

Product WIRELESS BATTERY DIAGNOSTICS

SYSTEM

AUTEL Trade mark

MaxiBAS BT609 Model/Type reference

N/A Serial Number

Report Number EED32M00253902 FCC ID WQ8MAXIBASBT609

Date of Issue Jan. 04, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Autel Intelligent Tech. Corp., Ltd. 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, 518055, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tom Chen

David Wany

David Wang

Reviewed by:

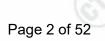
Date:

Aaron Ma

Jan. 04, 2021

Acron Ma

Check No.:4762102967



2 Version

Version No.	Date	Description
00	Jan. 04, 2021	Original

Page 3 of 52

3 Test Summary

o rest cammary	2107	200	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

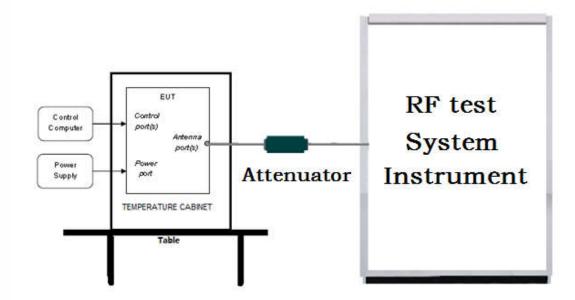
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 52

4 Content

1 COVER	PAGE					1
2 VERSIOI	N			•••••		
3 TEST SU	JMMARY			•••••	•••••	
4 CONTEN	IT					
5 TEST RE	QUIREMENT					
5.1.1 5.1.2 5.1.3 5.2 TEST	F SETUP For Conducted test For Radiated Emiss For Conducted Emir FENVIRONMENT F CONDITION	setup ions test setup ssions test setup				
6 GENERA	AL INFORMATION	•••••	•••••	•••••	•••••	
6.2 GEN 6.3 DES 6.4 TES 6.5 DEVI 6.6 ABN 6.7 OTH	NT INFORMATION ERAL DESCRIPTION O CRIPTION OF SUPPOR LOCATION IATION FROM STANDA ORMALITIES FROM ST. ER INFORMATION REC SUREMENT UNCERTA	F EUT T UNITS RDS ANDARD CONDITIONS QUESTED BY THE CUS	S			
7 EQUIPM	ENT LIST				(6.7)	10
8 RADIO T	ECHNICAL REQUI	REMENTS SPECIF	FICATION	••••		13
Appe Appe Appe Appe Appe Appe Appe	ndix A): 6dB Occupi ndix B): Conducted ndix C): Band-edge ndix D): RF Conducted ndix E): Power Spect ndix F): Antenna Re ndix G): AC Power Lendix H): Restricted be ndix I) Radiated Spect	Peak Output Powe for RF Conducted E ted Spurious Emiss etral Density quirement	Emissions.	(Radiated)		
PHOTOGR	RAPHS OF TEST SE	ETUP				49
PHOTOGR	RAPHS OF EUT CO	NSTRUCTIONAL D	DETAILS	•••••	•••••	52



Report No.: EED32M00253902 Page 5 of 52

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

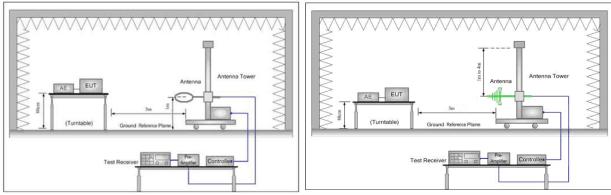
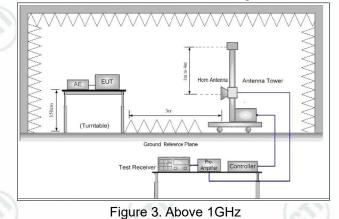
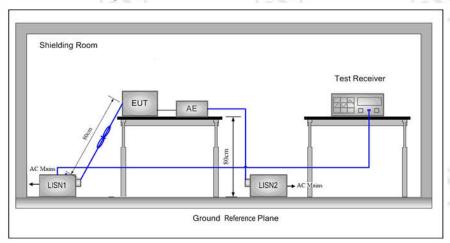



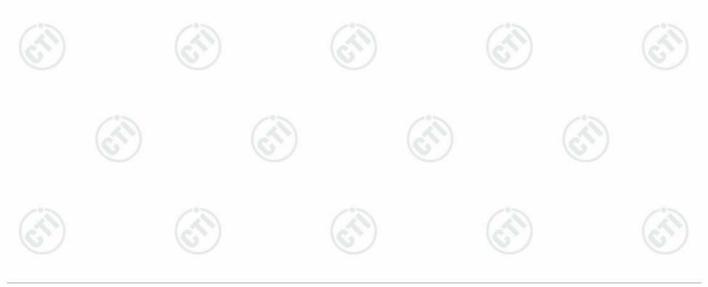
Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:	(6)		(6)
Temperature:	24°C		
Humidity:	54 % RH	1-2	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tv/Dv	RF Channel			
rest wode	Tx/Rx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 0	Channel 19	Channel 39	
		2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting rate.	mode with all kind	d of modulation an	d all kind of data	

Report No.: EED32M00253902 Page 7 of 52

6 General Information

6.1 Client Information

Applicant:	Autel Intelligent Tech. Corp., Ltd.
Address of Applicant:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen,518055,China
Manufacturer:	Autel Intelligent Tech. Corp., Ltd.
Address of Manufacturer:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen,518055, China
Factory 1:	Autel Intelligent Technology Corp., Ltd. Guangming Branch
Address of Factory 1:	7F&6F, East Wing, Building 2, and 6F of Electronical Building, Yanxiang Industrial Zone, Gaoxin Rd, Dongzhou Community of Guangming New District, Shenzhen
Factory 2:	AUTEL VIETNAM COMPANY LIMITED
Address of Factory 2:	4th Floor, Factory#6, Land#CN1, An Duong Industrial Zone, Hong Phong Township, An Duong County, Hai Phong, VietNam

