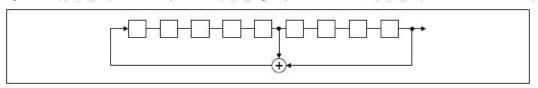




Page 54 of 108

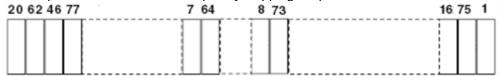
Appendix F) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15**C Section 15.247 (a)(1) requirement:**


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix G) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

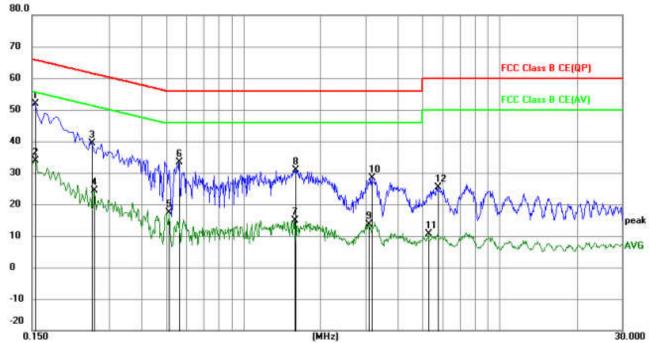
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.21dBi.

Test frequency range :150KHz-	·30MHz					
1) The mains terminal disturbance voltage test was conducted in a shielded room.						
2) The EUT was connected to AC power source through a LISN 1 (Line Impedance						
for the unit being measured multiple power cables to a s	d. A multiple socket ou	tlet strip was us	ed to connec			
3) The tabletop EUT was plac						
		it, the EOT was	piacca on the			
EUT shall be 0.4 m from the	e vertical ground refere	nce plane. The v	ertical ground			
ground reference plane for LISNs mounted on top of the ground reference						
all of the interface cables						
[(0.411-)	Limit (dB	uV)				
Frequency range (MHz)	Quasi-peak	Average				
	004 50*	=0 / 10t				
0.15-0.5	66 to 56*	56 to 46*				
0.15-0.5 0.5-5	56	56 to 46* 46	(4)			
	Stabilization Network) which power cables of all other unwhich was bonded to the gray for the unit being measured multiple power cables to a sexceeded. 3) The tabletop EUT was place reference plane. And for flow horizontal ground reference. 4) The test was performed with EUT shall be 0.4 m from the reference plane was bondered 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum	Stabilization Network) which provides a 50Ω/50μl- power cables of all other units of the EUT were of which was bonded to the ground reference plane in for the unit being measured. A multiple socket ou multiple power cables to a single LISN provided the exceeded. 3) The tabletop EUT was placed upon a non-metallic reference plane. And for floor-standing arrangement horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane was bonded to the horizontal ground 1 was placed 0.8 m from the boundary of the uni ground reference plane for LISNs mounted on plane. This distance was between the closest poin All other units of the EUT and associated equipme LISN 2. 5) In order to find the maximum emission, the relative all of the interface cables must be changed as conducted measurement. Limit (dB)	 Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impower cables of all other units of the EUT were connected to a set which was bonded to the ground reference plane in the same way for the unit being measured. A multiple socket outlet strip was use multiple power cables to a single LISN provided the rating of the LIS exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above reference plane. And for floor-standing arrangement, the EUT was horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The EUT shall be 0.4 m from the vertical ground reference plane. The verference plane was bonded to the horizontal ground reference plane 1 was placed 0.8 m from the boundary of the unit under test and ground reference plane for LISNs mounted on top of the ground plane. This distance was between the closest points of the LISN 1 All other units of the EUT and associated equipment was at least 0 LISN 2. 5) In order to find the maximum emission, the relative positions of eall of the interface cables must be changed according to ANS conducted measurement. 			

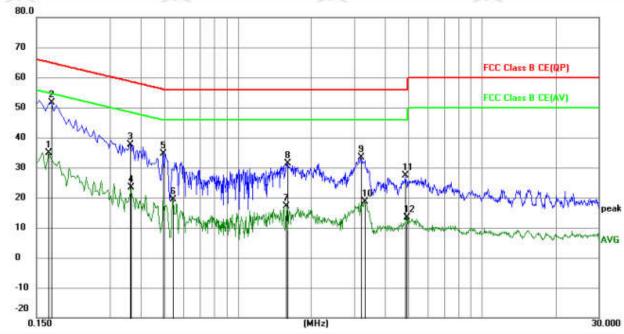

Page 59 of 108

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Comment



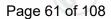
Page 60 of 108

Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1680	25.12	9.87	34.99	55.06	-20.07	AVG	
2	*	0.1725	41.79	9.87	51.66	64.84	-13.18	QP	
3		0.3615	27.71	10.01	37.72	58.69	-20.97	QP	
4		0.3660	13.33	10.00	23.33	48.59	-25.26	AVG	
5		0.4965	24.71	9.95	34.66	56.06	-21.40	QP	
6		0.5415	9.38	10.00	19.38	46.00	-26.62	AVG	
7		1.5809	7.36	9.81	17.17	46.00	-28.83	AVG	
8		1.5945	21.48	9.81	31.29	56.00	-24.71	QP	
9		3.1920	23.56	9.79	33.35	56.00	-22.65	QP	
10		3.2955	8.87	9.79	18.66	46.00	-27.34	AVG	
11		4.8705	17.72	9.78	27.50	56.00	-28.50	QP	
12		4.9064	3.49	9.78	13.27	46.00	-32.73	AVG	

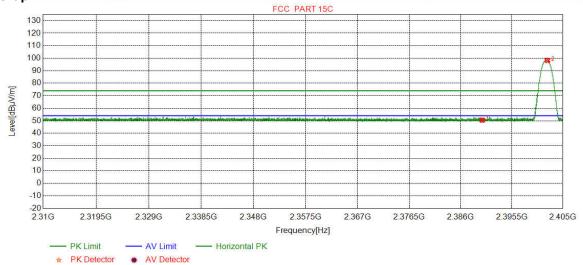
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



Appendix I) Restricted bands around fundamental frequency (Radiated)

