

Report No.: EED32O80175603 Page 1 of 57

TEST REPORT

: AUTOMOTIVE DIAGNOSIS **Product**

& ANALYSIS SYSTEM

AUTEL Trade mark

: MaxiSys MS906 Pro-TS, MaxiCOM MK906 Model/Type reference

Pro-TS, MaxiCOM MK906S Pro-TS

Serial Number : N/A

Report Number : EED32O80175603 **FCC ID** WQ8-MS906TS2121

Jun. 22, 2022 Date of Issue

47 CFR Part 15 Subpart E **Test Standards**

PASS Test result

Prepared for:

Autel Intelligent Technology Corp., Ltd. 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark chen

Reviewed by:

Tom Chen

Mark Chen Lavon Ma

Date of Issue:

Jun. 22, 2022

Aaron Ma

Check No.: 7923140222

Report No.: EED32O80175603

Page 2 of 57

2 Content

1 COVER PAGE			1
2 CONTENT			
3 VERSION			
4 TEST SUMMARY			2
5 GENERAL INFORMATION	•••••	•••••	
5.1 CLIENT INFORMATION	CONDITIONS		
6 EQUIPMENT LIST			
7 RADIO TECHNICAL REQUIREMEN	ITS SPECIFICATION		12
7.1 ANTENNA REQUIREMENT	99% OCCUPIED BANDWIDTH	H	
8 APPENDIX A			54
PHOTOGRAPHS OF TEST SETUP			55
PHOTOGRAPHS OF EUT CONSTRU	CTIONAL DETAILS		57

Report No.: EED32O80175603

3 Version

Version No.	Date	Description		
00	Jun. 22, 2022	Origi	nal	
((4)		

Report No. : EED32O80175603 Page 4 of 57

4 Test Summary

		1 10 71		
Test Item	Test Requirement	Result		
Antenna Requirement	a Requirement 47 CFR Part 15 Subpart C Section 15.203			
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS		
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS		
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS		
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS		
99% Occupied bandwidth	(6,)	PASS		
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS		
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS		
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS		
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS		
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS		
7 7 7 7 7		/ // 36.3		

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were Provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: MaxiSys MS906 Pro-TS, MaxiCOM MK906 Pro-TS, MaxiCOM MK906S Pro-TS

Only the model MaxiSys MS906 Pro-TS was tested, Their electrical circuit design, layout, components used and internal wiring are identical, only the color and model names are different due to difference agent and marketing purposes.

5 General Information

5.1 Client Information

Applicant:	Autel Intelligent Technology Corp.,Ltd.
Address of Applicant:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China
Manufacturer:	Autel Intelligent Technology Corp.,Ltd.
Address of Manufacturer:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China
Factory:	Autel Intelligent Technology Corp., Ltd. Guangming Branch
Address of Factory:	7F&6F, East Wing, Building 2, and 6F of Electronical Building, Yanxiang Industrial Zone, Gaoxin Rd, Dongzhou Community of Guangming New District, Shenzhen

5.2 General Description of EUT

Product Name:	AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM			
Model No.:	MaxiSys MS906 Pro-TS, MaxiCOM MK906 Pro-TS, MaxiCOM MK906S Pro-TS			
Test Model No.:	MaxiSys MS906 Pro-TS			
Trade mark:	AUTEL			
Product Type:	Portable			
Test Software of EUT:	QRCT			
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)			
Operating Frequency	U-NII-1: 5180-5240MHz U-NII-3: 5745-5825MHz			
Operating Temperature:	0°C to +45°C			
Antenna Type:	PIFA antenna			
Antenna Gain:	Ant1: 3.4dBi, Ant 2: 4.6dBi			
Power Supply:	Adapter: Model:GME36E-120300FDR Input:100-240V~50/60Hz 1.2A Output:12V3.0A 36.0W			
Test voltage:	AC 120V			
Sample Received Date:	Feb. 15, 2022			
Sample tested Date:	Feb. 15, 2022 to Mar. 24, 2022			

Report No.: EED32O80175603

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3		
Channel	Frequency(MHz)	Channel Frequency(MH		
36	5180	149	5745	
40	5200	153	5765	
44	5220	157	5785	
48	5240	161	5805	
-	-	165	5825	

