

Product : INTELLIGENT AUTOMOTIVE DIAGNOSTIC

ANALYZER,

INTELLIGENT KEY PROGRAMMING TOOL

Trade mark : OTOFIX

Model/Type reference : D1 Lite, D1, IM1

Serial Number : N/A

Report Number : EED32M80160303

FCC ID : WQ8MAXIBASBT609

Date of Issue : Feb. 25, 2021

Test Standards 47 CFR Part 15 Subpart E

Test result PASS

Prepared for:

Autel Intelligent Tech. Corp., Ltd. 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, 518055, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

David Wang **David Wang** Report Seal

Reviewed by:

Date:

Javan Ma Aaron Ma

Feb. 25, 2021

Check No.:7427291220

Page 2 of 53

2 Content

1 COVER PAGE	•••••	•••••	1
2 CONTENT	••••••		2
3 VERSION			3
4 TEST SUMMARY			4
5 GENERAL INFORMATION			5
5.1 CLIENT INFORMATION)MER		5 7 8 8 8
6 EQUIPMENT LIST		•••••	9
7 RADIO TECHNICAL REQUIREMENTS SPECIFICA	ATION		11
7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 6DB EMISSION BANDWIDTH 7.5 26DB EMISSION BANDWIDTH AND 99% OCCUPIED 7.6 MAXIMUM POWER SPECTRAL DENSITY 7.7 FREQUENCY STABILITY 7.8 RADIATED EMISSION 7.9 RADIATED EMISSION WHICH FALL IN THE RESTRICT) Bandwidth		
8 APPENDIX A			
PHOTOGRAPHS OF TEST SETUP			51
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DET	TAILS		53

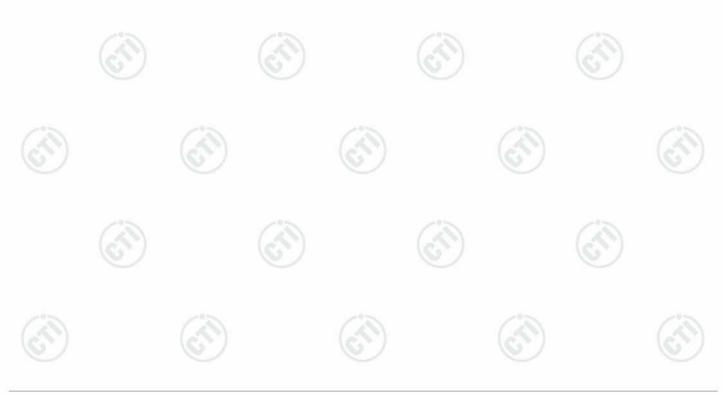
Page 3 of 53

3 Version

Version No. Date		Description		
00	Feb. 25, 2021		Original	_0
/				(6)

Report No. : EED32M80160304 Page 4 of 53

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6) (6)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 - 23.3		7 453

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: D1 Lite, D1, IM1

Three models are the same except model name since the applicant changed for different market and customer, Only the model IM1 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models.

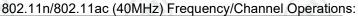
5 General Information

5.1 Client Information

Applicant:	Autel Intelligent Tech. Corp., Ltd.		
Address of Applicant:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan,Xueyuan Rd. Xili, Nanshan, Shenzhen, 518055, China		
Manufacturer:	Autel Intelligent Tech. Corp., Ltd.		
Address of Manufacturer:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan,Xueyuan Rd. Xili, Nanshan, Shenzhen, 518055, China		
Factory 1:	Autel Intelligent Technology Corp., Ltd. Guangming Branch		
Address of Factory 1:	7F&6F, East Wing, Building 2, and 6F of Electronical Building, Yanxiang Industrial Zone, Gaoxin Rd, Dongzhou Community of Guangming New District, Shenzhen		
Factory 2:	AUTEL VIETNAM COMPANY LIMITED		
Address of Factory 2:	4th Floor, Factory#6, Land#CN1, An Duong Industrial Zone, Hong Pho Township, An Duong County, Hai Phong, Viet Nam		

5.2 General Description of EUT

Product Name:	INTELLIGENT AUTOMOTIVE DIAGNOSTIC ANALYZER, INTELLIGENT KEY PROGRAMMING TOOL			
Model No.:	IM1		15	
Add Model No.:	D1 Lite, D1	(25)	(21)	
Trade mark:	OTOFIX			
Product Type:	☐ Mobile ⊠	Portable		
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)			
Operating Frequency	U-NII-1: 5180-5240MHz U-NII-3: 5745-5825MHz			
Antenna Type:	FPC antenna		(A)	
Antenna Gain:	8.75dBi	(0.)	(0,)	
	SWITCHING AC/DC POWER ADAPTER	MODEL:GME10C-050200FUu INPUT:100-240V~,50/60Hz ,0.28A OUTPUT:5V2A,10W		
Power Supply:	Battery	Model: TB2021 Capacity: 5800mAh/22.33Wh Nominal Voltage: 3.85V	(cri)	
Test voltage:	Battery 3.85V			
Sample Received Date:	Dec. 29, 2020			
Sample tested Date:	Dec. 29, 2020 to Feb. 25, 2021			



Page 6 of 53

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel Frequency(MHz)		Channel	Frequency(MHz)	
36	5180	149	5745	
40	5200	153	5765	
44	5220	157	5785	
48	5240	161	5805	
-	-	165	5825	

U-NII-1		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32M80160304 Page 7 of 53

5.3 Test Configuration

EUT Test Software Settings:						
Software:	CMD	15	75	/°>		
EUT Power Grade:	Default	(25)	(250)	(25)		

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0

5.4 Test Environment

Operating Environment:					
Radiated Spurious Emissions:					
Temperature:	22~25.0 °C		(20)		
Humidity:	50~55 % RH	(6,)	(6,		
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	N) (c.	(2)		
Atmospheric Pressure:	1010mbar		/		
RF Conducted:					
Humidity:	50~55 % RH		-0-		
Atmospheric Pressure:	1010mbar		(41)		
	NT (Normal Temperature)	22~25.0 °C	6		
Temperature:	LT (Low Temperature)	0 °C			
	HT (High Temperature)	50.0 °C			
	NV (Normal Voltage)	3.85 V	0		
Working Voltage of the EUT:	LV (Low Voltage)	3.5 V			
	HV (High Voltage)	4.3 V			

Report No. : EED32M80160304 Page 8 of 53

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

		ociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
-	AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
-1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE news conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3		3.3dB (9kHz-30MHz)
	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
		4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128	/			
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021	
Barometer	changchun	DYM3	1188			
(C.)	(67))	(62)		(L)	

RF test system						
Equipment	Equipment Manufacturer Mode No.		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020 02-16-2021	02-16-2021 02-15-2022	
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020 02-16-2021	02-16-2021 02-15-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(4)	- (<u> </u>	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4				
DC Power	Keysight	E3642A	MY56376072	02-17-2020 02-16-2021	02-16-2021 02-15-2022	
PC-1	Lenovo	R4960d		(42)	(A	
Power unit	R&S	OSP120	101374	02-17-2020 02-16-2021	02-16-2021 02-15-2022	
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020 02-16-2021	02-16-2021 02-15-2022	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		(<u> </u>	

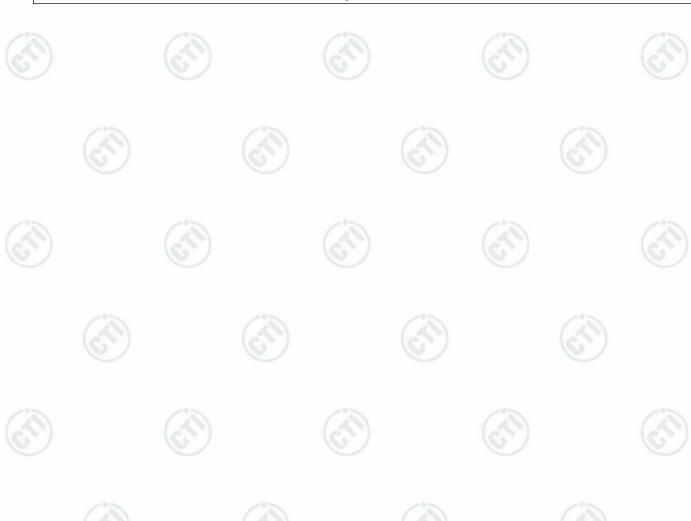
3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021	
Multi device Controller	maturo	NCD/070/10711 112	(a)		<u> </u>	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A	1	/3	
Cable line	Fulai(3M)	SF106	5216/6A	(22-)	(2)	
Cable line	Fulai(3M)	SF106	5217/6A		(0)	