D ii 0 - t						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak 1MH:		10Hz	Average	K
Test Procedure:	Below 1GHz test procedu	re as below:	(0)		/	6
	 a. The EUT was placed of at a 3 meter semi-aneod determine the position b. The EUT was set 3 me was mounted on the totoo. The antenna height is of determine the maximum polarizations of the antenna was tuned table was turned from the antenna was tuned table was turned from the test-receiver system Bandwidth with Maximum for Place a marker at the effrequency to show combands. Save the spectre 	hoic camber. The first away from p of a variable-from one in value of the first are set to hission, the EUT to heights from was set to Peum Hold Mode. In the restrict of the restrict pliance. Also mum analyzer plot to heights from the restrict pliance. Also mum analyzer plot the restrict of the restrict pliance.	the table was adiation. the interferencight anter meter to found the make the name arran and the make the toological degrees to the dead of the make the dead of the dead of the table of	ence-receinna tower. ur meters n. Both horneasurement ged to its v 4 meters a o find the its Function a	ving antenna above the gro izontal and ve ent. worst case an and the rotata maximum rea nd Specified ne transmit s in the restric	, who bund erticand the ble ding
	for lowest and highest of	channel				
	for lowest and highest of Above 1GHz test procedure. g. Different between above to fully Anechoic Chammetre (Above 18GHz the b. Test the EUT in the line in the radiation measurer transmitting mode, and in Repeat above procedure.	re as below: e is the test site ber and change ne distance is 1 owest channel ments are perfo d found the X ax	e form table meter and , the Higher rmed in X, kis positioni	0.8 metre table is 1.9 st channel Y, Z axis p ng which i	to 1.5 5 metre). positioning for t is worse cas	
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measured Transmitting mode, and j. Repeat above procedu	e is the test site ber and change ne distance is 1 owest channel ments are performed found the X aves until all frequents	e form table meter and , the Higher rmed in X, kis positioni uencies me	0.8 metre table is 1.5 st channel Y, Z axis png which is asured wa	to 1.5 5 metre). positioning for t is worse cas as complete.	
Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency	e is the test site ber and change ne distance is 1 owest channel ments are performed found the X axres until all freq	e form table meter and , the Higher rmed in X, kis positioni uencies me /m @3m)	0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa	to 1.5 5 metre). positioning for t is worse cas as complete. mark	
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measured Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz	e is the test site ber and change ne distance is 1 owest channel ments are performed found the X ares until all frequency. Limit (dBuV. 40.6	e form table meter and , the Higher rmed in X, kis positioni uencies me /m @3m)	0.8 metre table is 1.9 st channel Y, Z axis p ng which i easured wa Rei Quasi-pe	to 1.5 5 metre). positioning for t is worse cas as complete. mark pak Value	
Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	e is the test site ber and change ne distance is 1 owest channel ments are performed found the X ares until all frequential (dBuV, 40.6 43.6	e form table meter and , the Higher rmed in X, kis positioni uencies me /m @3m)	0.8 metre table is 1.9 st channel Y, Z axis p ng which i easured wa Rei Quasi-pe	to 1.5 5 metre). cositioning for tis worse cas as complete. mark eak Value	
Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the l i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	e is the test site ber and change ne distance is 1 owest channel ments are performents are until all frequential (dBuV.40.43.446.64)	e form table meter and the Higher med in X, kis positioni uencies med/m @3m)	0.8 metre table is 1.9 st channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	to 1.5 5 metre). cositioning for t is worse cas as complete. mark eak Value eak Value	
Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	e is the test site ber and change ne distance is 1 owest channel ments are performed found the X ares until all frequency Limit (dBuV. 40.6 43.9 46.6 54.6	e form table meter and the Higher med in X, kis positioni uencies med/m @3m)	0.8 metre table is 1.9 st channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	to 1.5 5 metre). positioning for t is worse cas as complete. mark eak Value eak Value eak Value eak Value	
Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the l i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	e is the test site ber and change ne distance is 1 owest channel ments are performents are until all frequential (dBuV.40.43.446.64)	e form table meter and the Higher med in X, kis positioni uencies med/m @3m)	0.8 metre table is 1.9 st channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Average	to 1.5 5 metre). cositioning for t is worse cas as complete. mark eak Value eak Value	

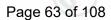


Page 62 of 108

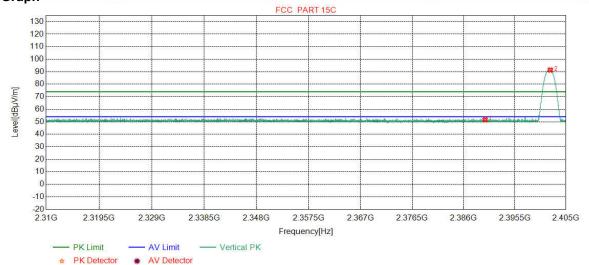
Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

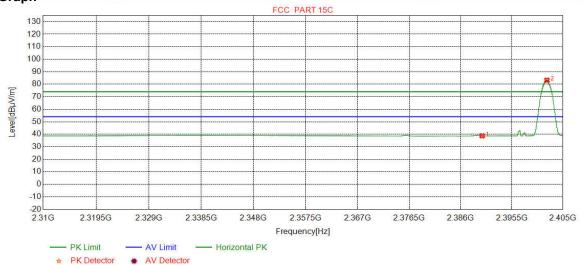


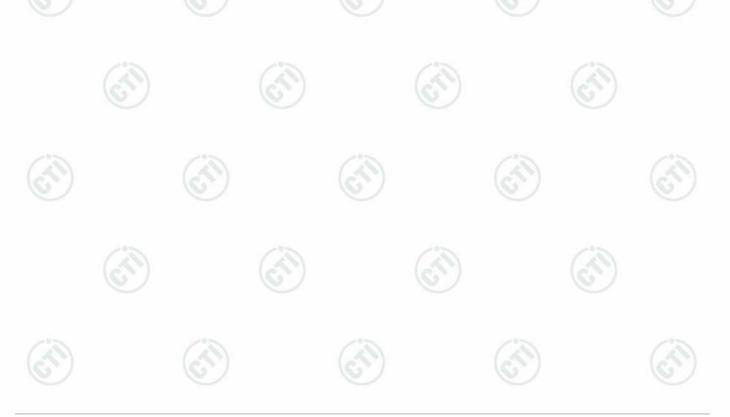
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.91	50.41	74.00	23.59	Pass	Horizontal
2	2402.1181	32.26	13.31	-43.12	95.74	98.19	74.00	-24.19	Pass	Horizontal



Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

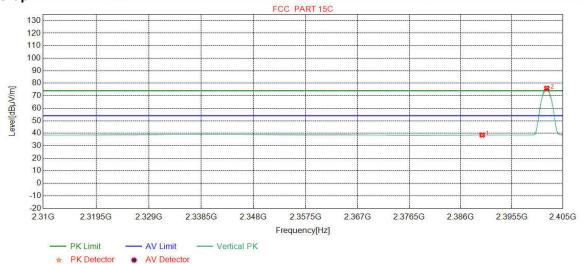
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.07	51.57	74.00	22.43	Pass	Vertical
2	2402.1055	32.26	13.31	-43.12	88.87	91.32	74.00	-17.32	Pass	Vertical

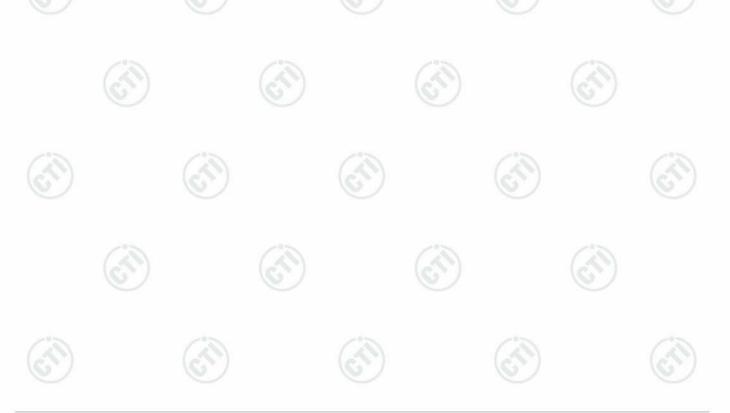




Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

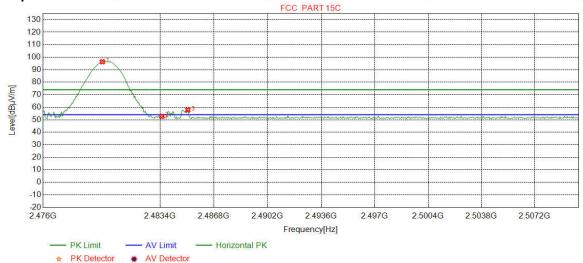
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.24	38.74	54.00	15.26	Pass	Horizontal
2	2402.0295	32.26	13.31	-43.12	80.79	83.24	54.00	-29.24	Pass	Horizontal