802.11n/802.11ac (40MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3	
Channel Frequency(MHz)		Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

802.11ac (80MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3		
Channel	Frequency(MHz)	z) Channel Frequency(N		
42	5210	155	5775	

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32O80175603 Page 7 of 57

5.3 Test Configuration

EUT Test Software Setti	ngs:		
Software:	QRCT	C'S	/ h
EUT Power Grade:	Default	(85)	(277)
Use test software to set the	ne lowest frequency, the middle fr	requency and the highest frequence	cv keep

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0

5.4 Test Environment

Operating Environment:					
Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C				(41)
Humidity:	50~55 % RH		6.		(0.)
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C	(3)		(1)	
Humidity:	50~55 % RH	(0,)		(6,2)	
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Humidity:	50~55 % RH		/°>		_°>
Atmospheric Pressure:	1010mbar		(3)		((1))
	NT (Normal Temperature)		22~25.0 °C		
Temperature:	LT (Low Temperature)		0 °C		
	HT (High Temperature)		45.0 °C		
	NV (Normal Voltage)	(41)	120 V		
Working Voltage of the EUT:	LV (Low Voltage)	6	100 V	6	
	HV (High Voltage)		240V		

Report No.: EED32O80175603 Page 8 of 57

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

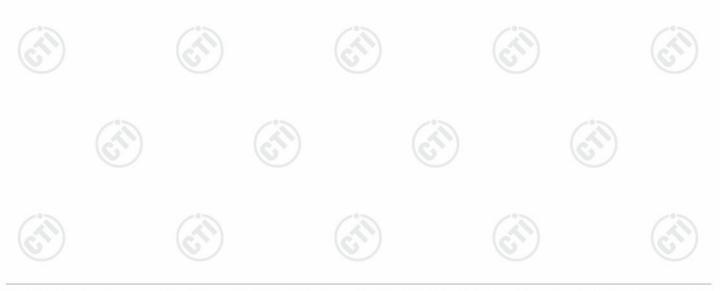
None.

5.9 Other Information Requested by the Customer

None.

Measurement Uncertainty (95% confidence levels, k=2) 5.10

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
• 2	RF power, conducted	0.46dB (30MHz-1GHz)		
2	Kr power, conducted	0.55dB (1GHz-40GHz)		
		3.3dB (9kHz-30MHz)		
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)		
	(25)	3.4dB (18GHz-40GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		



6 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022			
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022			
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022			
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022			
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022			
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022			
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022			
high-low temperature test chamber	Dong Guang Qin Zhuo LK-80GA		QZ20150611879	12-24-2021	12-23-2022			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518					

Page 10 of 57 Report No.: EED32O80175603

Conducted disturbance Test								
				Cal. date	Cal. Due date (mm-dd-yyyy)			
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022			
Temperature/ Humidity Indicator	Defu	TH128	1	<u></u>	0			
LISN	LISN R&S ENV216		100098	03-04-2021 03-01-2022	03-03-2022 02-28-2023			
Barometer	changchun	DYM3	1188	(4				

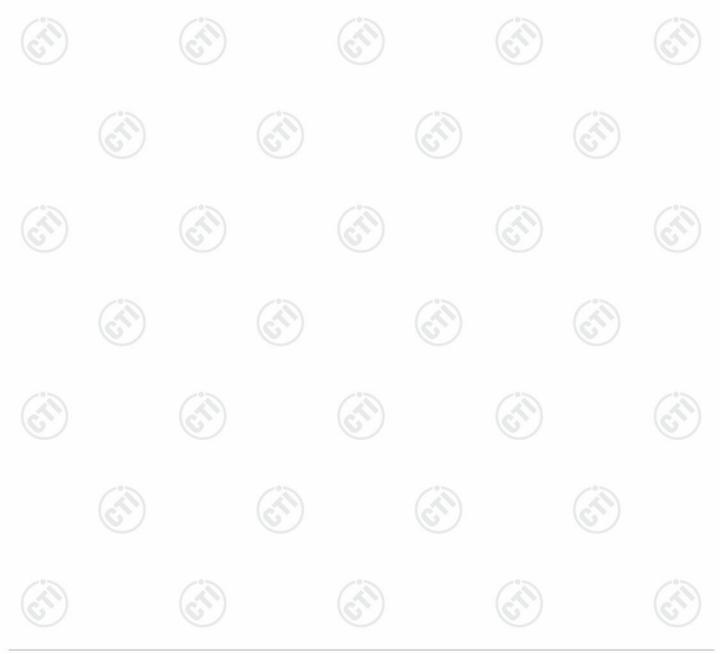
	3M Semi-an	echoic Chamber (2)	- Radiated distu	ırbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/24/2019	05/23/2022
Receiver	R&S ESCI7		100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019	05/22/2022
Multi device Controller	maturo	NCD/070/10711112			
Horn Antenna	ETS-LINGREN BBHA 9120D		9120D-1869	04/15/2021	04/14/2024
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022