Report No. : EED32M80160304 Page 10 of 53

1-00-00	1-6	3M full-anechoi	ic Chamber		40.71
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020 01-08-2021	01-08-2021 01-07-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018 01-09-2021	01-16-2021 01-08-2024
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	((N)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		(e
Cable line	Times	EMC104-NMNM- 1000	SN160710	<u></u>	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	- /	(0)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	\	·
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32M80160304 Page 11 of 53

7 Radio Technical Requirements Specification


7.1 Antenna Requirement

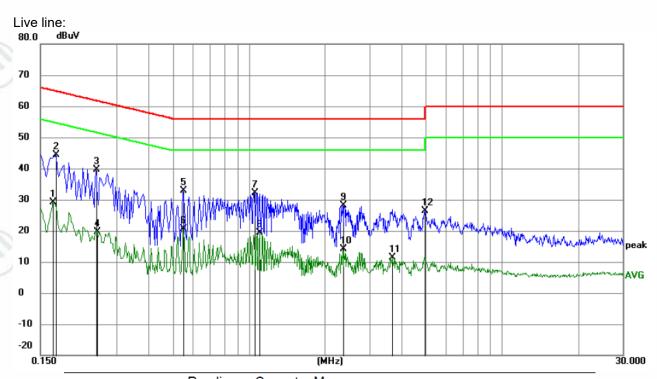
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

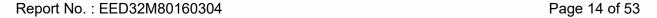
The antenna is FPC antenna. The best case gain of the antenna is 8.85dBi.

Report No. : EED32M80160304 Page 12 of 53

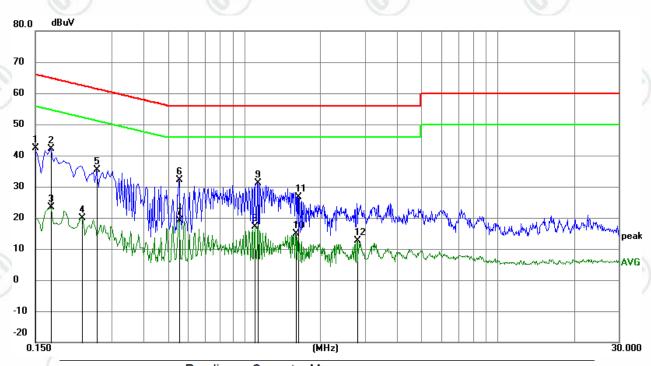

7.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.207					
	Test Method:	ANSI C63.10: 2013					
	Test Frequency Range:	150kHz to 30MHz					
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	weep time=auto	100			
	Limit:	Frequency range (MHz)	Limit (d Quasi-peak	BuV) Average			
		0.15-0.5	66 to 56*	56 to 46*			
		0.5-5	56	46			
		5-30	60	50			
		* Decreases with the logarithm	of the frequency.				
2707	Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 → AC Mair Ground Reference Plane	Test Receiver			
	Test Procedure:	1) The mains terminal disturbation. 2) The EUT was connected Impedance Stabilization Not impedance. The power of connected to a second LIS plane in the same way as multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference with the EUT shall be 0.4 m for vertical ground reference reference plane. The LISN unit under test and bond mounted on top of the ground the closest points of the Lib and associated equipments. 5) In order to find the maximuland all of the interface cab ANSI C63.10: 2013 on conditions.	to AC power source etwork) which provides cables of all other N 2, which was bonde s the LISN 1 for the was used to connect noting of the LISN was not upon a non-metand for floor-standing around reference plane. In a vertical ground reference plane was bonded to a ground reference plane. The light of the EUT. A was at least 0.8 m from the memission, the relativeles must be changed aducted measurement.	through a LISN 1 (Line is a $50\Omega/50\mu H + 5\Omega$ linear units of the EUT were id to the ground reference unit being measured. A multiple power cables to a not exceeded. Ilic table 0.8m above the grangement, the EUT was derence plane. The rear of and reference plane. The to the horizontal ground from the boundary of the erence plane for LISNs his distance was between All other units of the EUT in the LISN 2. We positions of equipment according to			
	Test Mode:	All modes were tested, only the 802.11a was recorded in the re		namilei oi oivibps loi			
L	Test Results:	Pass	700				

Measurement Data



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1680	19.22	9.87	29.09	55.06	-25.97	AVG	
2	*	0.1725	34.55	9.87	44.42	64.84	-20.42	peak	
3		0.2490	29.54	9.97	39.51	61.79	-22.28	peak	
4		0.2508	9.59	9.97	19.56	51.73	-32.17	AVG	
5		0.5505	22.99	10.01	33.00	56.00	-23.00	peak	
6		0.5505	10.74	10.01	20.75	46.00	-25.25	AVG	
7		1.0500	22.34	9.83	32.17	56.00	-23.83	peak	
8		1.1040	9.45	9.83	19.28	46.00	-26.72	AVG	
9		2.3460	18.39	9.79	28.18	56.00	-27.82	peak	
10		2.3460	4.45	9.79	14.24	46.00	-31.76	AVG	
11		3.6915	1.66	9.78	11.44	46.00	-34.56	AVG	
12		4.9605	16.68	9.78	26.46	56.00	-29.54	peak	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	32.51	9.87	42.38	66.00	-23.62	peak	
2 *	0.1725	32.37	9.87	42.24	64.84	-22.60	peak	
3	0.1725	13.52	9.87	23.39	54.84	-31.45	AVG	
4	0.2280	10.07	9.93	20.00	52.52	-32.52	AVG	
5	0.2625	25.48	10.00	35.48	61.35	-25.87	peak	
6	0.5550	22.01	10.02	32.03	56.00	-23.97	peak	
7	0.5550	9.01	10.02	19.03	46.00	-26.97	AVG	
8	1.1040	7.31	9.83	17.14	46.00	-28.86	AVG	
9	1.1310	21.32	9.82	31.14	56.00	-24.86	peak	
10	1.5990	5.02	9.81	14.83	46.00	-31.17	AVG	
11	1.6305	16.94	9.80	26.74	56.00	-29.26	peak	
12	2.7869	2.76	9.79	12.55	46.00	-33.45	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



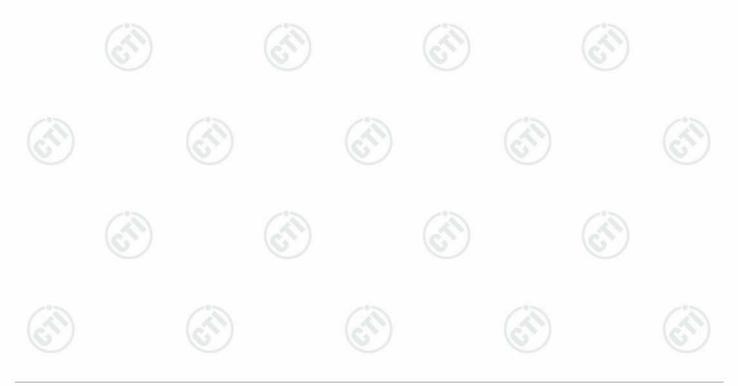
7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB789033 D02 G E	General UNII Tes	t Procedures New Rul	es v02r01 Section		
Test Setup:		5")		6.)		
	Control Computer Power Supply TEMPERATURE CABI	Attenuator	RF test - System Instrument			
Test Procedure:	General UNII Test I 2. The RF output of attenuator. The pat measurement. 3. Set to the maxim continuously.	Procedures New f EUT was conne th loss was comp num power setting	nent Procedure of KDB Rules v02r01 Section I cted to the power mete ensated to the results to g and enable the EUT to wer and record the res	E, 3, a er by RF cable and for each transmit		
Limit:	(6)	<i>5</i>)	0	6.		
	Frequency band (MHz)	Limit				
	5150-5250	≤1W(30dBm) for master device				
		≤250mW(24dBm) for client device				
	5725-5850	5725-5850 ≤1W(30dBm)				
	Remark:	The maximum of measured over	e 26dB emission bands conducted output powe any interval of continu- ntation calibrated in teri ige.	er must be ous transmission		
Test Mode:	Transmitting mode	with modulation				
Test Results:	Refer to Appendix	4				

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

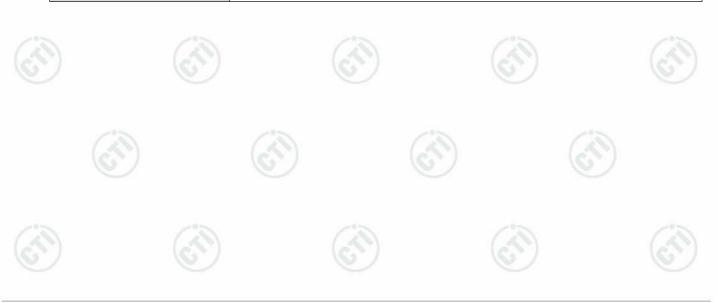
7.4 6dB Emission Bandwidth

100 . 1	
Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Control Power Supply Power ports) Table RF test System System Instrument
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A