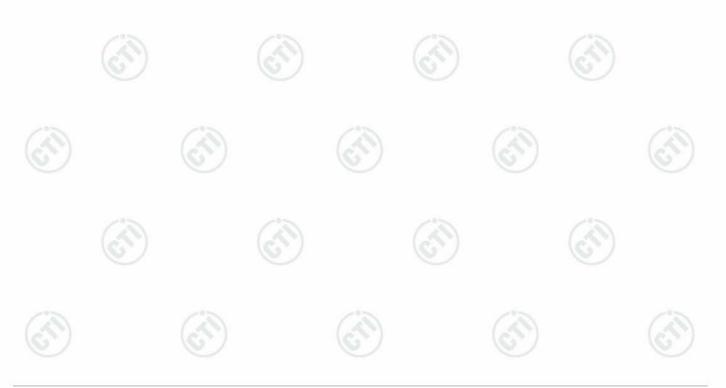




Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

ОИ	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.06	38.56	54.00	15.44	Pass	Vertical
2	2401.9915	32.26	13.31	-43.12	73.47	75.92	54.00	-21.92	Pass	Vertical

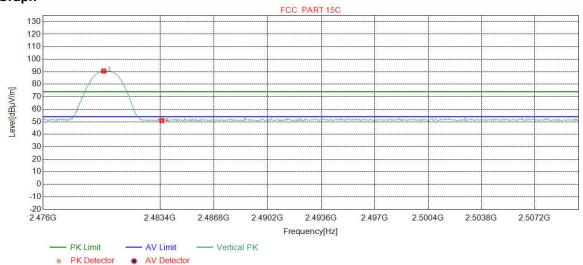


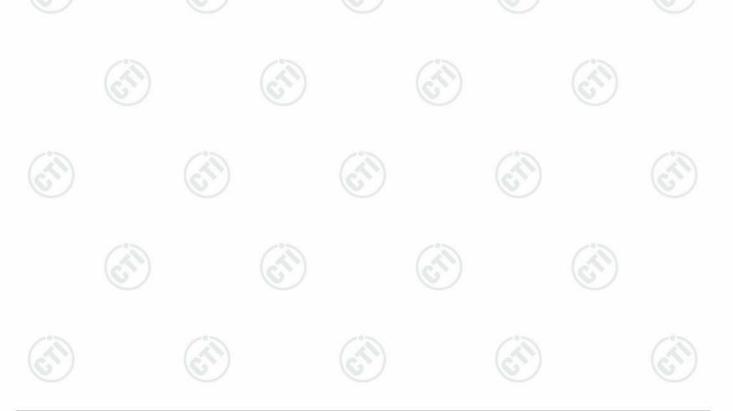


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

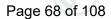


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.71	96.37	74.00	-22.37	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.07	52.72	74.00	21.28	Pass	Horizontal
3	2485.1489	32.38	13.37	-43.11	55.10	57.74	74.00	16.26	Pass	Horizontal

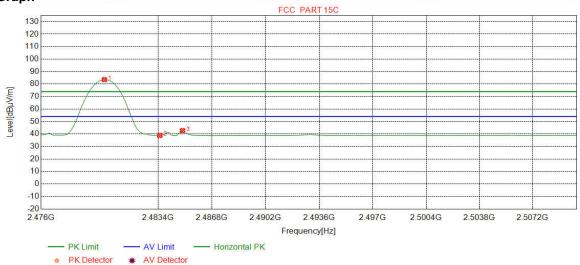




Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

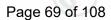


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8298	32.37	13.39	-43.10	87.84	90.50	74.00	-16.50	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.31	50.96	74.00	23.04	Pass	Vertical

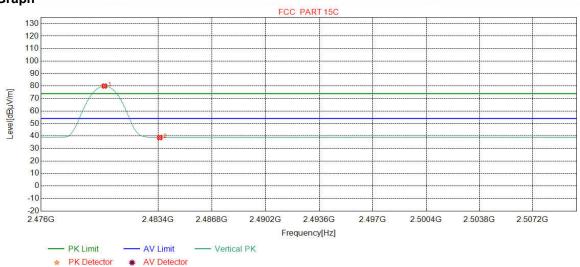


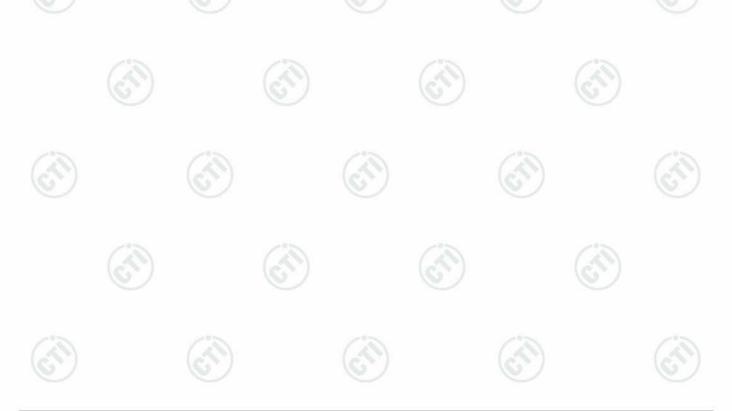


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

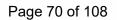


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	80.89	83.55	54.00	-29.55	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.26	38.91	54.00	15.09	Pass	Horizontal
3	2484.9362	32.38	13.37	-43.10	40.08	42.73	54.00	11.27	Pass	Horizontal

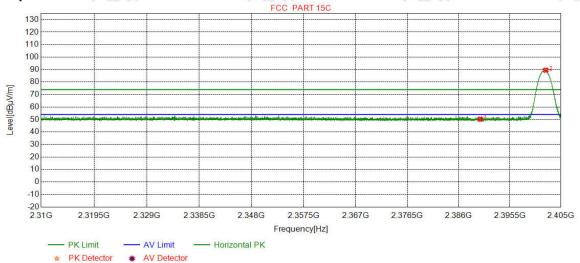


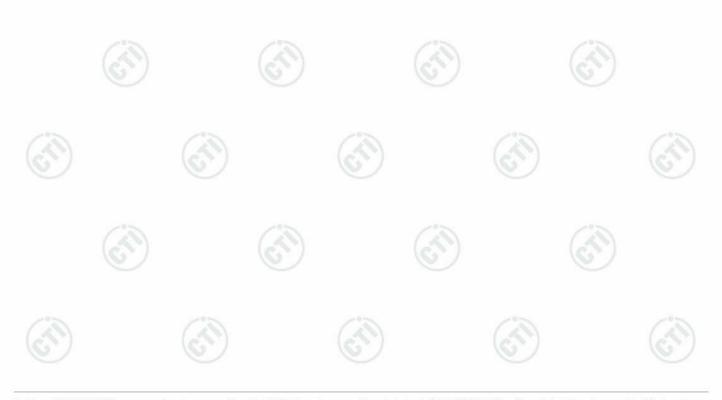


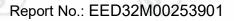
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