6.2 General Description of EUT

Product Name:	WIRELESS BATTERY	/ DIAGNOSTICS SYSTEM	0
Model No.(EUT):	MaxiBAS BT609		
Trade mark:	AUTEL	1000	
	SWITCHING AC/DC Power Adapter	MODEL: GME10C-050200FUu INPUT: 100-240V~, 50/60Hz, 0.28A OUTPUT: 5V2A	
Power Supply:	Battery	Model: TB2021 Capacity: 5800mAh/22.33Wh Nominal Voltage: 3.85V	
Operation Frequency:	2402MHz~2480MHz		(6,2)
Bluetooth Version:	4.2		
Modulation Technique:	DSSS		
Modulation Type:	GFSK		
Number of Channel:	40	(25)	
Test Power Grade:	default		
Test Software of EUT:	Blue Tool		
Antenna Type and Gain:	Type: FPC antenna Gain:4.21dBi		
Test Voltage:	Battery 3.85V		(0)
Sample Received Date:	Aug. 20, 2020		
Sample tested Date:	Aug. 20, 2020 to Nov.	6, 2020	
200	200		

Page	\sim	- •	
שמפש	×	\sim t	2
	()		

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequen
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MH
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MH
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MH
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MH
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MH
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MF
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MH
7 🤎	2416MHz	17	2436MHz	27	2456MHz	37	2476MH
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MH
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MF

Report No.: EED32M00253902 Page 9 of 52

6.3 Description of Support Units

The EUT has been tested with associated equipment below.

1	ociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.4 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.5 Deviation from Standards

None.

6.6 Abnormalities from Standard Conditions

None.

6.7 Other Information Requested by the Customer

None.

6.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novem conducted	0.46dB (30MHz-1GHz)
(2)	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Commission and all the	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	One duration anning in	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18NM 12-0398-002	(3)	67)
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(C)	
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		61	

	Conducted disturbance Test						
Equipment Manufacturer Model No. Serial Cal. date Cal. Due do Number (mm-dd-yyyy) (mm-dd-yyy)							
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128		- (3			
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				

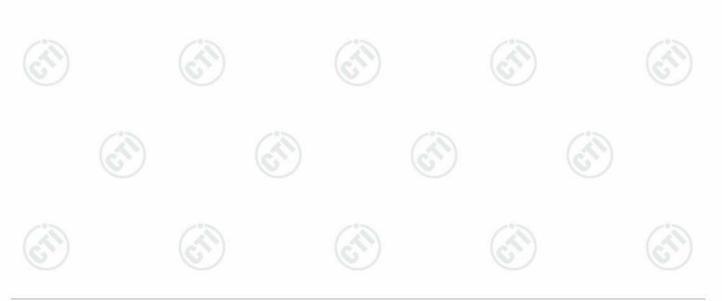
Page 11 of 52

		3M full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	- m	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	·	(0.)
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	- /3	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(5)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		



	21/	l Semi/full-anechoi	c Chambor		
	JIV	Semi/iun-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/10711 112			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		75
Cable line	Fulai(3M)	SF106	5217/6A		(45)

Report No.: EED32M00253902 Page 13 of 52


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

TOST INCOURTS EIST				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Duty Cycle **Result Table**

Mode	Channel	Duty Cycle [%]	Limit	Verdict
BLE	LCH	61.79		PASS
BLE	MCH	61.54		PASS
BLE	нсн	61.54	(A)	PASS

Page 15 of 52

Report No.: EED32M00253902 Page 16 of 52

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

Limit	Shall be at least 500kHz

Occupied Bandwidth(99%): For reporting purposes only. Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.7028	1.0424	PASS
BLE	MCH	0.7083	1.0434	PASS
BLE	HCH	0.7062	1.0449	PASS

Test Graphs 6 dB Bandwidth:

Page 19 of 52

Occupied Bandwidth(99%):

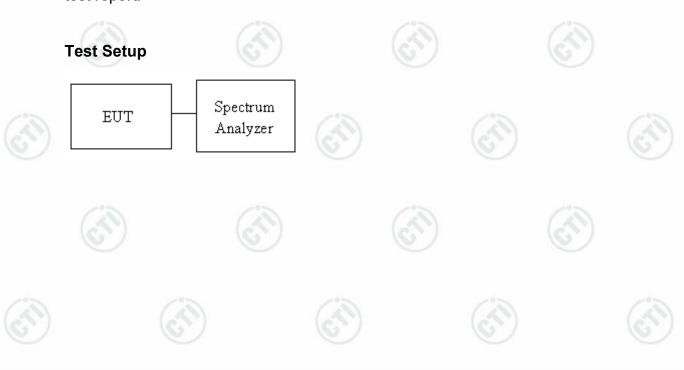
Report No.: EED32M00253902 Page 20 of 52

Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:


For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	Cin	 ✓ Antenna not exceed 6 dBi: 30dBm ☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] ☐ Point-to-point operation 	(F
-------	-----	--	----