7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D					
Test Setup:						
	Control Computer Power Supply Attenuator Instrument Table RF test System Instrument					
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.					
Limit:	No restriction limits					
Test Mode:	Transmitting mode with modulation					
Test Results:	Refer to Appendix A					


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

7.6 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))	
Test Method:				les v02r01 Section F
	100000000000000000000000000000000000000	Choral Orth 1000	T TOOCGUTCS TYCW TYG	103 1021011 000110111
Test Setup:	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test System Instrument	
	Remark: Offset=Ca	ble loss+ attenua	ation factor.	
Test Procedure:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweeps	RBW = 510 kHz/1 MS. s to continue unti	receiver span to view MHz, VBW ≥ 3*RBV I the trace stabilizes. letermine the maxim	
Limit:			/	
	Frequency band (MHz)	Limit		
	5150-5250	≤17dBm in 1MF	lz for master device	(3)
	(c	≤11dBm in 1MH	Iz for client device	(6,2)
	5725-5850	≤30dBm in 500	kHz	
	Remark:	a conducted en	power spectral densit nission by direct conr nstrument to the equ	nection of a
Test Mode:	Transmitting mode	with modulation)	(6,7)
Test Results:	Refer to Appendix	4		

7.7 Frequency Stability

Test Method: ANSI C63.10: 2013 Remark: Offset=Cable loss+ attenuator Instrument Remark: Offset=Cable loss+ attenuator Instrument 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT of and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. Limit: The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C a normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Test Mode: Transmitting mode with modulation Refer to Appendix A	Test Requirement:	47 CFR Part 15C Section 15.407	(g)	
Remark: Offset=Cable loss+ attenuation factor. Test Procedure: 1. The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. Limit: The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C a normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Test Mode: Transmitting mode with modulation	Test Method:	ANSI C63.10: 2013	13	25
Remark: Offset=Cable loss+ attenuation factor. 1. The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. Limit: The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C a normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Test Mode: Transmitting mode with modulation	Test Setup:	(27)	(24)	(C.L.)
Test Procedure: 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. Limit: The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C anormal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Test Mode: Transmitting mode with modulation		Control Computer Power Supply Power Supply Power Temperature Cabinet	System	
by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. Limit: The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C a normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Transmitting mode with modulation		Remark: Offset=Cable loss+ atten	uation factor.	
frequency over a temperature variation of 0 degrees to 45 degrees C a normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Test Mode: Transmitting mode with modulation	Test Procedure:	by nominal AC/DC voltage. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the ch specified. d. Allow sufficient time (of the chamber to stabilize. 4. Repeat step 2 and 3 with the te temperature. 5. The test chamber was allowed to of 30 minutes. The supply voltage 115% and the frequency record.	output to a spectrum amber to the highest approximately 30 min mperature chamber so stabilize at +20 degwas then adjusted or	analyzer. temperature a) for the temperature set to the lowest gree C for a minimum the EUT from 85% to
	Limit:	frequency over a temperature vanormal supply voltage, and for a	ariation of 0 degrees variation in the prima	s to 45 degrees C at ry supply voltage from
Test Results: Refer to Appendix A	Test Mode:			(3)
	Test Results:	Refer to Appendix A	9	(8,2)

Report No. : EED32M80160304 Page 20 of 53

7.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Section	15.209 and 15	.407 (b)							
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance: 3	m (Semi-Anecl	hoic Chan	nber)	(20)					
Receiver Setup:	Frequency	Detector	RBW	V VBW	Remark					
	0.009MHz-0.090MHz	Peak	10kH	z 30kHz	Peak					
	0.009MHz-0.090MHz	Average	10kH	z 30kHz	Average					
	0.090MHz-0.110MHz	Quasi-peak	10kH	z 30kHz	Quasi-peak					
	0.110MHz-0.490MHz	Peak	10kH	z 30kHz	Peak					
	0.110MHz-0.490MHz	Average	10kH	z 30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kH	z 30kHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	100 kH	Hz 300kHz	Quasi-peak					
		Peak	1MH:	z 3MHz	Peak					
	Above 1GHz	Peak	1MH:	z 10kHz	Average					
Limit:		<u>'</u>	'							
	Fraguanav	eld strength crovolt/meter) (Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz 2	2400/F(kHz)	-	- (0)	300					
	0.490MHz-1.705MHz 24	4000/F(kHz)	-	-	30					
	1.705MHz-30MHz	30	-	-	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	500	54.0	Average	3					
	*(1) For transmitters operating in the 5.15-5.25 GHz band: All emis outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions out of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emistoutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or above or below the band edge increasing linearly to 10 dBm/MHz at 25 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are based.									
	measurements employin frequency bands 9-90kl emission limits in these t	lz, 110-490k⊢	lz and a	bove 1000 l	MHz. Radiated					

Page 21 of 53

Report No.: EED32M80160304

an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = $((E*d)^2) / 30$

where:

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.
- (ii) Working in dB units, the above equation is equivalent to:
 - $EIRP[dBm] = E[dB\mu V/m] + 20 log(d[meters]) 104.77$
- (iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

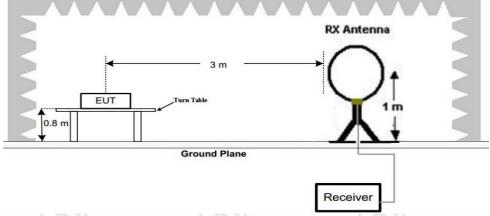
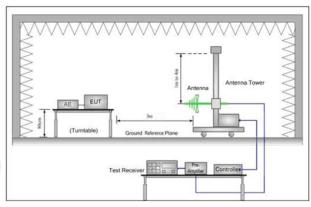



Figure 1. Below 30MHz

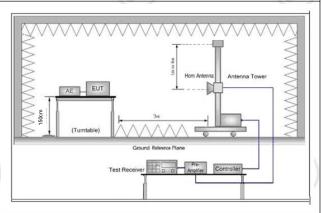


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

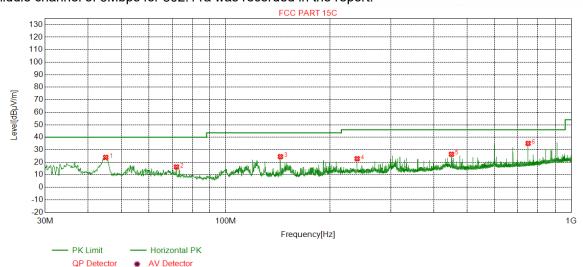
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No. : EED32M80160304 Page 22 of 53

	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest
	 channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

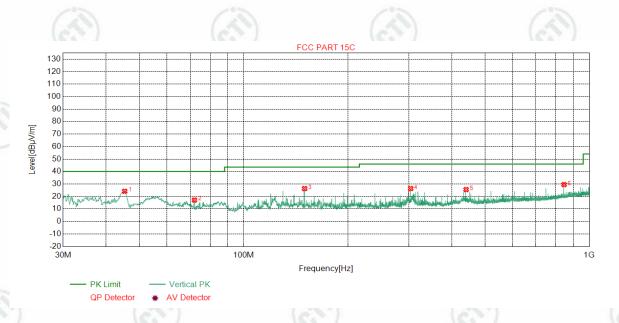


Page 23 of 53

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case middle channel of 6Mbps for 802.11a was recorded in the report.

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	44.9395	13.19	0.75	-31.71	41.70	23.93	40.00	16.07	Pass	Horizontal	Peak
2	72.0052	8.62	0.97	-32.02	38.72	16.29	40.00	23.71	Pass	Horizontal	Peak
3	143.9864	7.34	1.41	-31.99	47.76	24.52	43.50	18.98	Pass	Horizontal	Peak
4	240.0260	11.94	1.84	-31.90	40.99	22.87	46.00	23.13	Pass	Horizontal	Peak
5	449.9550	16.20	2.51	-31.89	39.63	26.45	46.00	19.55	Pass	Horizontal	Peak
6	750.0060	20.35	3.29	-32.04	43.50	35.10	46.00	10.90	Pass	Horizontal	Peak



Suspected List												
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	45.2305	13.20	0.75	-31.73	41.96	24.18	40.00	15.82	Pass	Vertical	Peak	
2	72.0052	8.62	0.97	-32.02	39.57	17.14	40.00	22.86	Pass	Vertical	Peak	
3	150.0010	7.55	1.45	-32.01	49.37	26.36	43.50	17.14	Pass	Vertical	Peak	
4	304.0524	13.29	2.07	-31.60	42.64	26.40	46.00	19.60	Pass	Vertical	Peak	
5	439.9630	16.04	2.48	-31.88	38.89	25.53	46.00	20.47	Pass	Vertical	Peak	
6	844.9785	21.44	3.50	-31.82	36.42	29.54	46.00	16.46	Pass	Vertical	Peak	

Report No. : EED32M80160304 Page 25 of 53

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission from 1GHz to 40GHz was performed in all modes,

for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case;

for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case;

for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case;

only the worst case was in the report.