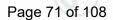


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	77.35	80.01	54.00	-26.01	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.10	38.75	54.00	15.25	Pass	Vertical

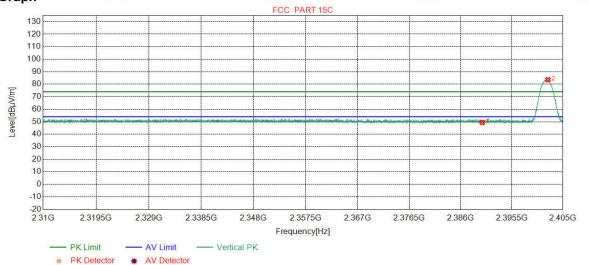




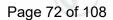

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		



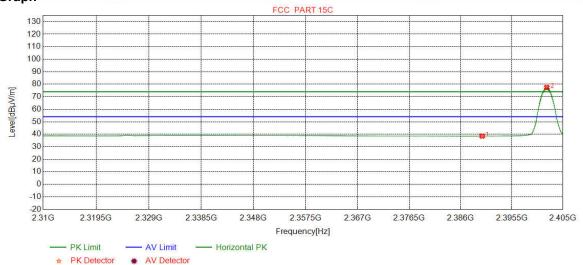
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.78	50.28	74.00	23.72	Pass	Horizontal
2	2402.1751	32.26	13.31	-43.12	87.06	89.51	74.00	-15.51	Pass	Horizontal

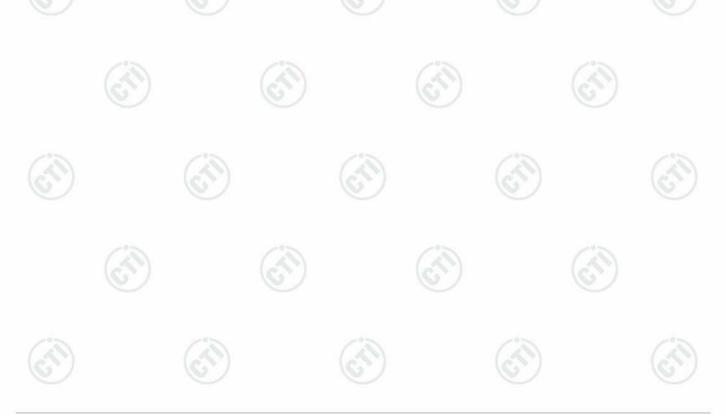


Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		



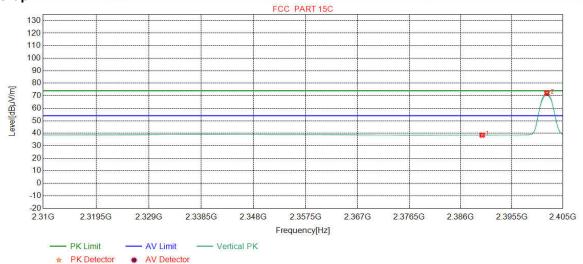
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	46.85	49.35	74.00	24.65	Pass	Vertical
2	2402.2131	32.26	13.31	-43.12	81.12	83.57	74.00	-9.57	Pass	Vertical

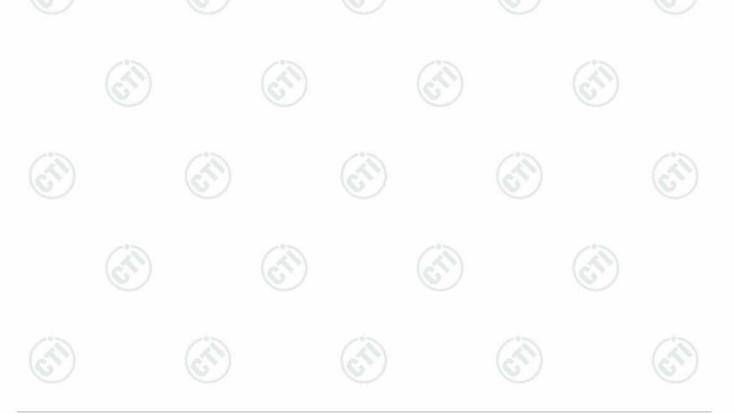




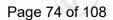
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.06	38.56	54.00	15.44	Pass	Horizontal
2	2402.0041	32.26	13.31	-43.12	74.92	77.37	54.00	-23.37	Pass	Horizontal

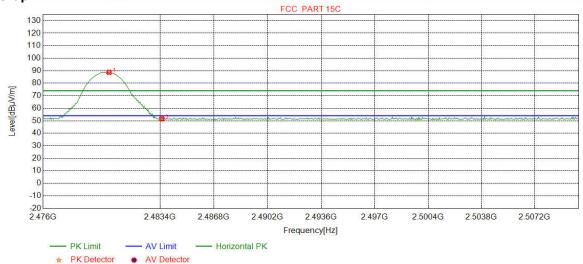


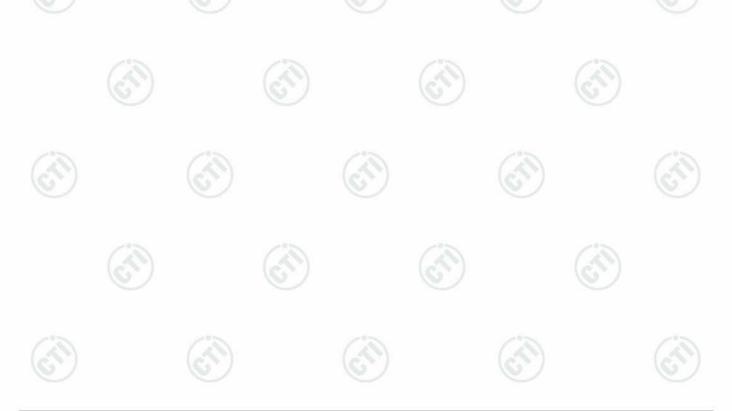


Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

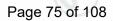


١	9	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	36.04	38.54	54.00	15.46	Pass	Vertical
	2	2402.0168	32.26	13.31	-43.12	69.66	72.11	54.00	-18.11	Pass	Vertical