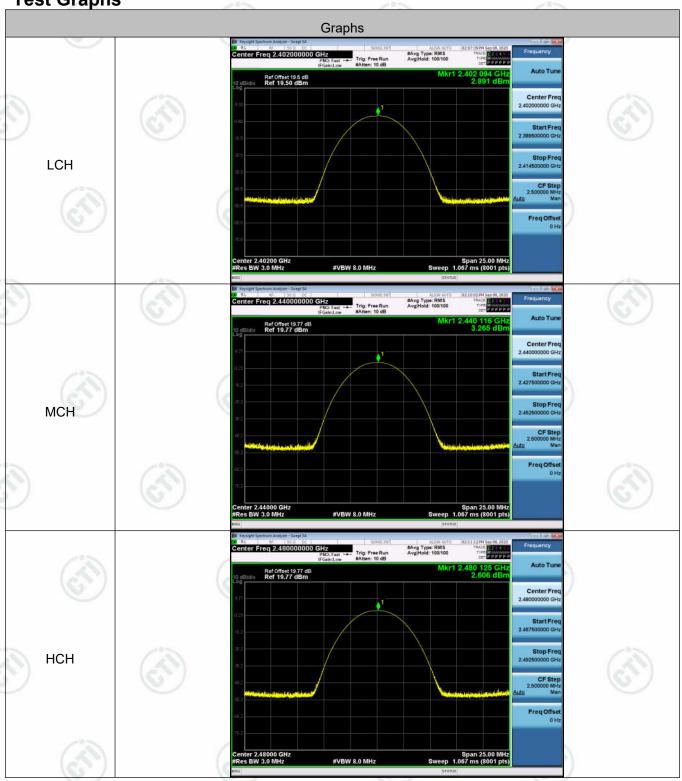
Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- Measure and record the result of Peak output power and Average output power. in the test report.

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.891	PASS
BLE	MCH	3.265	PASS
BLE	НСН	2.606	PASS



Page 22 of 52

Test Graphs

Report No.: EED32M00253902 Page 23 of 52

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

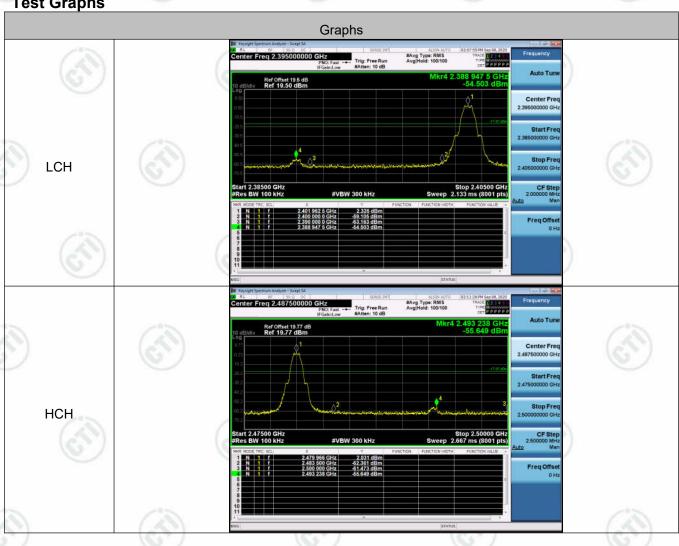
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 24 of 52

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	2.326	-54.503	-17.67	PASS
BLE	HCH	2.031	-55.649	-17.97	PASS

Test Graphs

Report No.: EED32M00253902 Page 25 of 52

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

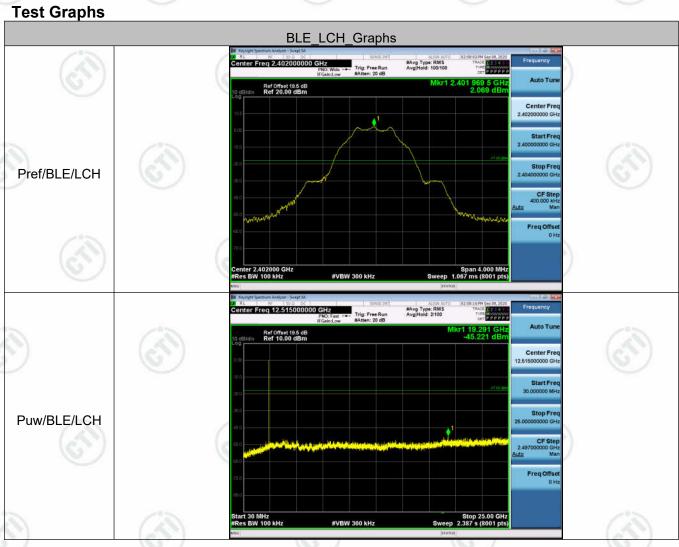
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

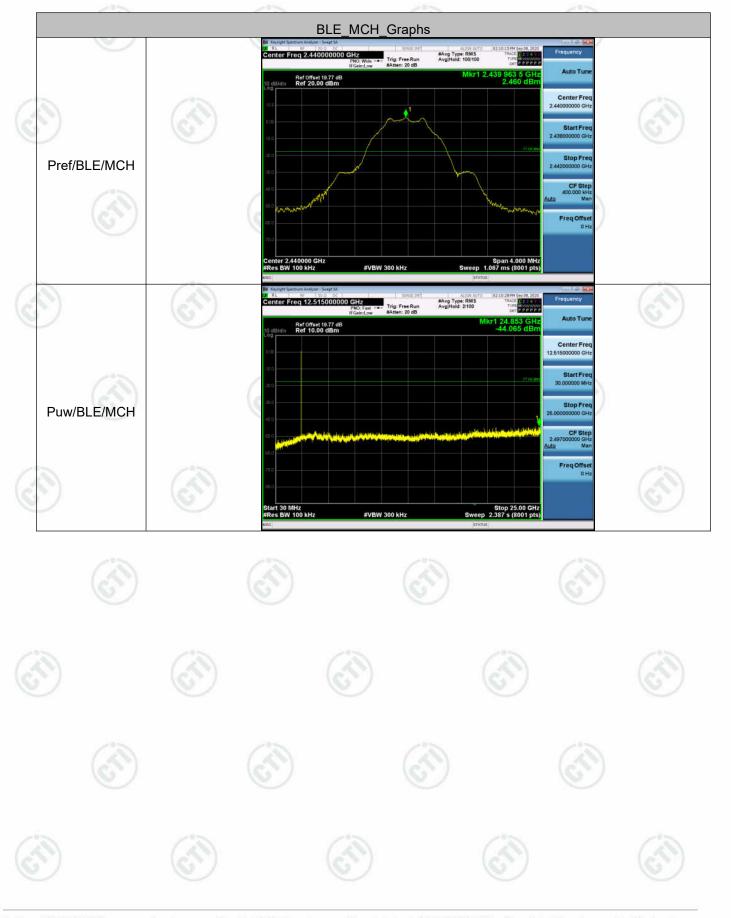
Test Setup



Page 26 of 52

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.069	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.46	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	1.781	<limit< td=""><td>PASS</td></limit<>	PASS