Mode:			802.11	802.11 a Transmitting						5180 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1304.7305	28.20	3.33	-42.78	50.19	38.94	68.2	29.26	Pass	Н	PK
2	1833.3333	30.60	3.91	-42.79	49.55	41.27	68.2	26.93	Pass	Н	PK
3	2564.3564	32.50	4.83	-43.10	50.32	44.55	68.2	23.65	Pass	Н	PK
4	3930.1430	33.74	6.25	-43.01	49.30	46.28	68.2	21.92	Pass	Н	PK
5	7535.0518	36.59	6.45	-42.12	48.77	49.69	68.2	18.51	Pass	Н	PK
6	9055.4278	37.69	6.74	-42.01	48.51	50.93	68.2	17.27	Pass	Н	PK
7	1344.3344	28.24	3.33	-42.73	50.27	39.11	68.2	29.09	Pass	V	PK
8	1726.0726	29.89	3.89	-42.67	48.93	40.04	68.2	28.16	Pass	V	PK
9	2203.5204	31.98	4.40	-43.16	49.80	43.02	68.2	25.18	Pass	V	PK
10	3789.8790	33.63	6.07	-43.04	49.52	46.18	68.2	22.02	Pass	V	PK
11	6348.7349	35.87	8.68	-42.53	49.04	51.06	68.2	17.14	Pass	V	PK
12	8869.6935	37.41	6.87	-42.00	48.49	50.77	68.2	17.43	Pass	V	PK

0	(1987) [1987]			[AN] [A]						1000	
Mode	:		802.11	802.11 a Transmitting						5200 MF	łz
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1353.6854	28.25	3.33	-42.72	51.99	40.85	68.2	27.35	Pass	Н	PK
2	2339.3839	32.18	4.66	-43.13	50.57	44.28	68.2	23.92	Pass	Н	PK
3	3071.5072	33.23	5.50	-43.10	49.00	44.63	68.2	23.57	Pass	Н	PK
4	3803.0803	33.64	6.13	-43.04	49.99	46.72	68.2	21.48	Pass	Н	PK
5	6346.5347	35.87	8.67	-42.53	48.63	50.64	68.2	17.56	Pass	Н	PK
6	8830.5915	37.33	6.89	-42.01	48.15	50.36	68.2	17.84	Pass	Н	PK
7	1413.0913	28.31	3.36	-42.74	49.71	38.64	68.2	29.56	Pass	V	PK
8	2176.0176	31.95	4.37	-43.17	49.02	42.17	68.2	26.03	Pass	V	PK
9	3048.9549	33.22	5.48	-43.10	49.25	44.85	68.2	23.35	Pass	V	PK
10	3922.4422	33.74	6.26	-43.02	49.78	46.76	68.2	21.44	Pass	V	PK
11	6481.8482	35.90	8.59	-42.50	48.45	50.44	68.2	17.76	Pass	V	PK
12	8944.4472	37.58	6.86	-42.01	47.71	50.14	68.2	18.06	Pass	V	PK

Page 26 of 53

Mod	le:		802.11	a Transm	nitting			Channe	el:	5240 MH	łz	
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1273.9274	28.17	3.24	-42.81	50.83	39.43	68.2	28.77	Pass	Н	PK	
2	2474.6975	32.36	4.70	-43.10	50.36	44.32	68.2	23.88	Pass	Н	PK	
3	3800.3300	33.64	6.12	-43.04	49.70	46.42	68.2	21.78	Pass	Н	PK	
4	5015.4015	34.52	7.09	-42.80	51.00	49.81	68.2	18.39	Pass	Н	PK	
5	7011.2006	36.11	6.28	-42.19	48.24	48.44	68.2	19.76	Pass	Н	PK	
6	8369.4185	36.55	6.63	-42.06	49.33	50.45	68.2	17.75	Pass	Н	PK	
7	1326.7327	28.23	3.33	-42.76	51.21	40.01	68.2	28.19	Pass	٧	PK	
8	2321.7822	32.15	4.67	-43.13	49.28	42.97	68.2	25.23	Pass	V	PK	
9	3772.2772	33.62	5.99	-43.05	50.89	47.45	68.2	20.75	Pass	V	PK	
10	5002.7503	34.50	7.07	-42.79	51.00	49.78	68.2	18.42	Pass	V	PK	
11	6360.2860	35.87	8.65	-42.52	48.95	50.95	68.2	17.25	Pass	V	PK	
12	9325.1163	37.63	6.71	-42.06	49.19	51.47	68.2	16.73	Pass	V	PK	

Mode			802.11	n(HT40)	Transmittir	ng		Channel:		5190 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1281.6282	28.18	3.26	-42.80	50.19	38.83	68.2	26.09	Pass	Н	PK
2	2055.5556	31.78	4.31	-43.19	49.21	42.11	68.2	23.91	Pass	Н	PK
3	2764.5765	32.82	4.96	-43.10	49.61	44.29	68.2	21.59	Pass	Н	PK
4	3849.2849	33.68	6.31	-43.03	49.65	46.61	68.2	18.92	Pass	Н	PK
5	5009.3509	34.51	7.08	-42.80	50.49	49.28	68.2	17.61	Pass	Н	PK
6	8901.3201	37.48	6.91	-42.00	48.20	50.59	68.2	29.3	Pass	Н	PK
7	1363.0363	28.26	3.33	-42.72	50.03	38.90	68.2	24.4	Pass	V	PK
8	2515.4015	32.42	4.77	-43.09	49.70	43.80	68.2	18.8	Pass	V	PK
9	5028.6029	34.53	7.10	-42.79	50.56	49.40	68.2	17.82	Pass	V	PK
10	5831.1331	35.53	8.38	-42.60	49.07	50.38	68.2	18.81	Pass	V	PK
11	7460.8730	36.56	6.50	-42.11	48.44	49.39	68.2	18.13	Pass	V	PK
12	8830.0165	37.33	6.89	-42.01	47.86	50.07	68.2	26.09	Pass	V	PK

Page 27 of 53

Mode:			802.11	n(HT40)	Transmittir	ng		Channe	el:	5230 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1342.6843	28.24	3.33	-42.74	50.55	39.38	68.2	28.82	Pass	Н	PK
2	2113.3113	31.86	4.50	-43.18	48.83	42.01	68.2	26.19	Pass	Н	PK
3	3054.4554	33.22	5.48	-43.09	49.29	44.90	68.2	23.3	Pass	Н	PK
4	5014.3014	34.51	7.08	-42.79	50.99	49.79	68.2	18.41	Pass	Н	PK
5	6438.3938	35.89	8.47	-42.51	49.37	51.22	68.2	16.98	Pass	Н	PK
6	9106.6053	37.68	6.65	-42.03	48.63	50.93	68.2	17.27	Pass	Н	PK
7	1566.0066	28.84	3.55	-42.97	49.35	38.77	68.2	29.43	Pass	V	PK
8	2698.0198	32.72	4.89	-43.11	50.25	44.75	68.2	23.45	Pass	V	PK
9	3898.2398	33.72	6.26	-43.02	50.37	47.33	68.2	20.87	Pass	V	PK
10	5018.7019	34.52	7.09	-42.80	51.05	49.86	68.2	18.34	Pass	V	PK
11	6379.5380	35.88	8.58	-42.52	48.39	50.33	68.2	17.87	Pass	V	PK
12	8519.5010	36.64	6.66	-42.00	48.69	49.99	68.2	18.21	Pass	V	PK

Mode	Mode:			802.11 ac(VHT80) Transmitting						5210 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1401.5402	28.30	3.33	-42.68	49.89	38.84	68.2	29.36	Pass	Н	PK
2	2564.3564	32.50	4.83	-43.10	50.26	44.49	68.2	23.71	Pass	Н	PK
3	3826.1826	33.66	6.22	-43.03	50.26	47.11	68.2	21.09	Pass	Н	PK
4	5030.2530	34.53	7.10	-42.79	50.58	49.42	68.2	18.78	Pass	Н	PK
5	6122.6623	35.82	8.48	-42.58	49.19	50.91	68.2	17.29	Pass	Н	PK
6	9036.4518	37.69	6.77	-42.00	47.91	50.37	68.2	17.83	Pass	Н	PK
7	1454.3454	28.35	3.44	-42.91	50.25	39.13	68.2	29.07	Pass	V	PK
8	2692.5193	32.71	4.88	-43.10	50.38	44.87	68.2	23.33	Pass	V	PK
9	3776.6777	33.62	6.01	-43.05	50.00	46.58	68.2	21.62	Pass	٧	PK
10	4992.2992	34.50	7.08	-42.80	50.77	49.55	68.2	18.65	Pass	V	PK
11	6006.6007	35.80	8.22	-42.59	49.31	50.74	68.2	17.46	Pass	V	PK
12	8794.3647	37.25	6.96	-42.00	48.73	50.94	68.2	17.26	Pass	V	PK