Report No.: EED32O80175603

		3M full-anechoi		Cal. Date	Cal. Due date
RSE Automatic test software Manufacturer JS Tonscend		Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)
		JS36-RSE	10166	C:37	/-
Receiver	Keysight	N9038A	MY57290136	03-04-2021 03-01-2022	03-03-2022 02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021 02-23-2022	03-03-2022 02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021 02-23-2022	03-03-2022 02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898 12-24-2021		12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		(2
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(C)	6
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	- 0	<u> </u>
Cable line	Times	EMC104-NMNM-1000	SN160710		<u> </u>
Cable line	Cable line Times		394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		(2
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Cable line Times		393493-0001		

Report No. : EED32O80175603 Page 12 of 57

7 Radio Technical Requirements Specification


7.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is Prohibited.

EUT Antenna: Please see Internal photos

The antenna is PIFA antenna. The best case gain of the antenna are ant1: 3.4 dBi and ant2: 4.6dBi.

Report No. : EED32O80175603 Page 13 of 57

7.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.207							
60	Test Method:	ANSI C63.10: 2013							
Š	Test Frequency Range:	150kHz to 30MHz							
9	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	6					
	Limit:	Frequency range (MHz)	Limit (d	dBuV)					
		Frequency range (WI12)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
	Test Setup:	* Decreases with the logarith	m of the frequency.						
(A)	Toot Drogodure:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane						
	 Test Procedure: The mains terminal disturbance voltage test was conducted in a shie room. The EUT was connected to AC power source through a LISN 1 (Impedance Stabilization Network) which Provides a 50Ω/50μH + 5Ω limpedance. The power cables of all other units of the EUT of connected to a second LISN 2, which was bonded to the ground referent plane in the same way as the LISN 1 for the unit being measured multiple socket outlet strip was used to connect multiple power cables single LISN Provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above ground reference plane. And for floor-standing arrangement, the EUT placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rete the EUT shall be 0.4 m from the vertical ground reference plane. vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of unit under test and bonded to a ground reference plane for LI mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the and associated equipment was at least 0.8 m from the LISN 2. 								

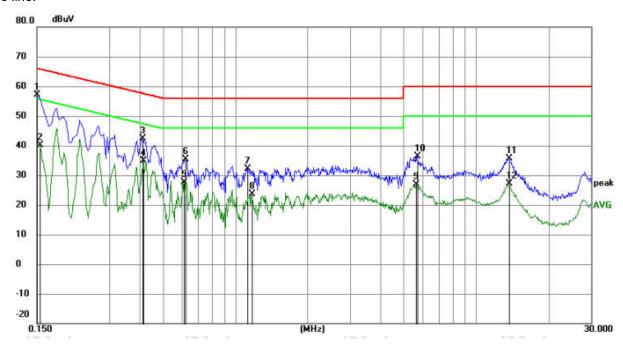
5) In order to find the maximum emission, the relative positions of equipment

and all of the interface cables must be changed according to

Report No. : EED32O80175603

Page	11	of	57
Page	14	OL	ວ/

	ANSI C63.10: 2013 on conducted measurement.				
Test Mode:	All modes were tested, only the worst case lowest channel of 6Mbps for 802.11a was recorded in the report.				
Test Results:	Pass				