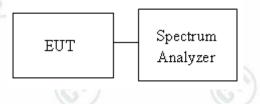
Page 28 of 52

Report No.: EED32M00253902 Page 29 of 52

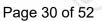
Appendix E): Power Spectral Density Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit	Antenna with DG greater than 6 dBi	
Little	[Limit = $8 - (DG - 6)$]	
	☐ Point-to-point operation:	

Test Procedure

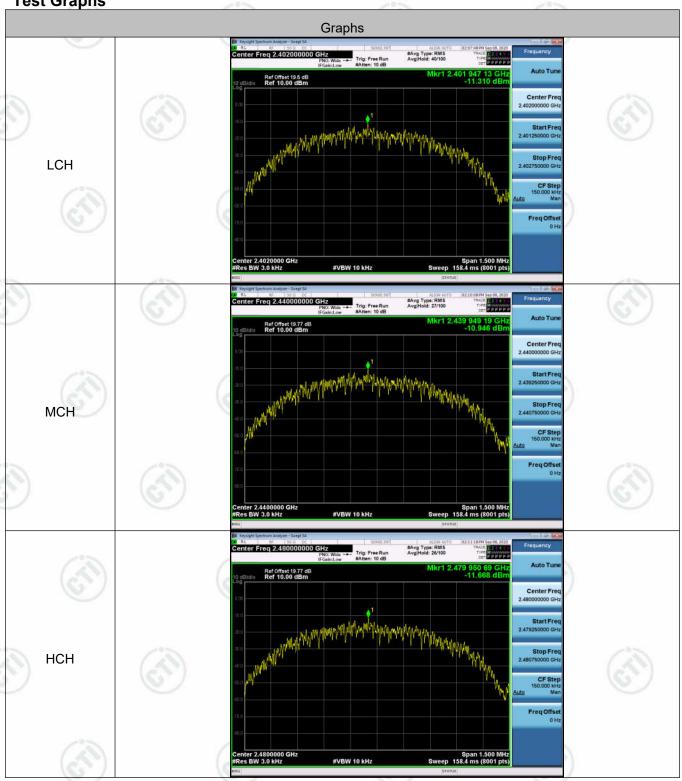

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Mode Channel		PSD [dBm]	Verdict	
BLE	LCH	-11.310	PASS	
BLE	MCH	-10.946	PASS	
BLE	HCH	-11.668	PASS	



Page 31 of 52

Test Graphs

Report No.: EED32M00253902 Page 32 of 52

Appendix F): Antenna Requirement

15.203 requirement:

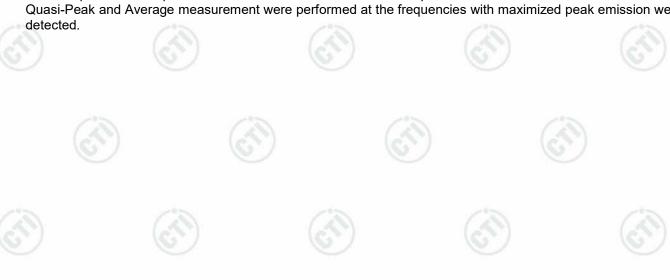
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

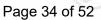
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

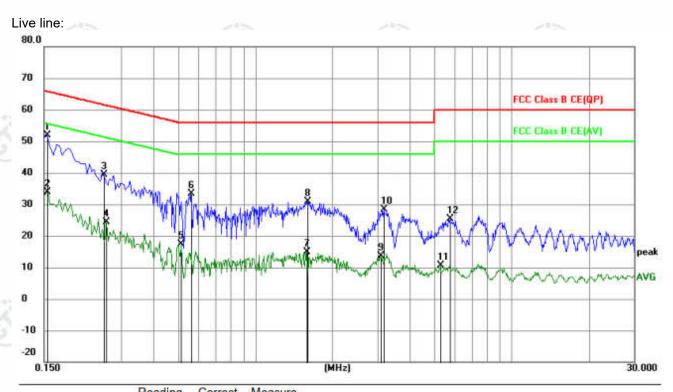
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.21dBi.

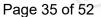


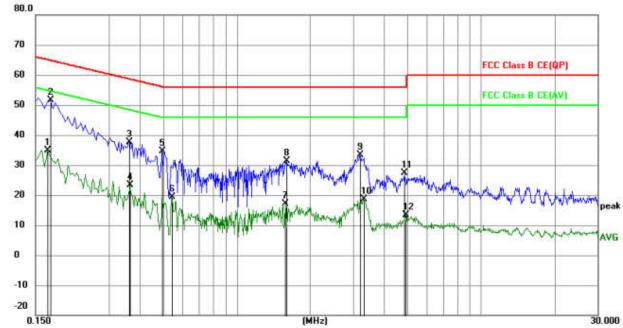
Report No.: EED32M00253902 Page 33 of 52