Report No. : EED32M80160304 Page 28 of 53

	1 4 1		7.631 7.631					/ AN			
Mode:			802.11	a Transm	nitting			Channe	el:	5745 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1922.9923	31.19	4.16	-43.01	49.50	41.84	68.20	26.36	Pass	Н	PK
2	3866.8867	33.69	6.29	-43.02	50.18	47.14	68.20	21.06	Pass	Н	PK
3	4999.4499	34.50	7.07	-42.80	50.85	49.62	68.20	18.58	Pass	Н	PK
4	8531.0354	36.67	6.67	-42.00	49.61	50.95	68.20	17.25	Pass	Н	PK
5	14609.574	40.24	9.20	-41.70	49.28	57.02	68.20	11.18	Pass	Н	PK
6	2695.8196	32.71	4.89	-43.10	50.03	44.53	68.20	23.67	Pass	Н	PK
7	3932.3432	33.75	6.25	-43.01	49.95	46.94	68.20	21.26	Pass	V	PK
8	5025.8526	34.53	7.10	-42.80	51.22	50.05	68.20	18.15	Pass	V	PK
9	10213.980	38.10	7.15	-42.06	49.15	52.34	68.20	15.86	Pass	V	PK
10	12432.095	39.56	7.94	-41.90	50.22	55.82	68.20	12.38	Pass	V	PK
11	17540.736	42.67	12.47	-40.99	50.34	64.49	68.20	3.71	Pass	V	PK
12	2695.8196	32.71	4.89	-43.10	50.03	44.53	68.20	23.67	Pass	V	PK

Mode:			802.11	a Transm	nitting			Channe	el:	5785 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2344.3344	32.18	4.66	-43.13	49.60	43.31	68.20	24.89	Pass	Н	PK
2	3852.0352	33.68	6.31	-43.03	50.21	47.17	68.20	21.03	Pass	Н	PK
3	5045.6546	34.55	7.12	-42.79	50.34	49.22	68.20	18.98	Pass	Н	PK
4	7410.8607	36.51	6.45	-42.12	49.57	50.41	68.20	17.79	Pass	Н	PK
5	14552.836	40.22	9.06	-41.70	49.63	57.21	68.20	10.99	Pass	Н	PK
6	17572.171	42.64	12.40	-40.99	49.98	64.03	68.20	4.17	Pass	Н	PK
7	2451.5952	32.33	4.67	-43.11	50.36	44.25	68.20	23.95	Pass	V	PK
8	3935.6436	33.75	6.25	-43.01	49.29	46.28	68.20	21.92	Pass	V	PK
9	5013.2013	34.51	7.08	-42.79	51.33	50.13	68.20	18.07	Pass	V	PK
10	11250.583	38.75	7.72	-42.00	49.15	53.62	68.20	14.58	Pass	V	PK
11	14440.129	40.14	9.49	-41.70	49.22	57.15	68.20	11.05	Pass	V	PK
12	17570.638	42.64	12.41	-40.99	51.04	65.10	68.20	3.10	Pass	V	PK

Report No. : EED32M80160304 Page 29 of 53

	1 4 1		1.201 1.201					1.431			
Mode	e:		802.11	a Transm	nitting			Channe	el:	5825 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2694.1694	32.71	4.88	-43.10	49.77	44.26	68.20	23.94	Pass	Н	PK
2	3938.3938	33.75	6.25	-43.01	49.81	46.80	68.20	21.40	Pass	Н	PK
3	5005.5006	34.51	7.08	-42.81	50.70	49.48	68.20	18.72	Pass	Н	PK
4	11360.224	38.82	7.52	-42.00	49.76	54.10	68.20	14.10	Pass	Н	PK
5	16523.301	42.30	10.18	-41.59	50.14	61.03	68.20	7.17	Pass	Н	PK
6	17572.171	42.64	12.40	-40.99	49.92	63.97	68.20	4.23	Pass	Н	PK
7	2684.2684	32.69	4.87	-43.09	49.78	44.25	68.20	23.95	Pass	V	PK
8	3881.1881	33.70	6.28	-43.02	49.52	46.48	68.20	21.72	Pass	V	PK
9	5009.9010	34.51	7.08	-42.80	50.96	49.75	68.20	18.45	Pass	V	PK
10	12505.700	39.60	7.84	-41.90	49.33	54.87	68.20	13.33	Pass	V	PK
11	15909.160	41.72	11.47	-42.10	49.77	60.86	68.20	7.34	Pass	V	PK
12	17579.071	42.64	12.36	-40.99	49.90	63.91	68.20	4.29	Pass	V	PK

Mode:			802.11	802.11 n(HT40) Transmitting					el:	5755 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2425.1925	32.30	4.66	-43.12	50.94	44.78	68.20	23.42	Pass	Н	PK
2	3802.5303	33.64	6.13	-43.04	49.92	46.65	68.20	21.55	Pass	Н	PK
3	4995.0495	34.50	7.08	-42.80	50.84	49.62	68.20	18.58	Pass	Н	PK
4	11236.015	38.74	7.68	-42.00	48.69	53.11	68.20	15.09	Pass	Н	PK
5	16467.331	42.27	10.15	-41.62	50.31	61.11	68.20	7.09	Pass	Н	PK
6	17577.538	42.64	12.36	-40.98	50.45	64.47	68.20	3.73	Pass	Н	PK
7	2114.9615	31.86	4.49	-43.17	49.88	43.06	68.20	25.14	Pass	V	PK
8	3844.3344	33.68	6.29	-43.04	49.57	46.50	68.20	21.70	Pass	V	PK
9	5023.1023	34.52	7.09	-42.78	51.07	49.90	68.20	18.30	Pass	V	PK
10	11216.847	38.73	7.62	-42.00	49.35	53.70	68.20	14.50	Pass	V	PK
11	15893.826	41.69	11.57	-42.10	49.17	60.33	68.20	7.87	Pass	V	PK
12	17452.563	42.65	11.59	-41.03	50.05	63.26	68.20	4.94	Pass	V	PK
/					/ 2			100			120

Report No. : EED32M80160304 Page 30 of 53

	1 4 1		(A N					1.631			
Mode	:		802.11	n(HT40)	Transmittiı	ng		Channe	el:	5795 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2457.6458	32.34	4.68	-43.11	49.98	43.89	68.20	24.31	Pass	Н	PK
2	3088.5589	33.24	5.52	-43.11	48.75	44.40	68.20	23.80	Pass	Н	PK
3	5008.2508	34.51	7.08	-42.80	50.45	49.24	68.20	18.96	Pass	Н	PK
4	7433.8623	36.53	6.47	-42.11	50.16	51.05	68.20	17.15	Pass	Н	PK
5	14437.062	40.14	9.47	-41.70	49.26	57.17	68.20	11.03	Pass	Н	PK
6	17578.305	42.64	12.36	-40.99	50.62	64.63	68.20	3.57	Pass	Н	PK
7	2452.1452	32.33	4.67	-43.10	50.67	44.57	68.20	23.63	Pass	V	PK
8	3805.8306	33.64	6.14	-43.03	49.84	46.59	68.20	21.61	Pass	V	PK
9	5006.6007	34.51	7.08	-42.80	50.67	49.46	68.20	18.74	Pass	V	PK
10	12382.258	39.53	7.90	-41.90	49.40	54.93	68.20	13.27	Pass	V	PK
11	16552.436	42.29	10.39	-41.58	50.38	61.48	68.20	6.72	Pass	V	PK
12	17574.471	42.64	12.38	-40.98	50.32	64.36	68.20	3.84	Pass	V	PK

Mode			802.11	ac(VHT8	0) Transm	itting		Channel:		5775 MHz	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2561.0561	32.50	4.83	-43.10	50.17	44.40	68.20	23.80	Pass	Н	PK
2	3919.6920	33.74	6.26	-43.02	49.64	46.62	68.20	21.58	Pass	Н	PK
3	5008.8009	34.51	7.08	-42.80	50.37	49.16	68.20	19.04	Pass	Н	PK
4	11893.859	39.22	7.60	-41.93	48.57	53.46	68.20	14.74	Pass	Н	PK
5	15903.793	41.71	11.63	-42.10	49.65	60.89	68.20	7.31	Pass	Н	PK
6	17548.403	42.66	12.52	-40.99	49.92	64.11	68.20	4.09	Pass	Н	PK
7	1640.8141	29.33	3.79	-42.80	50.47	40.79	68.20	27.41	Pass	V	PK
8	3077.0077	33.23	5.51	-43.10	49.10	44.74	68.20	23.46	Pass	V	PK
9	3911.4411	33.73	6.26	-43.02	49.87	46.84	68.20	21.36	Pass	V	PK
10	11262.850	38.76	7.70	-42.00	50.25	54.71	68.20	13.49	Pass	V	PK
11	15934.462	41.77	10.73	-42.10	50.26	60.66	68.20	7.54	Pass	V	PK
12	17550.703	42.66	12.53	-40.99	50.62	64.82	68.20	3.38	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32M80160304 Page 31 of 53