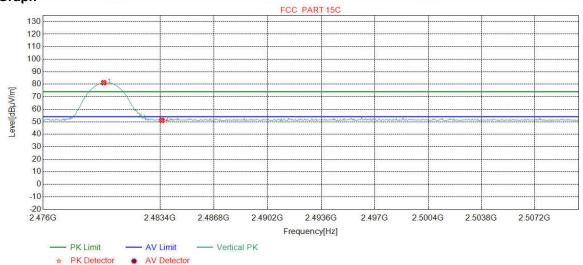


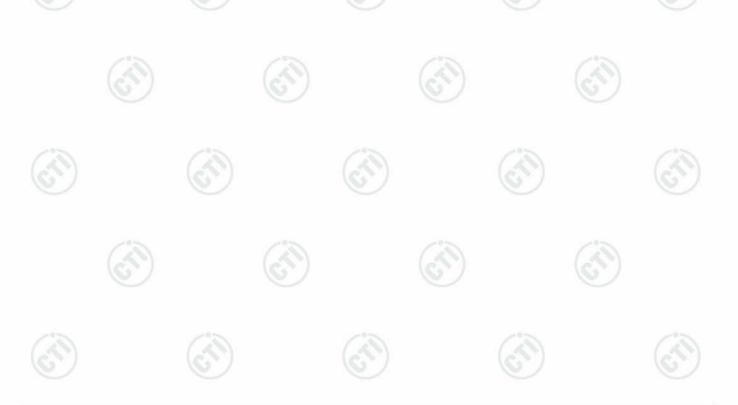


Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK		

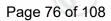


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1702	32.37	13.39	-43.10	86.07	88.73	74.00	-14.73	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.93	51.58	74.00	22.42	Pass	Horizontal

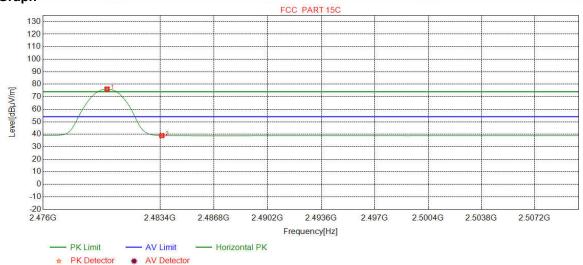


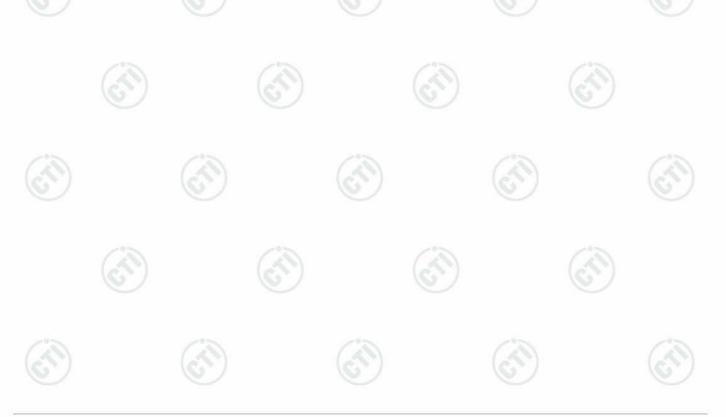


Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK		



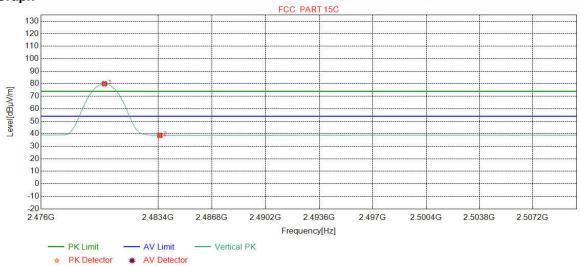
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.8298	32.37	13.39	-43.10	78.57	81.23	74.00	-7.23	Pass	Vertical
Ī	2	2483.5000	32.38	13.38	-43.11	48.51	51.16	74.00	22.84	Pass	Vertical



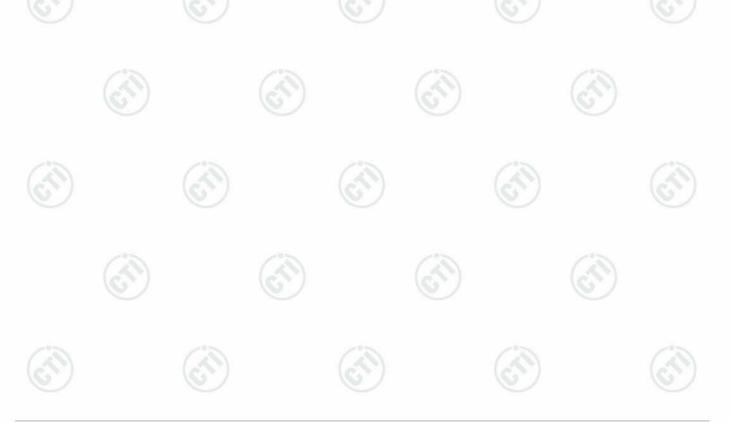


Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

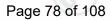
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	73.57	76.23	54.00	-22.23	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.27	38.92	54.00	15.08	Pass	Horizontal



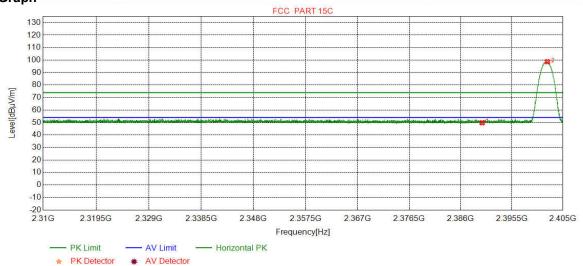
Page 77 of 108


Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

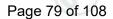
Test Graph


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2480.0000	32.37	13.39	-43.10	66.95	69.61	54.00	-15.61	Pass	Vertical
Ī	2	2483.5000	32.38	13.38	-43.11	36.10	38.75	54.00	15.25	Pass	Vertical

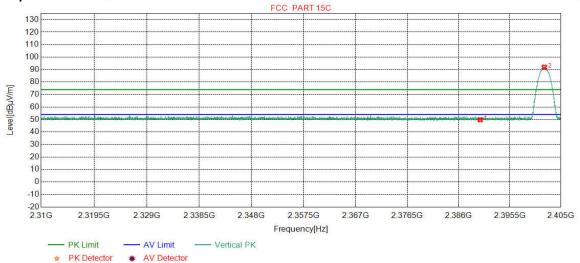
* AV Detector

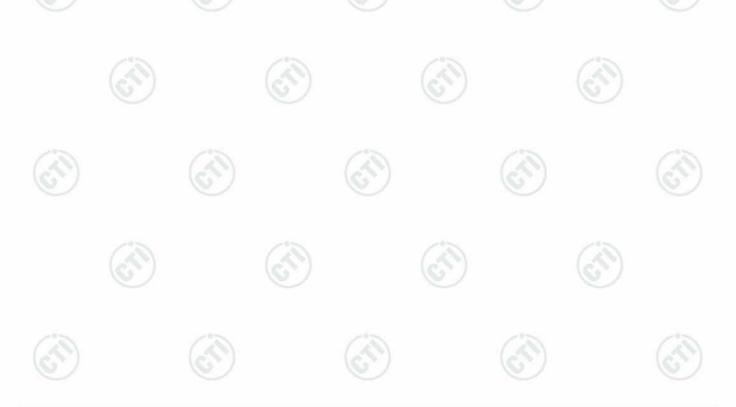


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

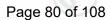


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.32	49.82	74.00	24.18	Pass	Horizontal
2	2402.1055	32.26	13.31	-43.12	96.28	98.73	74.00	-24.73	Pass	Horizontal