Appendix G): AC Power Line Conducted Emission


	Test frequency range :150KHz- 1)The mains terminal disturbance 2) The EUT was connected to a Stabilization Network) which power cables of all other ur which was bonded to the graph for the unit being measured	ce voltage test was co AC power source thro n provides a 50Ω/50µ nits of the EUT were ound reference plane	ough a LISN 1 (Linuth $_{ m H}$ + 5 Ω linear improperties to a set in the same way a	e Impedance bedance. The cond LISN 2 as the LISN
	multiple power cables to a s exceeded.	•	•	
	3)The tabletop EUT was place reference plane. And for floor horizontal ground reference 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables me conducted measurement.	prestanding arrangement plane, in a vertical ground reserved to the horizontal ground are boundary of the ure LISNs mounted or tween the closest point associated equipment emission, the relative	ent, the EUT was perference plane. The vertice plane. The vertice plane in the property of the group into the LISN 1 ment was at least 0 the positions of equipment of the property of the pro	placed on the rear of the ertical grounne. The LISI bonded to and reference and the EUT. 8 m from the boment and a
	conducted incusarement.			
Limit:	Goridadea measarement.	l imit (d	BuV)	
Limit:	Frequency range (MHz)	Limit (d	· ·	
Limit:		Limit (d Quasi-peak 66 to 56*	BμV) Average 56 to 46*	
Limit:	Frequency range (MHz)	Quasi-peak	Average	(cti)
Limit:	Frequency range (MHz) 0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	(cir)
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average 56 to 46* 46 50 the frequency in the	

No.	Mk.	Freq.	Level	Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1545	41.95	9.87	51.82	65.75	-13.93	QP		
2		0.1545	23.95	9.87	33.82	55.75	-21.93	AVG		
3		0.2562	29.42	9.98	39.40	61.55	-22.15	QP		
4		0.2625	14.27	10.00	24.27	51.35	-27.08	AVG		
5		0.5144	7.50	9.97	17.47	46.00	-28.53	AVG		
6		0.5639	23.40	10.03	33.43	56.00	-22.57	QP		
7		1.5900	5.17	9.81	14.98	46.00	-31.02	AVG		
8		1.5945	21.07	9.81	30.88	56.00	-25.12	QP		
9		3.0885	3.86	9.79	13.65	46.00	-32.35	AVG		
10		3.1829	18.68	9.79	28.47	56.00	-27.53	QP		
11		5.2980	0.76	9.78	10.54	50.00	-39.46	AVG		
12		5.7614	15.67	9.78	25.45	60.00	-34.55	QP		





Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1680	25.12	9.87	34.99	55.06	-20.07	AVG	
2	*	0.1725	41.79	9.87	51.66	64.84	-13.18	QP	
3		0.3615	27.71	10.01	37.72	58.69	-20.97	QP	
4		0.3660	13.33	10.00	23.33	48.59	-25.26	AVG	
5		0.4965	24.71	9.95	34.66	56.06	-21.40	QP	
6		0.5415	9.38	10.00	19.38	46.00	-26.62	AVG	
7		1.5809	7.36	9.81	17.17	46.00	-28.83	AVG	
8		1.5945	21.48	9.81	31.29	56.00	-24.71	QP	
9		3.1920	23.56	9.79	33.35	56.00	-22.65	QP	
10		3.2955	8.87	9.79	18.66	46.00	-27.34	AVG	
11		4.8705	17.72	9.78	27.50	56.00	-28.50	QP	
12		4.9064	3.49	9.78	13.27	46.00	-32.73	AVG	

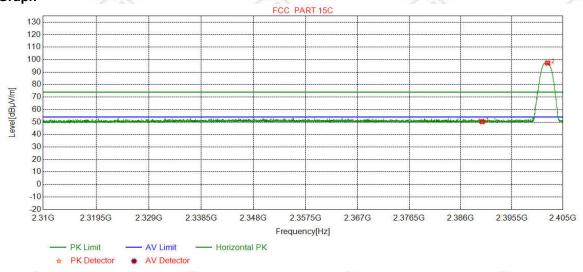
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

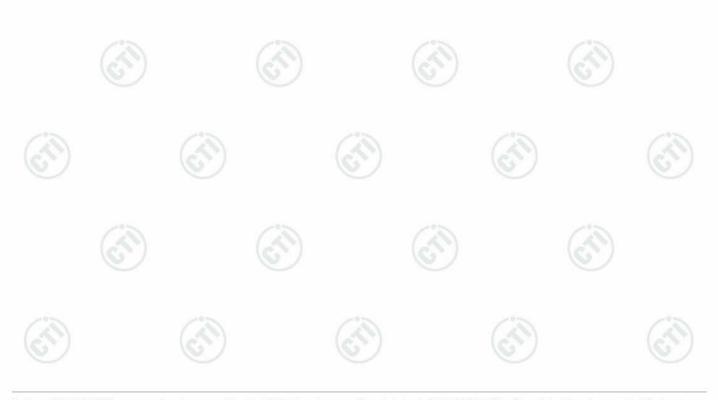
Report No.: EED32M00253902 Page 36 of 52

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Madiated)	1.05.75	100							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Al 4011-	Peak	1MHz	3MHz	Peak	20.00			
	Above 1GHz	Peak	1MHz	10Hz	Average				
Fest Procedure:	Test method Refer as KDB a. The EUT was placed o at a 3 meter semi-aned determine the position b. The EUT was set 3 me	558074 D01 v04 n the top of a rota choic camber. The of the highest rac	ating table e table wa liation.	e 0.8 meter is rotated 3	360 degrees	to			
	 b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel 								
	g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lot. The radiation measure Transmitting mode, and	ve is the test site, aber change form 1 meter and table west channel, the ments are perforr d found the X axis	table 0.8 is 1.5 me Highest med in X, s positioni	meter to 1 eter). t channel Y, Z axis p ing which i	.5 meter(Abo positioning for t is worse car	ove			
imit:	j. Repeat above procedu			1					
	Frequency	Limit (dBµV/n	പയാണ		mark Pak Value				
	30MHz-88MHz	40.0		<u> </u>	eak Value				
	88MHz-216MHz	43.5	- (4	7.1	eak Value				
	216MHz-960MHz	46.0	10	1	eak Value				
	960MHz-1GHz	54.0		· ·	eak Value				
	Above 1GHz	54.0		+	je Value				
		74.0		Peak	Value				