7.9 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Sect	7 CFR Part 15C Section 15.209 and 15.407 (b)										
	Test Method:	ANSI C63.10 2013	2		-	2							
	Test Site:	Measurement Distance	e: 3n	n (Semi-Anec	hoic Char	nbe	r)	(8.5)					
	Receiver Setup:	Frequency		Detector	RBV	٧	VBW	Remark					
		0.009MHz-0.090MH	Ηz	Peak	10kH:		30kHz	Peak					
		0.009MHz-0.090MH	Ηz	Average	10kF	Ιz	30kHz	Average					
		0.090MHz-0.110MH	Ηz	Quasi-peal	10kHz		30kHz	Quasi-peak					
		0.110MHz-0.490MH	Ηz	Peak	10kH	Ηz	30kHz	Peak					
		0.110MHz-0.490MH	Ηz	Average	10kF	Ηz	30kHz	Average					
		0.490MHz -30MHz	<u>z</u>	Quasi-peal	k 10k⊦	Ιz	30kHz	Quasi-peak					
9		30MHz-1GHz	10	Quasi-peal	k 100 k	Hz	300kHz	Quasi-peak					
		Above 1GHz	Peak	1MH	lz	3MHz	Peak						
		Above 1G112	Peak	1M⊢	lz	10kHz	Average						
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	R	Remark	Measurement distance (m)					
		0.009MHz-0.490MHz 240		00/F(kHz)	-		- 6	300					
		0.490MHz-1.705MHz	24	000/F(kHz)	-		-	30					
		1.705MHz-30MHz		30	-		-	30					
		30MHz-88MHz	10	100	40.0	Qu	asi-peak	3					
		88MHz-216MHz	1	150	43.5	Qu	asi-peak	3					
		216MHz-960MHz	200		46.0	Quasi-peak		3					
		960MHz-1GHz		500	54.0	Quasi-peak		3					
		Above 1GHz		500	54.0	Α	verage	3					
		*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz b (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the base of below the bas	erational eratio	GHz band ng in the 5.25 shall not excepting in the 5.72 mited to a level of 15 5 MHz above n/MHz at the imits shown	shall not 5-5.35 GH eed an e.i 5.47-5.72 shall no 25-5.85 GI el of -27 ing linearl om 25 MI .6 dBm/M e or belo band edg- in the	t ex Iz ba i.r.p. 25 G t ex Hz b dBm yy to Hz a IHz a IHz a e. abov	and: All em of -27 dB GHz band: aceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz ar one band e	e.i.r.p. of -27 hissions outside 8m/MHz. All emissions e.i.r.p. of -27 hissions outside 8m/MHz. Hissions e.i.r.p. of -27 hissions outside 8m/MHz. Hissions e.i.r.p. of -27 Hissions outside 9m/MHz. Hissions e.i.r.p. of -27 Hissions outside 9m/MHz or more 9m/Hz at 25 MHz. Hissions outside 9m/MHz or more 9m/Hz at 25 MHz. Hissions outside 9m/Hz at 25 MHz. Hissi					
8		measurements emplo frequency bands 9-9											

Page 32 of 53

Report No.: EED32M80160304

emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

- (i) EIRP = $((E*d)^2) / 30$
- where:
- E is the field strength in V/m;
- · d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.
- (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$
- (iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

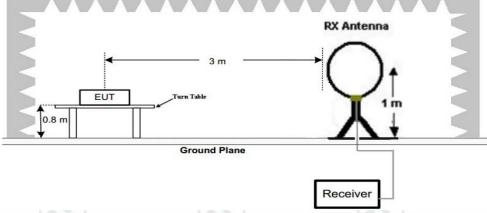
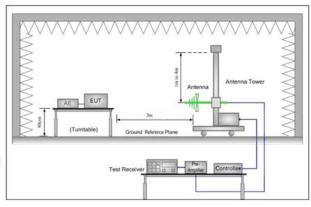



Figure 1. Below 30MHz

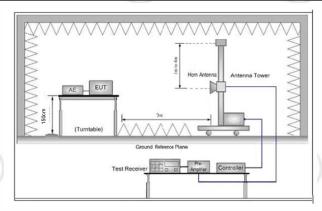


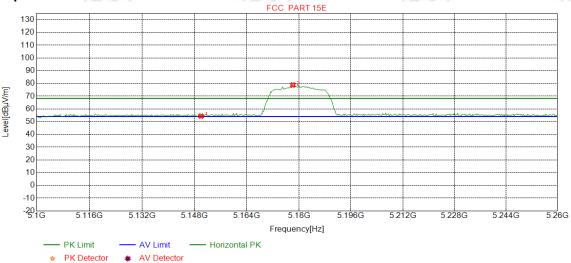
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No. : EED32M80160304 Page 33 of 53



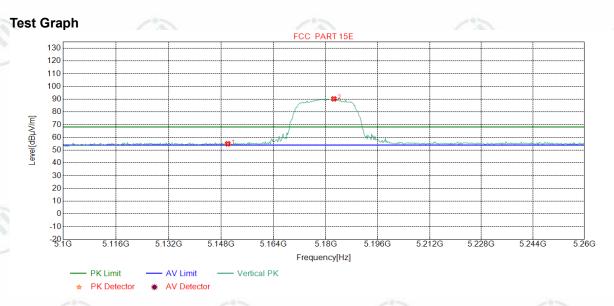
Page 34 of 53

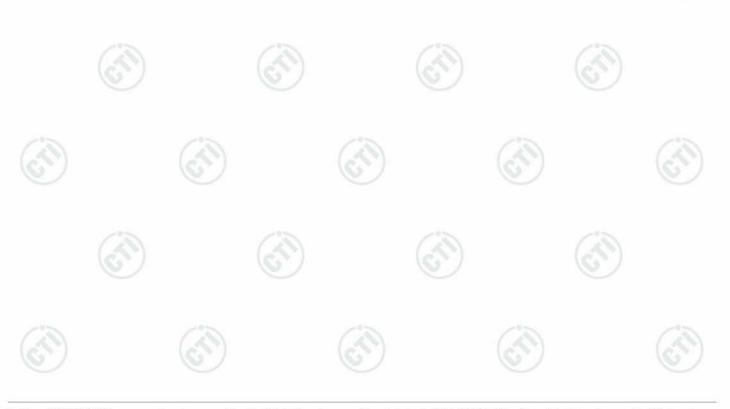
Test Data:

Mode:	802.11 a	Channel:	5180 MHz
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	47.36	54.35	68.20	13.85	Pass	Horizontal
2	5178.0976	34.68	15.36	-42.74	71.49	78.79	68.20	-10.59	Pass	Horizontal

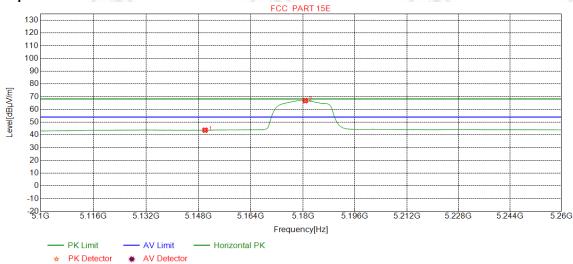




Page 35 of 53

Mode:	802.11 a	Channel:	5180 MHz
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	48.02	55.01	68.20	13.19	Pass	Vertical
2	5182.5031	34.68	15.40	-42.73	82.92	90.27	68.20	-22.07	Pass	Vertical
. 10. 1		-								F