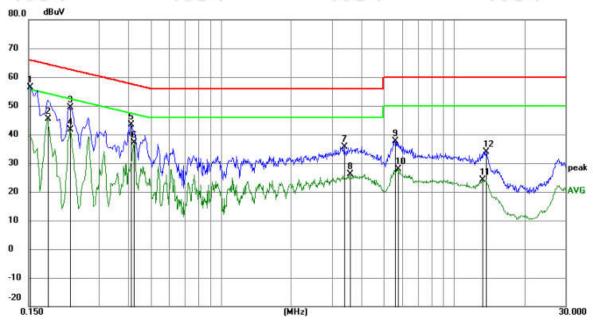
Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	47.23	9.87	57.10	66.00	-8.90	QP	
2		0.1545	30.26	9.87	40.13	55.75	-15.62	AVG	
3		0.4110	32.43	9.97	42.40	57.63	-15.23	QP	
4		0.4155	24.79	9.97	34.76	47.54	-12.78	AVG	
5		0.6134	17.52	10.04	27.56	46.00	-18.44	AVG	
6		0.6180	25.22	10.04	35.26	56.00	-20.74	QP	
7		1.1220	22.29	9.83	32.12	56.00	-23.88	QP	
8		1.1670	13.75	9.82	23.57	46.00	-22.43	AVG	
9		5.6265	17.08	9.78	26.86	50.00	-23.14	AVG	
10		5.6850	26.52	9.78	36.30	60.00	-23.70	QP	
11		13.7490	25.76	9.89	35.65	60.00	-24.35	QP	
12		13.7490	17.14	9.89	27.03	50.00	-22.97	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1524	46.48	9.87	56.35	65.87	-9.52	QP	
2	*	0.1815	35.41	9.87	45.28	54.42	-9.14	AVG	
3		0.2265	39.35	9.92	49.27	62.58	-13.31	QP	
4		0.2265	31.74	9.92	41.66	52.58	-10.92	AVG	
5		0.4110	33.53	9.97	43.50	57.63	-14.13	QP	
6		0.4245	27.08	9.97	37.05	47.36	-10.31	AVG	
7		3.3900	25.96	9.79	35.75	56.00	-20.25	QP	
8		3.5700	16.28	9.78	26.06	46.00	-19.94	AVG	
9		5.5725	27.91	9.78	37.69	60.00	-22.31	QP	
10		5.7435	18.04	9.78	27.82	50.00	-22.18	AVG	
11		13.2225	14.20	9.88	24.08	50.00	-25.92	AVG	
12		13.7625	23.97	9.89	33.86	60.00	-26.14	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))			
Test Method:	KDB789033 D02 G	General UNII Tes	t Procedures New Rules	s v02r01 Section		
Test Setup:				(6)		
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument			
Test Procedure:	General UNII Test 2. The RF output of attenuator. The part measurement. 3. Set to the maxim continuously.	Procedures New f EUT was conne th loss was comp num power setting	nent Procedure of KDB78 Rules v02r01 Section E, cted to the power meter ensated to the results fo g and enable the EUT tra ewer and record the resu	, 3, a by RF cable and or each		
Limit:	0					
	Frequency band (MHz)	Limit				
	5150-5250	≤1W(30dBm) fo	or master device			
		• • • • • • • • • • • • • • • • • • • •	m) for client device			
	5250-5350	100	m) for client device or 11	dBm+10logB*		
	5470-5725	≤250mW(24dB	m) for client device or 11	dBm+10logB*		
	5725-5850	≤1W(30dBm)		407		
	Remark:					
Test Mode:	Transmitting mode	with modulation	C			
Test Results:	Refer to Appendix	A (3)	(6)	`)		

7.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Computer Power Supply Power Supply TEMPERATURE CABNET RF test System System Instrument RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A