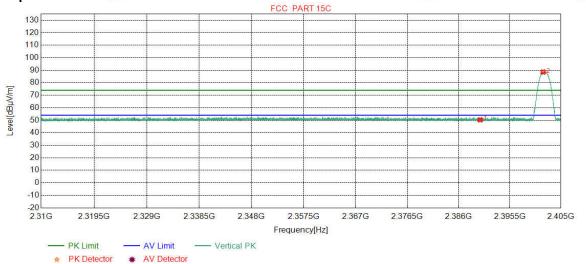
Page 37 of 52

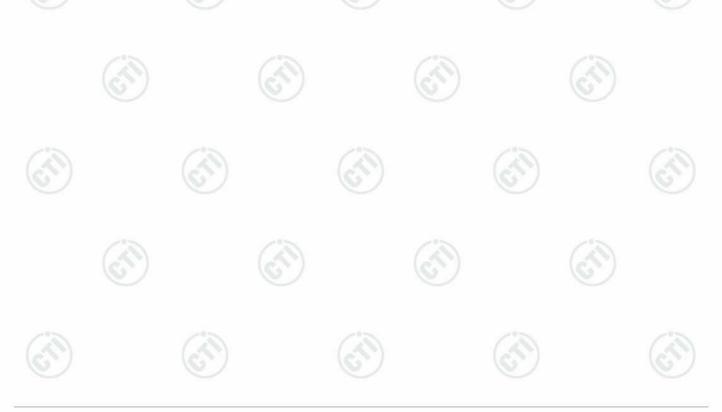

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.76	50.26	74.00	23.74	Pass	Horizontal
2	2402.1561	32.26	13.31	-43.12	94.82	97.27	74.00	-23.27	Pass	Horizontal

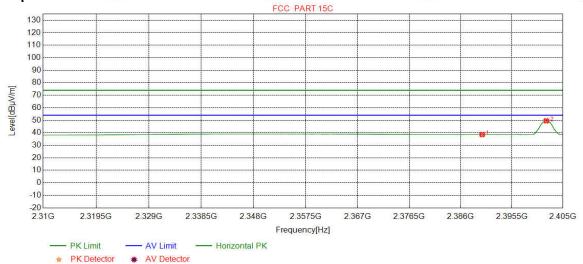


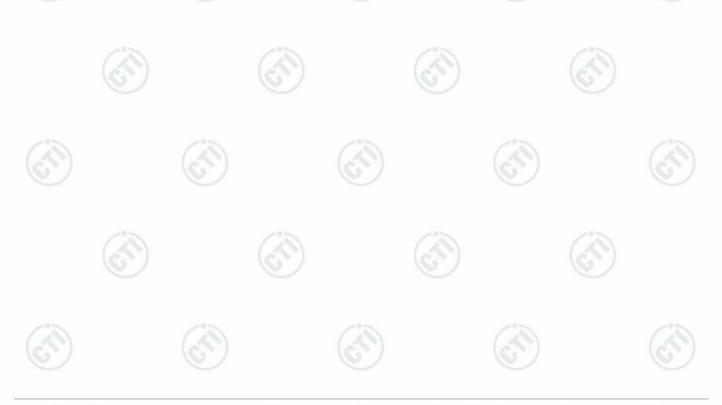

Page	38	of	52
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.80	50.30	74.00	23.70	Pass	Vertical
2	2401.7001	32.26	13.31	-43.12	86.08	88.53	74.00	-14.53	Pass	Vertical

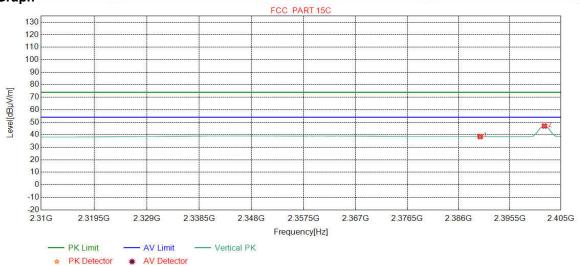


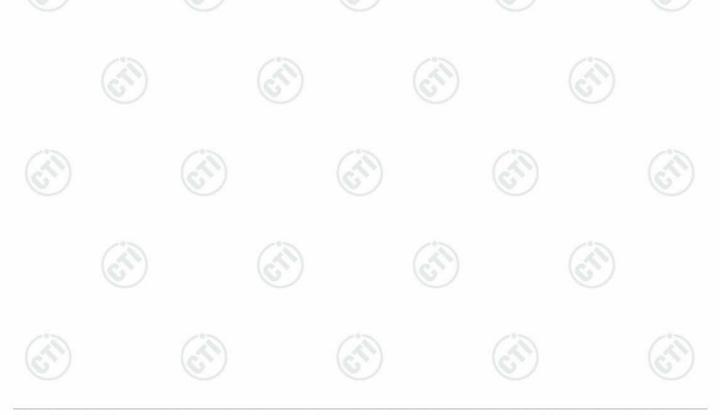

Page 39 of 52

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	36.06	38.56	54.00	15.44	Pass	Horizontal
Ī	2	2401.9155	32.26	13.31	-43.12	47.09	49.54	54.00	4.46	Pass	Horizontal