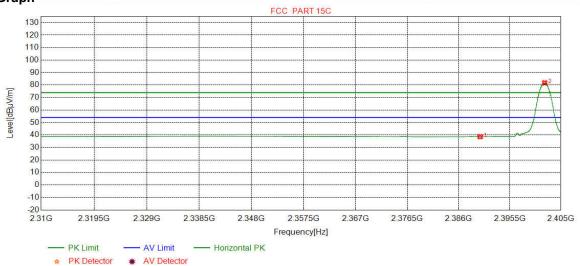


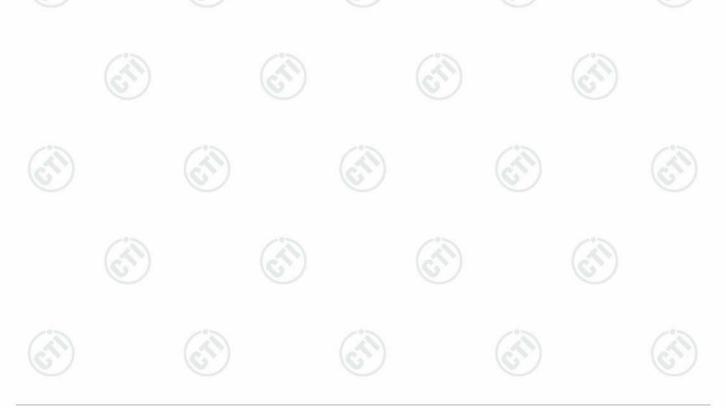


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

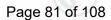


N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.30	49.80	74.00	24.20	Pass	Vertical
2	2401.9218	32.26	13.31	-43.12	89.45	91.90	74.00	-17.90	Pass	Vertical

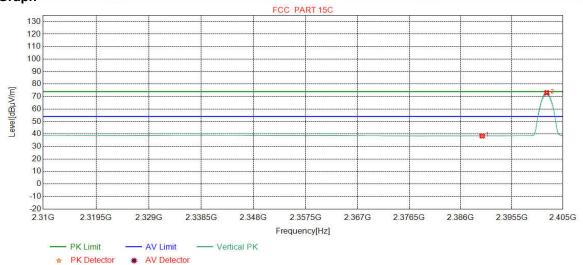


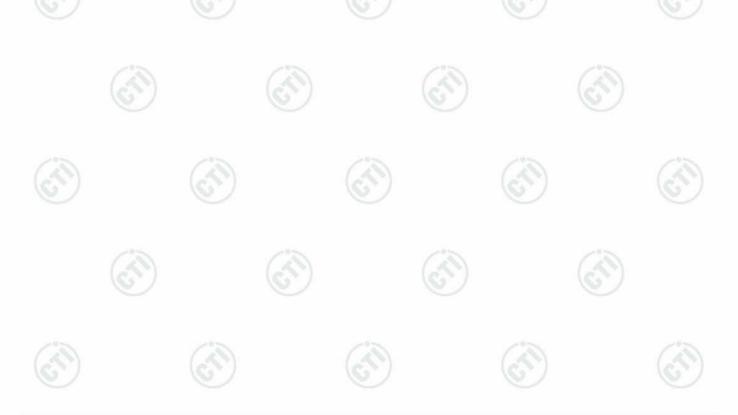


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

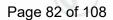


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.16	38.66	54.00	15.34	Pass	Horizontal
2	2401.9851	32.26	13.31	-43.12	79.35	81.80	54.00	-27.80	Pass	Horizontal

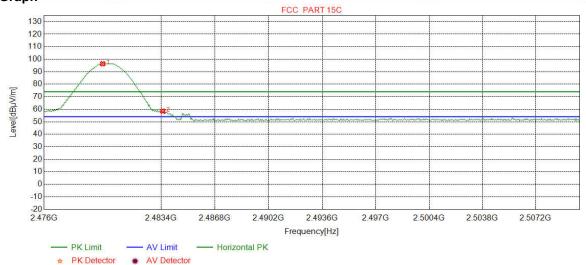


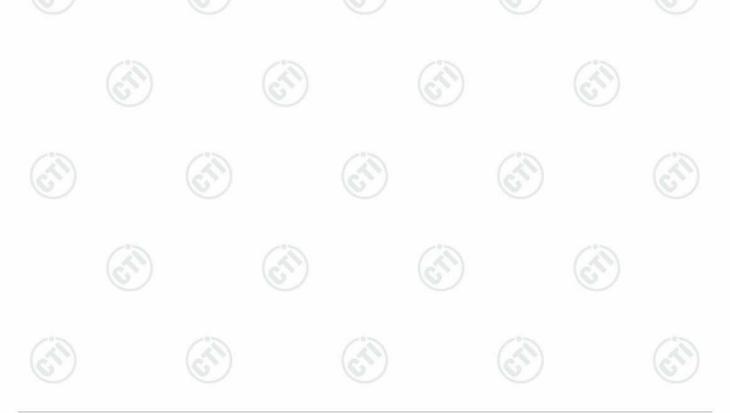


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

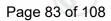


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	35.96	38.46	54.00	15.54	Pass	Vertical
Ī	2	2401.9915	32.26	13.31	-43.12	70.57	73.02	54.00	-19.02	Pass	Vertical

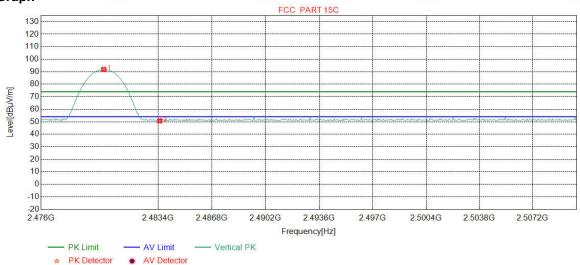


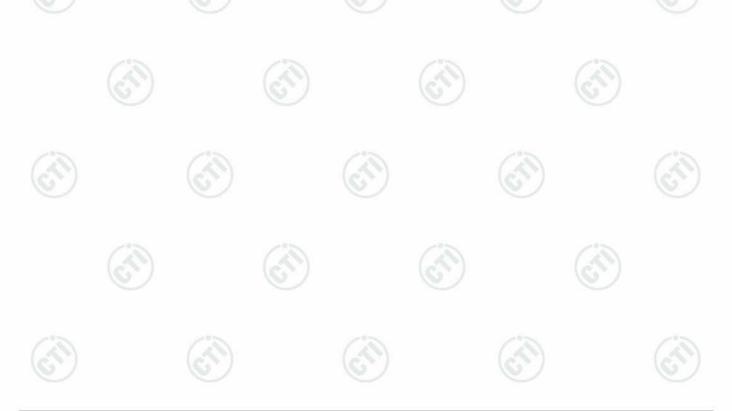


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		



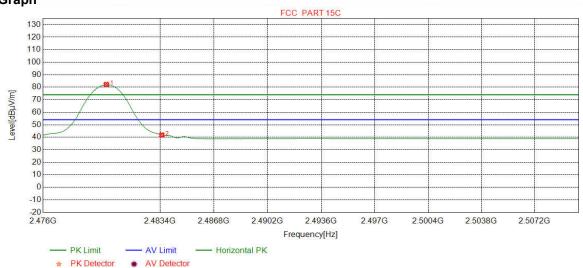
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
ſ	1	2479.7021	32.37	13.39	-43.10	93.70	96.36	74.00	-22.36	Pass	Horizontal
Ī	2	2483.5000	32.38	13.38	-43.11	55.88	58.53	74.00	15.47	Pass	Horizontal