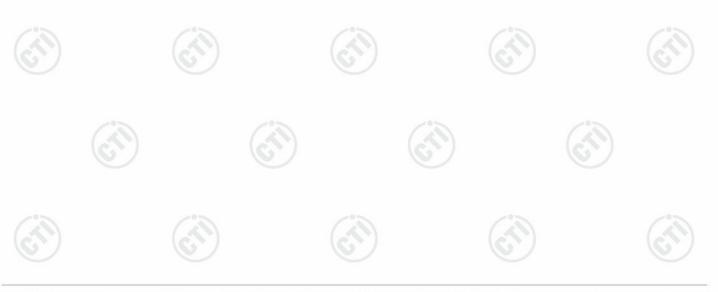


7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Setup:	
	Control Comprutes Power porte) Power porte) Power porte) Attenuator Temperature Cabnet Table RF test System Instrument
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.
Limit:	No restriction limits
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A

7.6 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C S	ection 15.407 (a))					
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rules v	02r01 Section F				
Test Setup:	(6	(20)						
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument					
	1							
	Remark: Offset=Cable loss+ attenuation factor. 1. Set the spectrum analyzer or EMI receiver span to view the entire emission							
Test Procedure: Limit:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweeps	RBW = 510 kHz/1 MS. s to continue unti	MHz, VBW ≥ 3*RBW, Sv I the trace stabilizes. Ietermine the maximum a	weep time =				
	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1Mh	Hz for master device					
	(6)	≤11dBm in 1Ml	Hz for client device	(6)				
	5250-5350	≤11dBm in 1Ml	Hz for client device					
	5470-5725	≤11dBm in 1Ml	Iz for client device					
	5725-5850	≤30dBm in 500	kHz					
	Remark:	The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.						
Test Mode:	Transmitting mode	with modulation						
Test Results:	Refer to Appendix	Λ						



7.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)						
Test Method:	ANSI C63.10: 2013	(3)						
Test Setup:	(5,70)	(52)	(67)					
	Control Comprute Power Supply Power Table Control Control Comprut Power Artenna Attenuato	RF test System Instrument						
	Remark: Offset=Cable loss+ attenuation factor.							
Test Procedure:	1.The EUT was placed inside the oby nominal AC/DC voltage. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the chapecified. d. Allow sufficient time (of the chamber to stabilize. 4. Repeat step 2 and 3 with the test temperature. 5. The test chamber was allowed to 30 minutes. The supply voltage 115% and the frequency record.	output to a spectrum amber to the highest apProximately 30 min mperature chamber so stabilize at +20 degwas then adjusted or	analyzer. temperature a) for the temperature et to the lowest gree C for a minimum a the EUT from 85% to					
Limit:	frequency over a temperature vanious normal supply voltage, and for a value of the control of th	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.						
Test Mode:	Transmitting mode with modulation	<i>i</i>						
Test Results:	Refer to Appendix A	7	(6,)					

Report No. : EED32O80175603 Page 22 of 57

7.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Section	on 1	5 209 and 15	5 407 (b)				
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance	nhe	r)	(10)				
Receiver Setup:	167	7	Detector	RBV	-	VBW	Remark	
rtooolvor ootup.	Frequency 0.009MHz-0.090MH							
			Peak	10kF		30kHz	Peak	
	0.009MHz-0.090MH		Average	10kH		30kHz	Average	
	0.090MHz-0.110MH		Quasi-peal			30kHz	Quasi-peak	
	0.110MHz-0.490MH		Peak	10kF		30kHz	Peak	
	0.110MHz-0.490MH		Average	10kF		30kHz	Average	
	0.490MHz -30MHz		Quasi-peal	- 0.5		30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peal	1.5	-	300kHz	Quasi-peak	
	Above 1GHz	ノ	Peak	1MH	z	3MHz	Peak	
	7,5575 15112		Peak	1MH	z	10kHz	Average	
Limit:	Frequency		d strength	Limit (dBuV/m)	R	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	24	00/F(kHz)	-		- (0)	300	
	0.490MHz-1.705MHz	240	00/F(kHz)	-		-	30	
	1.705MHz-30MHz		30	-		-	30	
	30MHz-88MHz	10	100	40.0	Qu	asi-peak	3	
	88MHz-216MHz	7	150	43.5	Qu	asi-peak	3	
	216MHz-960MHz		200	46.0	Quasi-peak		3	
	960MHz-1GHz		500	54.0	Qu	asi-peak	3	
	Above 1GHz		500	54.0	Α	verage	3	
	*(1) For transmitters of outside of the 5.15-5 dBm/MHz. (2) For transmitters open of the 5.15-5.35 GHz backs (3) For transmitters of outside of the 5.47-5. dBm/MHz. (4) For transmitters open (i) All emissions shall be above or below the backs or below the back	.35 eratir and eratir re lim nd e lim om dBm in li ying	GHz band Ing in the 5.25 Ishall not excepting in the GHz band Ing in the 5.72 Inited to a level of 15 Ishall not exception of 1	shall not 5-5.35 GH eed an e.i 5.47-5.72 shall no 25-5.85 GI el of -27 ng linearlom 25 MI e or belo band edge in the quasi-pea	ex e	and: All em of -27 dB GHz band: aceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz ne band e detector e	e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. hissions e.i.r.p. of -27 hissions outside m/MHz. hissions e.i.r.p. of -27 hissions e.i	