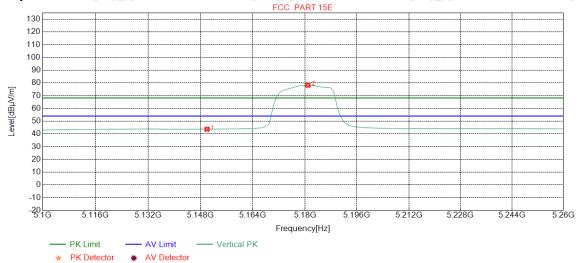


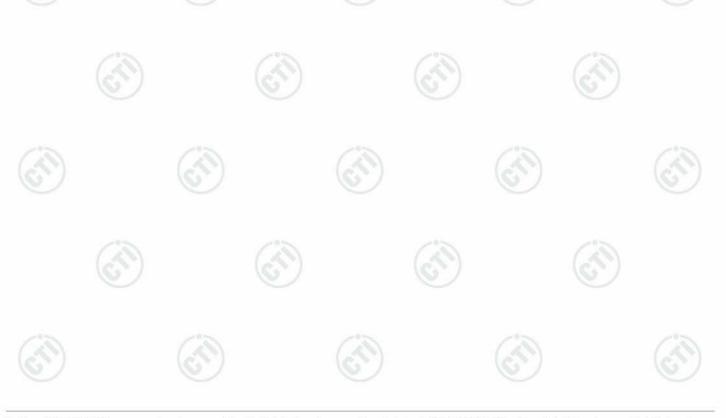


Mode:	802.11 a	Channel:	5180 MHz
Remark:	AV		

Test Graph

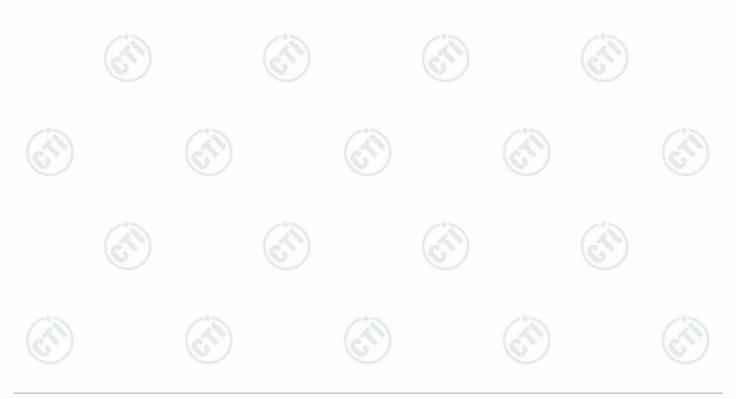
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	36.74	43.73	54.00	10.27	Pass	Horizontal
2	5180.7009	34.68	15.38	-42.73	59.60	66.93	54.00	-12.93	Pass	Horizontal





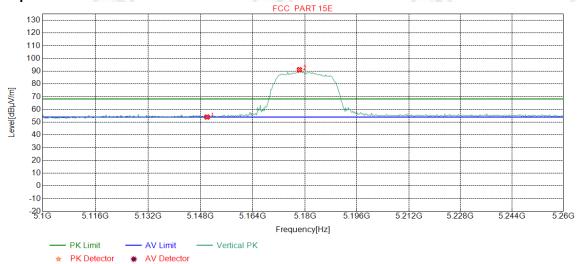
0.3 - 1	163	(83.7	100
Mode:	802.11 a	Channel:	5180 MHz
Remark:	AV		

Ant Pream Cable Freq. Reading Level Limit Margin Factor NO loss gain Result Polarity [dB] [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] Pass 1 5150.0000 34.65 15.08 -42.74 36.72 43.71 54.00 10.29 Vertical 2 5180.9011 34.68 15.38 -42.72 78.29 54.00 -24.29 **Pass** 70.95 Vertical



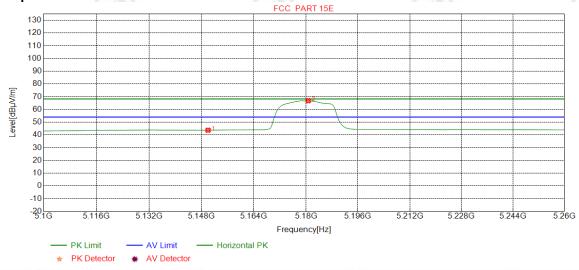
Mode:	802.11 n(HT20)	Channel:	5180 MHz
Remark:	PK		

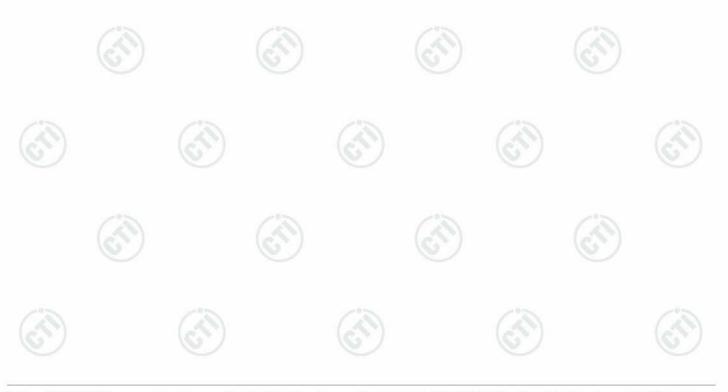
				3 30 30 10						
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	47.10	54.09	68.20	14.11	Pass	Horizontal
2	5182.3029	34.68	15.40	-42.73	70.30	77.65	68.20	-9.45	Pass	Horizontal



Mode:	802.11 n(HT20)	Channel:	5180 MHz
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	47.05	54.04	68.20	14.16	Pass	Vertical
2	5178.2979	34.68	15.36	-42.73	83.85	91.16	68.20	-22.96	Pass	Vertical

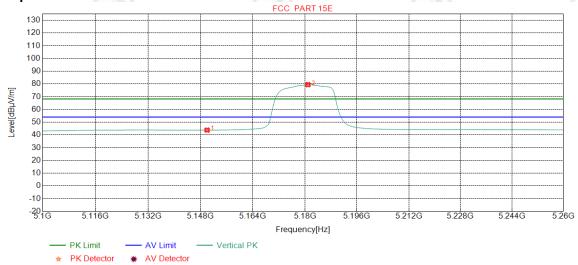



Page 40 of 53

Mode:	802.11 n(HT20)	Channel:	5180 MHz
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	36.72	43.71	54.00	10.29	Pass	Horizontal
2	5180.7009	34.68	15.38	-42.73	59.52	66.85	54.00	-12.85	Pass	Horizontal

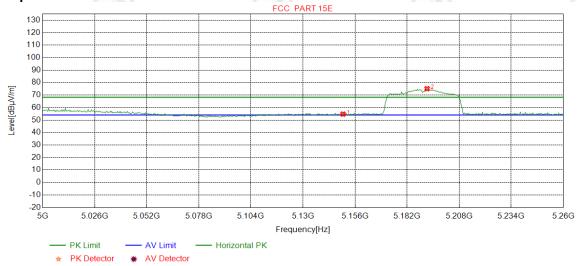




Page 41 of 53

Mode:	802.11 n(HT20)	Channel:	5180MHz
Remark:	AV		

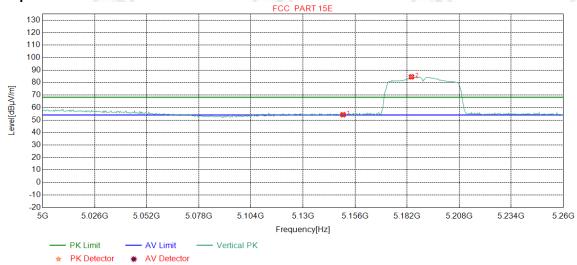
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	5150.0000	34.65	15.08	-42.74	36.79	43.78	54.00	10.22	Pass	Vertical
0	2	5180.9011	34.68	15.38	-42.72	72.10	79.44	54.00	-25.44	Pass	Vertical

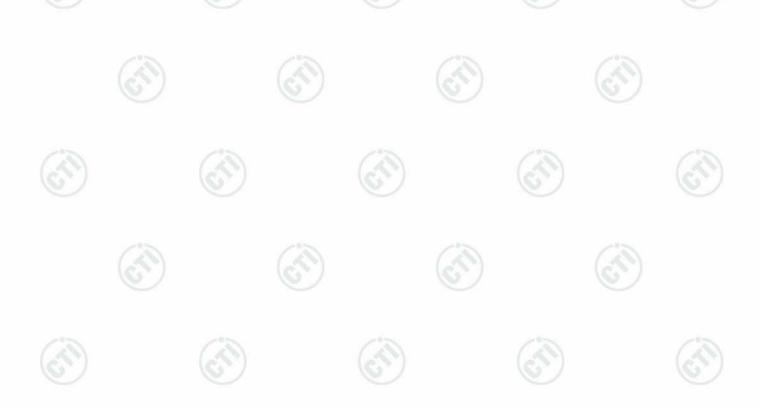




Mode:	802.11 n(HT40)	Channel:	5190MHz
Remark:	PK		

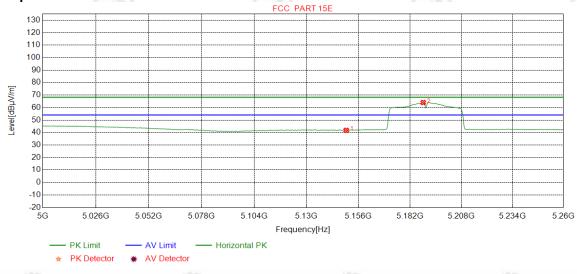
N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	5150.0000	34.65	15.08	-42.74	47.76	54.75	68.20	13.45	Pass	Horizontal
2	2	5191.9900	34.69	15.49	-42.72	67.63	75.09	68.20	-6.89	Pass	Horizontal
					•		•			•	- Carlo - Table - Tabl