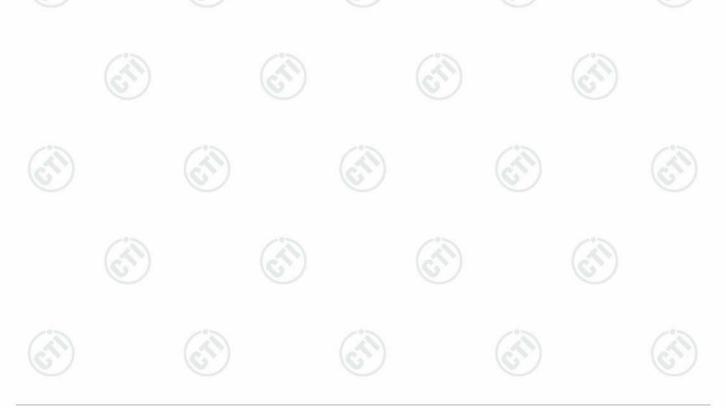




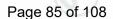
Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	89.19	91.85	74.00	-17.85	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.12	50.77	74.00	23.23	Pass	Vertical

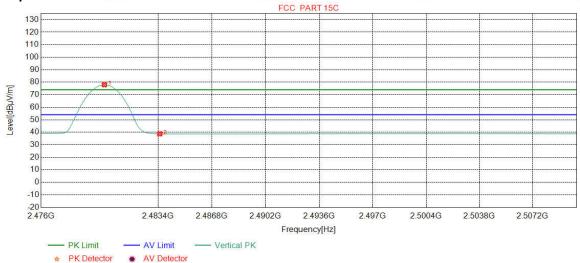




Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	79.54	82.20	54.00	-28.20	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	39.18	41.83	54.00	12.17	Pass	Horizontal



Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margi n [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	75.30	77.96	54.00	-23.96	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.11	38.76	54.00	15.24	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix J) Radiated Spurious Emissions

Receiver Setup:	- (6)		P 2		(63)
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
S	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
°)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above IGIIZ	Peak	1MHz	10Hz	Average

Test Procedure:

Limit:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

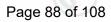
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-0	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 87 of 108

Radiated Spurious Emissions test Data:


Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, GFSK Channel 2441MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Mode:		·	GFSK 1	Fransmitting	ı			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	48.54	29.04	40.00	10.96	Pass	Н	PK
2	48.0438	13.20	0.78	-31.96	41.52	23.54	40.00	16.46	Pass	Н	PK
3	72.1022	8.60	0.98	-32.02	47.36	24.92	40.00	15.08	Pass	Н	PK
4	120.0250	9.20	1.30	-32.07	51.92	30.35	43.50	13.15	Pass	Н	PK
5	240.1230	11.94	1.84	-31.90	50.32	32.20	46.00	13.80	Pass	Н	PK
6	384.3764	15.06	2.33	-31.86	53.21	38.74	46.00	7.26	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	49.61	30.11	40.00	9.89	Pass	V	PK
8	47.9468	13.20	0.78	-31.95	41.44	23.47	40.00	16.53	Pass	V	PK
9	150.0010	7.55	1.45	-32.01	54.93	31.92	43.50	11.58	Pass	V	PK
10	240.0260	11.94	1.84	-31.90	47.17	29.05	46.00	16.95	Pass	V	PK
11	384.5705	15.06	2.33	-31.85	47.30	32.84	46.00	13.16	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	41.59	32.05	46.00	13.95	Pass	V	PK

Transmitter Emission above 1GHz

Mode	e:		GFSK 1	Fransmittin	ng			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1063.0063	27.96	2.52	-43.03	56.70	44.15	74.00	29.85	Pass	Н	PK
2	1596.6597	29.04	3.07	-42.91	56.44	45.64	74.00	28.36	Pass	Н	PK
3	2663.1663	32.66	4.10	-43.10	54.76	48.42	74.00	25.58	Pass	Н	PK
4	4803.1202	34.50	4.55	-42.80	52.96	49.21	74.00	24.79	Pass	Н	PK
5	6455.2303	35.89	5.51	-42.50	49.90	48.80	74.00	25.20	Pass	Н	PK
6	8491.3661	36.60	6.47	-42.00	49.93	51.00	74.00	23.00	Pass	Н	PK
7	2130.3130	31.88	3.62	-43.17	59.38	51.71	74.00	22.29	Pass	V	PK
8	2663.9664	32.66	4.10	-43.10	54.40	48.06	74.00	25.94	Pass	V	PK
9	4250.0833	34.15	4.51	-42.90	53.12	48.88	74.00	25.12	Pass	V	PK
10	4804.1203	34.50	4.55	-42.80	51.21	47.46	74.00	26.54	Pass	V	PK
11	5553.1702	35.09	5.16	-42.61	49.87	47.51	74.00	26.49	Pass	V	PK
12	6907.2605	36.06	5.87	-42.25	49.45	49.13	74.00	24.87	Pass	V	PK

Mod	le:		GFSK 1	Γransmittin	g			Channel:		2441	
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2126.5127	31.88	3.62	-43.18	58.87	51.19	74.00	22.81	Pass	Н	PK
2	2655.1655	32.65	4.09	-43.10	54.10	47.74	74.00	26.26	Pass	Н	PK
3	4882.1255	34.50	4.81	-42.80	52.44	48.95	74.00	25.05	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.51	46.65	74.00	27.35	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	47.64	49.96	74.00	24.04	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	45.52	50.72	74.00	23.28	Pass	Н	PK
7	2130.3130	31.88	3.62	-43.17	57.49	49.82	74.00	24.18	Pass	V	PK
8	4251.0834	34.15	4.51	-42.90	53.20	48.96	74.00	25.04	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	52.16	48.67	74.00	25.33	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.35	46.49	74.00	27.51	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	47.17	49.49	74.00	24.51	Pass	V	PK
12	12205.0000	39.42	7.67	-41.89	46.08	51.28	74.00	22.72	Pass	V	PK

Page 89 of 108

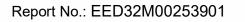
Mode	e:		GFSK 1	Γransmittin	g			Channel	:	2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2131.9132	31.88	3.62	-43.16	59.30	51.64	74.00	22.36	Pass	Н	PK
2	2661.1661	32.66	4.10	-43.11	53.46	47.11	74.00	26.89	Pass	Н	PK
3	5008.1339	34.51	4.83	-42.80	50.62	47.16	74.00	26.84	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.31	46.59	74.00	27.41	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.65	48.11	74.00	25.89	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	47.33	52.83	74.00	21.17	Pass	Н	PK
7	2130.1130	31.88	3.62	-43.17	57.76	50.09	74.00	23.91	Pass	V	PK
8	3994.0663	33.80	4.33	-43.00	53.61	48.74	74.00	25.26	Pass	V	PK
9	4263.0842	34.17	4.48	-42.90	54.10	49.85	74.00	24.15	Pass	V	PK
10	4960.0000	34.50	4.82	-42.80	50.80	47.32	74.00	26.68	Pass	V	PK
11	7440.0000	36.54	5.85	-42.11	47.75	48.03	74.00	25.97	Pass	V	PK
12	9920.0000	37.77	6.79	-42.10	46.21	48.67	74.00	25.33	Pass	V	PK