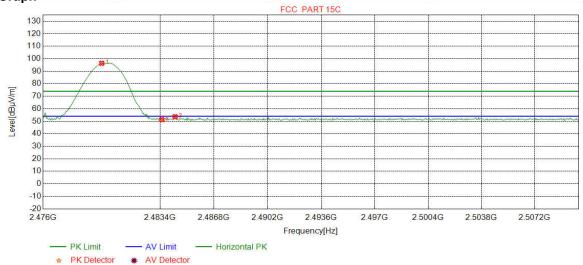


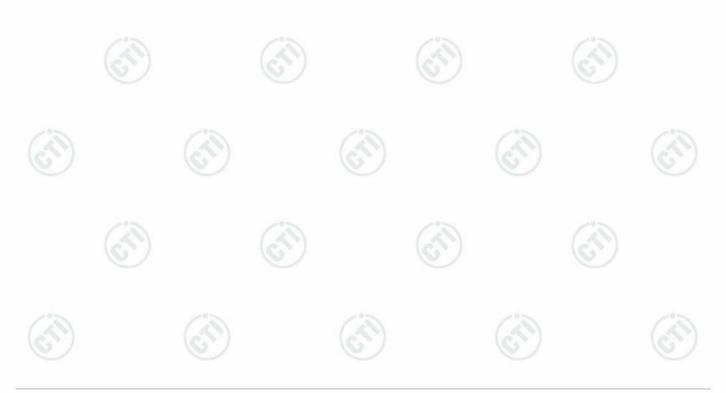

Page 40 of 52

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.01	38.51	54.00	15.49	Pass	Vertical
2	2401.9345	32.26	13.31	-43.12	44.48	46.93	54.00	7.07	Pass	Vertical

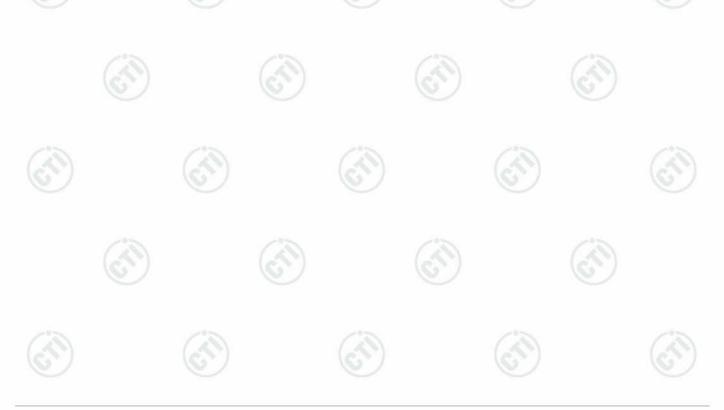



Page 41 of 5

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

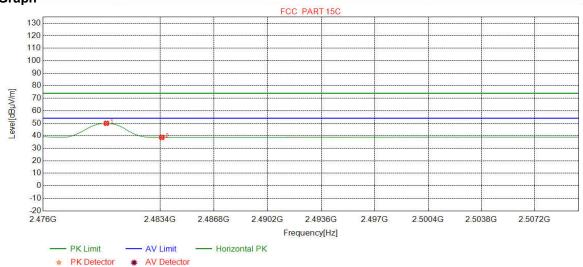
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	93.70	96.36	74.00	-22.36	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.66	51.31	74.00	22.69	Pass	Horizontal
3	2484.3404	32.38	13.37	-43.10	50.95	53.60	74.00	20.40	Pass	Horizontal

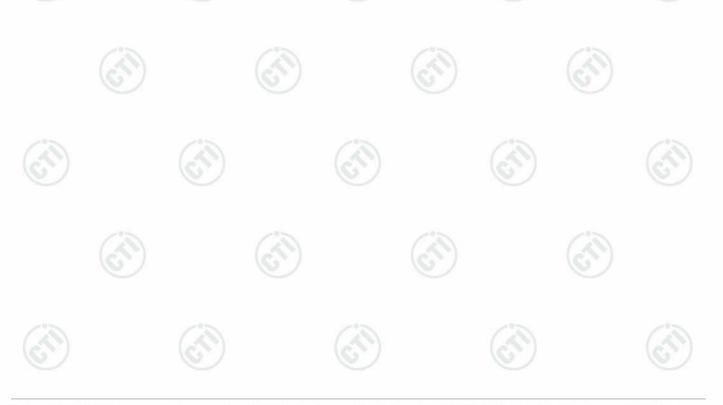

Page 42 of 52

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2128	32.37	13.39	-43.10	87.58	90.24	74.00	-16.24	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.25	51.90	74.00	22.10	Pass	Vertical




Page 43 of 52

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

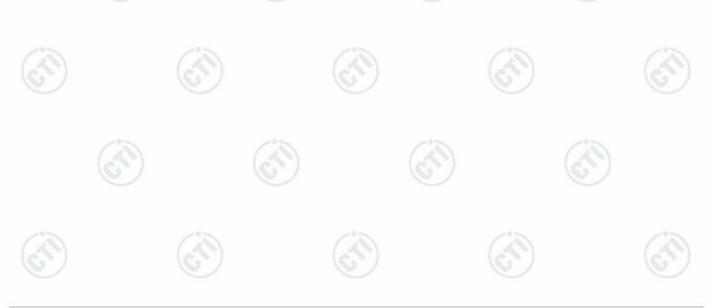
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	47.30	49.96	54.00	4.04	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.06	38.71	54.00	15.29	Pass	Horizontal



Page 44 of 52

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margi n [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	46.05	48.71	54.00	5.29	Pass	Vertical
 2	2483.5000	32.38	13.38	-43.11	36.01	38.66	54.00	15.34	Pass	Vertical

Note

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00253902 Page 45 of 52

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
<u> </u>	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	13
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(6)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(cil)	Above 10Uz	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

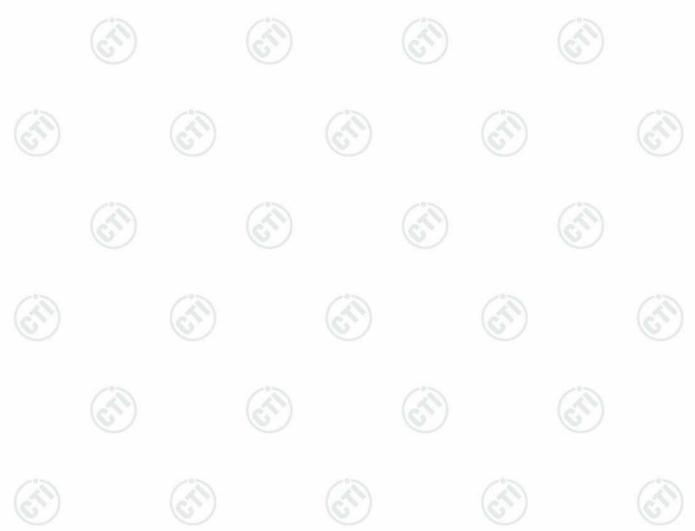
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis
 positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

