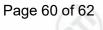
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margi n [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	69.23	71.89	54.00	-17.89	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.54	40.19	54.00	13.81	Pass	Vertical

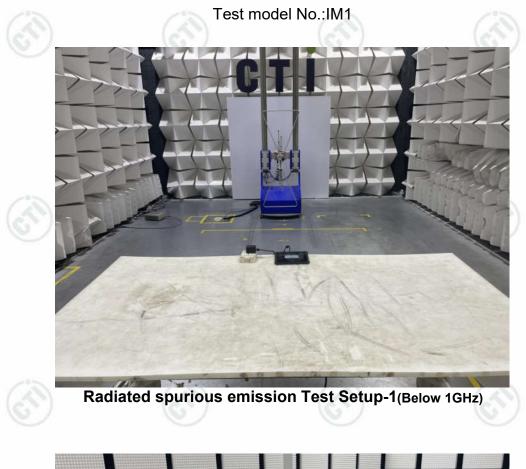

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

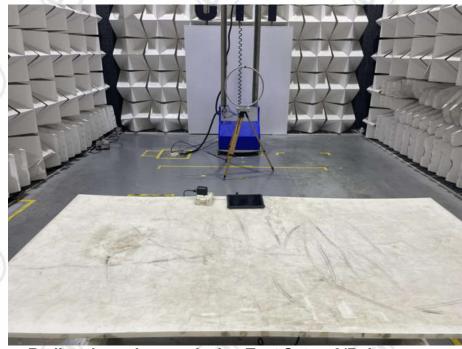
equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

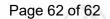

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor



8 PHOTOGRAPHS OF TEST SETUP



Radiated spurious emission Test Setup-2(Above 1GHz)



Radiated spurious emission Test Setup-3(Below 30MHz)

Conducted Emissions Test Setup

9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

C

Report No. : EED32M80160302

Refer to Report No. EED32M80160301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***