Mode	e:		π/4DQP	SK Transm	nitting			Channel		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1882.8883	30.93	3.41	-42.92	51.12	42.54	74.00	31.46	Pass	Н	PK
2	3094.0063	33.24	4.73	-43.10	50.78	45.65	74.00	28.35	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.36	44.61	74.00	29.39	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	45.73	45.69	74.00	28.31	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.06	48.23	74.00	25.77	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	48.28	53.29	74.00	20.71	Pass	Н	PK
7	1846.8847	30.69	3.38	-42.83	50.62	41.86	74.00	32.14	Pass	V	PK
8	3311.0207	33.32	4.57	-43.10	49.72	44.51	74.00	29.49	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.46	43.71	74.00	30.29	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	47.79	47.75	74.00	26.25	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.21	49.38	74.00	24.62	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	47.23	52.24	74.00	21.76	Pass	V	PK

Pag	۹	90	of	108
гач	┖	30	U	100

						/**		/			
Mode:			π/4DQPSK Transmitting					Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarit y	Remark
1	1358.2358	28.26	2.83	-42.72	55.80	44.17	74.00	29.83	Pass	Н	PK
2	3868.0579	33.69	4.35	-43.02	50.57	45.59	74.00	28.41	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	46.90	43.41	74.00	30.59	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.25	46.39	74.00	27.61	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.69	49.01	74.00	24.99	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	46.22	51.42	74.00	22.58	Pass	Н	PK
7	1860.8861	30.78	3.39	-42.86	50.53	41.84	74.00	32.16	Pass	V	PK
8	3939.0626	33.75	4.34	-43.01	49.44	44.52	74.00	29.48	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	48.34	44.85	74.00	29.15	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.90	47.04	74.00	26.96	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	46.83	49.15	74.00	24.85	Pass	V	PK
12	12205.0000	39.42	7.67	-41.89	44.81	50.01	74.00	23.99	Pass	V	PK

Mode:			π/4DQPSK Transmitting						Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarit y	Remark	
1	1350.0350	28.25	2.82	-42.73	56.55	44.89	74.00	29.11	Pass	Н	PK	
2	4175.0783	34.05	4.49	-42.93	49.97	45.58	74.00	28.42	Pass	Н	PK	
3	4960.0000	34.50	4.82	-42.80	48.23	44.75	74.00	29.25	Pass	Н	PK	
4	7440.0000	36.54	5.85	-42.11	47.12	47.40	74.00	26.60	Pass	Н	PK	
5	9920.0000	37.77	6.79	-42.10	46.19	48.65	74.00	25.35	Pass	Н	PK	
6	12400.0000	39.54	7.86	-41.90	46.13	51.63	74.00	22.37	Pass	Н	PK	
7	3187.0125	33.27	4.63	-43.10	50.42	45.22	74.00	28.78	Pass	V	PK	
8	4442.0961	34.42	4.79	-42.83	50.18	46.56	74.00	27.44	Pass	V	PK	
9	4960.0000	34.50	4.82	-42.80	47.60	44.12	74.00	29.88	Pass	V	PK	
10	7440.0000	36.54	5.85	-42.11	46.74	47.02	74.00	26.98	Pass	V	PK	
11	9920.0000	37.77	6.79	-42.10	45.69	48.15	74.00	25.85	Pass	V	PK	
12	12400.0000	39.54	7.86	-41.90	46.69	52.19	74.00	21.81	Pass	V	PK	



Page 91 of 108

	16.47.7			A SC A T A		VIC	ST 1		110000	/		
Mode	Mode:			8DPSK Transmitting					Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1999.5000	31.70	3.47	-43.20	54.33	46.30	74.00	27.70	Pass	Н	PK	
2	2663.5664	32.66	4.10	-43.10	54.59	48.25	74.00	25.75	Pass	Н	PK	
3	4804.0000	34.50	4.55	-42.80	52.06	48.31	74.00	25.69	Pass	Н	PK	
4	7206.0000	36.31	5.81	-42.16	48.15	48.11	74.00	25.89	Pass	Н	PK	
5	9608.0000	37.64	6.63	-42.10	47.16	49.33	74.00	24.67	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.90	46.10	51.11	74.00	22.89	Pass	Н	PK	
7	2127.7128	31.88	3.62	-43.18	56.98	49.30	74.00	24.70	Pass	V	PK	
8	4253.0835	34.15	4.50	-42.89	53.09	48.85	74.00	25.15	Pass	V	PK	
9	4804.0000	34.50	4.55	-42.80	50.15	46.40	74.00	27.60	Pass	V	PK	
10	7206.0000	36.31	5.81	-42.16	46.57	46.53	74.00	27.47	Pass	V	PK	
11	9608.0000	37.64	6.63	-42.10	47.05	49.22	74.00	24.78	Pass	V	PK	
12	12010.0000	39.31	7.60	-41.90	46.87	51.88	74.00	22.12	Pass	V	PK	

Mode:		8DPSK Transmitting						Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2130.9131	31.88	3.62	-43.17	60.77	53.10	74.00	20.90	Pass	Н	PK
2	2659.9660	32.66	4.10	-43.11	55.78	49.43	74.00	24.57	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	49.92	46.43	74.00	27.57	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.25	46.39	74.00	27.61	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.90	49.22	74.00	24.78	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.89	45.63	50.83	74.00	23.17	Pass	Н	PK
7	2126.3126	31.88	3.62	-43.18	59.14	51.46	74.00	22.54	Pass	V	PK
8	2664.5665	32.66	4.10	-43.10	55.33	48.99	74.00	25.01	Pass	V	PK
9	4253.0835	34.15	4.50	-42.89	52.35	48.11	74.00	25.89	Pass	V	PK
10	4882.0000	34.50	4.81	-42.80	51.79	48.30	74.00	25.70	Pass	V	PK
11	7323.0000	36.42	5.85	-42.13	46.62	46.76	74.00	27.24	Pass	V	PK
12	12205.0000	39.42	7.67	-41.89	45.03	50.23	74.00	23.77	Pass	V	PK

Page	92	of	108

Mode:		8DPSK Transmitting						Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2128.7129	31.88	3.62	-43.17	59.85	52.18	74.00	21.82	Pass	Н	PK
2	2661.3661	32.66	4.10	-43.10	53.16	46.82	74.00	27.18	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	49.53	46.05	74.00	27.95	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.23	46.51	74.00	27.49	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.75	48.21	74.00	25.79	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.20	52.70	74.00	21.30	Pass	Н	PK
7	2131.3131	31.88	3.62	-43.17	59.12	51.45	74.00	22.55	Pass	V	PK
8	3997.0665	33.80	4.33	-43.00	53.54	48.67	74.00	25.33	Pass	V	PK
9	4256.0837	34.16	4.50	-42.90	53.21	48.97	74.00	25.03	Pass	V	PK
10	4960.0000	34.50	4.82	-42.80	50.54	47.06	74.00	26.94	Pass	V	PK
11	7440.0000	36.54	5.85	-42.11	47.41	47.69	74.00	26.31	Pass	V	PK
12	9920.0000	37.77	6.79	-42.10	45.93	48.39	74.00	25.61	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