Mode:	802.11 n(HT40)	Channel:	5190MHz
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	47.25	54.24	68.20	13.96	Pass	Vertical
2	5184.1802	34.68	15.41	-42.72	77.23	84.60	68.20	-16.40	Pass	Vertical



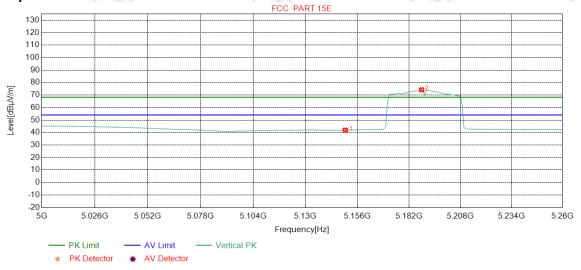
Report No.: EED32M80160304

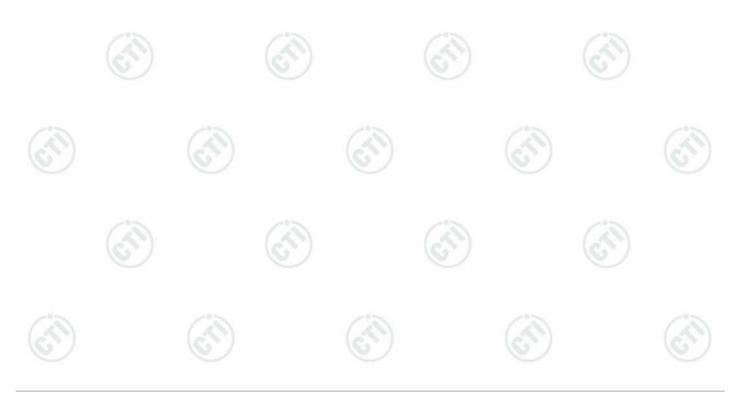
Page 44 of 53

Mode:	802.11 n(HT40)	Channel:	5190MHz
Remark:	AV		

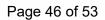
Test Graph

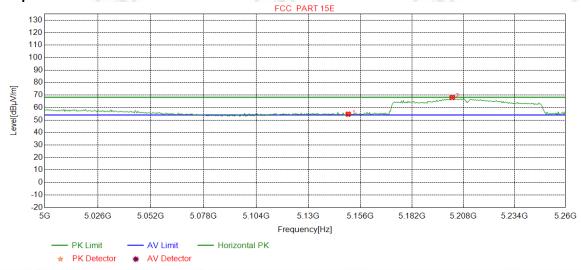
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	34.78	41.77	54.00	12.23	Pass	Horizontal
2	5188.7359	34.69	15.46	-42.73	56.60	64.02	54.00	-10.02	Pass	Horizontal

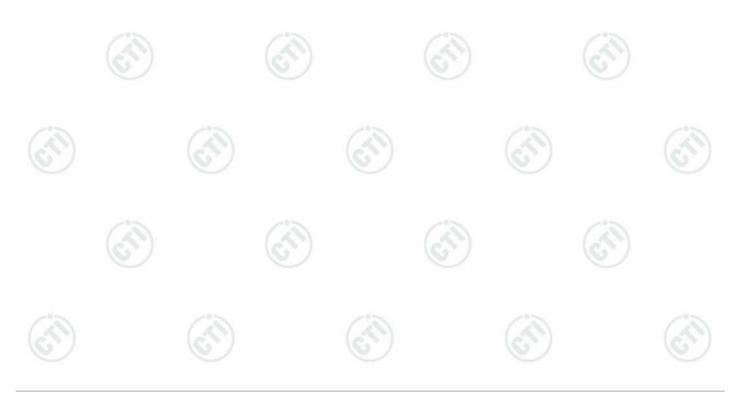




Mode:	802.11 n(HT40)	Channel:	5190MHz
Remark:	AV		

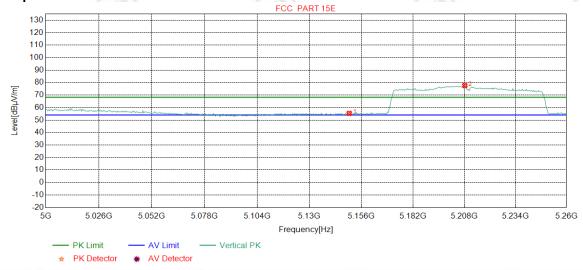

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	34.91	41.90	54.00	12.10	Pass	Vertical
2	5188.4105	34.69	15.46	-42.73	66.78	74.20	54.00	-20.20	Pass	Vertical

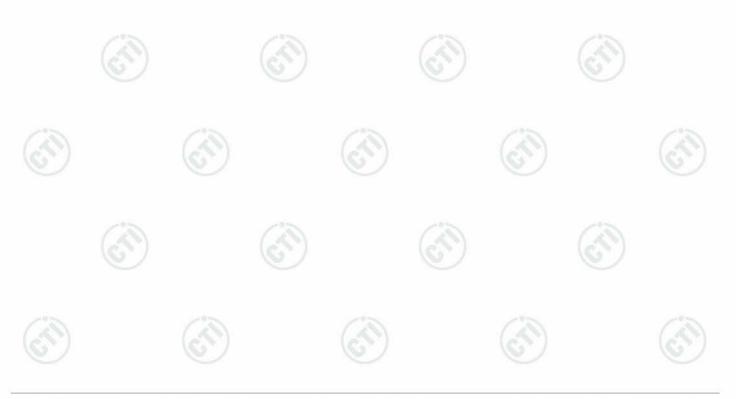

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210MHz
Remark:	PK		

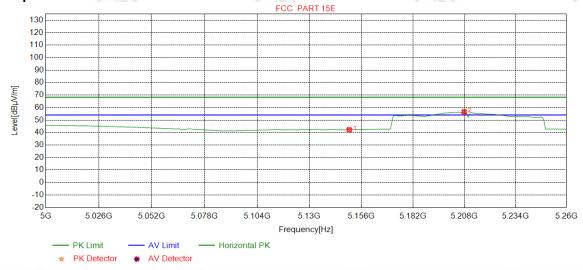
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
p d	1	5150.0000	34.65	15.08	-42.74	47.70	54.69	68.20	13.51	Pass	Horizontal
0	2	5202.4030	34.70	15.56	-42.72	60.57	68.11	68.20	0.09	Pass	Horizontal


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



Mode:	802.11 ac(VHT80)	Channel:	5210MHz
Remark:	PK		

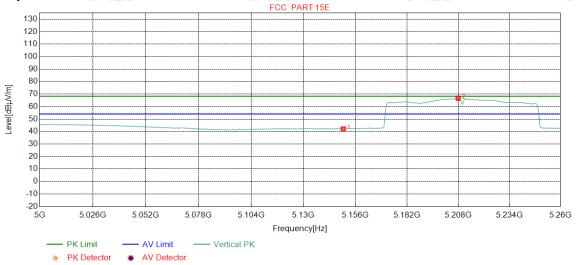
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	5150.0000	34.65	15.08	-42.74	48.33	55.32	68.20	12.88	Pass	Vertical
2	5208.2603	34.71	15.53	-42.71	70.05	77.58	68.20	-9.38	Pass	Vertical



Page 48 of 53

Mode:	802.11 ac(VHT80)	Channel:	5210MHz
Remark:	AV		

N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	5150.0000	34.65	15.08	-42.74	35.28	42.27	54.00	11.73	Pass	Horizontal
2	2	5207.9349	34.71	15.54	-42.72	49.02	56.55	54.00	-2.55	Pass	Horizontal



Page 49 of 53

Mode:	802.11ac(VHT80)	Channel:	5210MHz
Remark:	AV		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	5150.0000	34.65	15.08	-42.74	35.14	42.13	54.00	11.87	Pass	Vertical
á	2	5207.9349	34.71	15.54	-42.72	59.10	66.63	54.00	-12.63	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32M80160304

Page 50 of 53

8 Appendix A

Refer to Appendix: 5G WIFI of EED32M80160304

Page 51 of 53

Report No.: EED32M80160304

PHOTOGRAPHS OF TEST SETUP

Test model No. IM1

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32M80160304

Radiated spurious emission Test Setup-3(Below 30MHz)

Report No. : EED32M80160304 Page 53 of 53

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32M80160301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