1	im	iŧ٠

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/°5	30
1.705MHz-30MHz	30	-	(42)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No.: EED32M00253902 Page 46 of 52

Radiated Spurious Emissions test Data:

Transmitter Emission Below 1GHz

Mode	:		BLE G	FSK Tran	smitting			Channe	l:	2440	
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	47.9468	13.20	0.78	-31.95	43.36	25.39	40.00	14.61	Pass	Н	PK
2	72.0052	8.62	0.97	-32.02	47.60	25.17	40.00	14.83	Pass	Н	PK
3	120.2190	9.17	1.30	-32.07	52.39	30.79	43.50	12.71	Pass	Н	PK
4	240.0260	11.94	1.84	-31.90	52.04	33.92	46.00	12.08	Pass	Н	PK
5	384.0854	15.05	2.33	-31.86	51.39	36.91	46.00	9.09	Pass	Н	PK
6	649.9890	19.40	3.10	-32.07	37.89	28.32	46.00	17.68	Pass	Н	PK
7	48.0438	13.20	0.78	-31.96	41.69	23.71	40.00	16.29	Pass	V	PK
8	71.9082	8.64	0.97	-32.02	43.65	21.24	40.00	18.76	Pass	V	PK
9	120.0250	9.20	1.30	-32.07	46.04	24.47	43.50	19.03	Pass	V	PK
10	150.0010	7.55	1.45	-32.01	52.25	29.24	43.50	14.26	Pass	V	PK
11	240.0260	11.94	1.84	-31.90	49.22	31.10	46.00	14.90	Pass	V	PK
12	384.1824	15.05	2.33	-31.85	45.99	31.52	46.00	14.48	Pass	V	PK

Transmitter Emission above 1GHz

Mode	:		BLE GF	SK Transr	nitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1063.6064	27.96	2.52	-43.03	54.89	42.34	74.00	31.66	Pass	Н	PK
2	2132.1132	31.88	3.62	-43.16	56.60	48.94	74.00	25.06	Pass	Н	PK
3	2665.3665	32.66	4.10	-43.10	56.43	50.09	74.00	23.91	Pass	Н	PK
4	4804.1203	34.50	4.55	-42.80	51.92	48.17	74.00	25.83	Pass	Н	PK
5	7914.3276	36.43	6.04	-42.18	49.90	50.19	74.00	23.81	Pass	Н	PK
6	9326.4218	37.63	6.62	-42.06	49.98	52.17	74.00	21.83	Pass	Н	PK
7	2129.9130	31.88	3.62	-43.17	56.53	48.86	74.00	25.14	Pass	V	PK
8	4255.0837	34.16	4.50	-42.90	52.52	48.28	74.00	25.72	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	51.49	47.74	74.00	26.26	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.01	45.97	74.00	28.03	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.47	49.64	74.00	24.36	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	47.38	52.39	74.00	21.61	Pass	V	PK

Mode	:		BLE GF	SK Tran	smitting			Channe	l:	2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2132.7133	31.89	3.63	-43.18	60.52	52.86	74.00	21.14	Pass	Н	PK
2	2825.7826	32.92	4.23	-43.09	52.19	46.25	74.00	27.75	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	49.83	46.33	74.00	27.67	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	46.68	46.81	74.00	27.19	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	47.58	49.91	74.00	24.09	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	45.07	50.26	74.00	23.74	Pass	Н	PK
7	2132.1132	31.88	3.62	-43.16	52.12	44.46	74.00	29.54	Pass	V	PK
8	4251.0834	34.15	4.51	-42.90	57.14	52.90	74.00	21.10	Pass	V	PK
9	5314.1543	34.81	4.83	-42.67	50.88	47.85	74.00	26.15	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.12	46.25	74.00	27.75	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.23	49.56	74.00	24.44	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	45.46	50.65	74.00	23.35	Pass	V	PK

Page	40	~£	EO
Pane	48	OI	2

Mode:			BLE GFSK Transmitting				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polari ty	Remark
1	2122.7123	31.87	3.61	-43.17	59.18	51.49	74.00	22.51	Pass	Н	PK
2	2665.5666	32.66	4.10	-43.10	56.63	50.29	74.00	23.71	Pass	Н	PK
3	4263.0842	34.17	4.48	-42.90	49.12	44.87	74.00	29.13	Pass	Н	PK
4	5886.1924	35.62	5.07	-42.61	48.61	46.69	74.00	27.31	Pass	Н	PK
5	6892.2595	36.06	5.82	-42.27	49.32	48.93	74.00	25.07	Pass	Н	PK
6	9149.4100	37.67	6.45	-42.03	50.73	52.82	74.00	21.18	Pass	Н	PK
7	2132.3132	31.89	3.63	-43.18	54.06	46.40	74.00	27.60	Pass	V	PK
8	2666.3666	32.67	4.10	-43.10	55.72	49.39	74.00	24.61	Pass	V	PK
9	3988.0659	33.79	4.33	-43.00	54.93	50.05	74.00	23.95	Pass	V	PK
10	4960.0000	34.50	4.82	-42.80	50.93	47.45	74.00	26.55	Pass	V	PK
11	7440.0000	36.54	5.85	-42.11	46.81	47.09	74.00	26.91	Pass	V	PK
12	9818.4546	37.73	6.65	-42.10	50.07	52.35	74.00	21.65	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