an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Note: (i) EIRP = $((E*d)^2) / 30$ where: E is the field strength in V/m; • d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

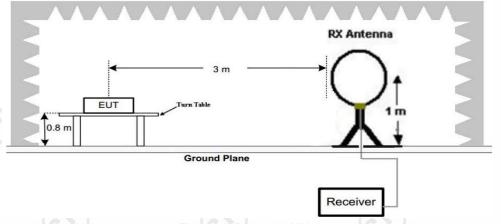


Figure 1. Below 30MHz

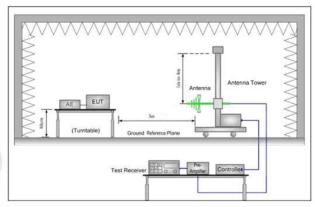


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

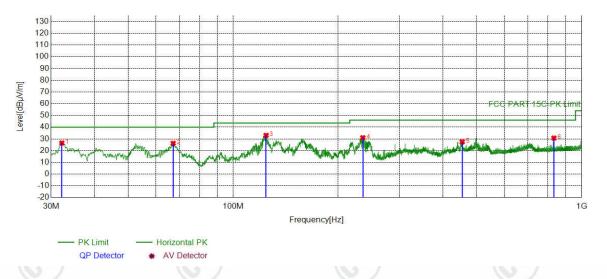
Test Procedure:

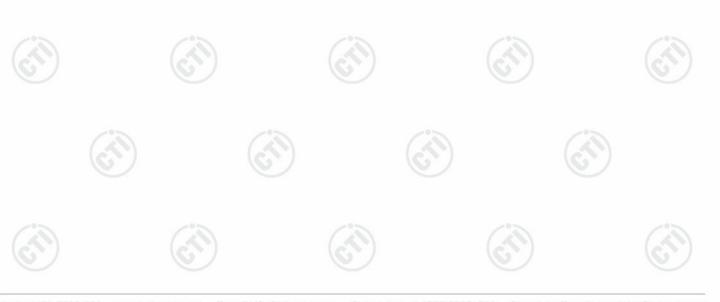
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Report No.: EED32O80175603

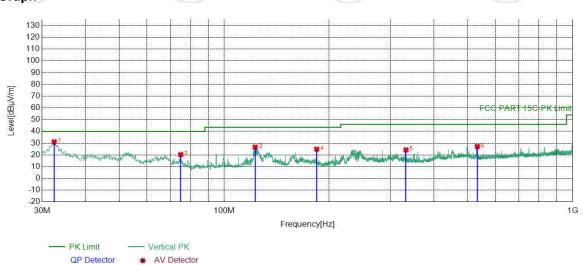
Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above Procedures until all frequencies measured was complete.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.




Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case MIMO for 802.11n20 was recorded in the report.

Test Graph


Suspec	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	32.2312	-19.70	46.19	26.49	40.00	13.51	PASS	Horizontal	PK	
2	67.2517	-20.17	46.43	26.26	40.00	13.74	PASS	Horizontal	PK	
3	124.2934	-20.72	53.74	33.02	43.50	10.48	PASS	Horizontal	PK	
4	235.5636	-16.87	47.90	31.03	46.00	14.97	PASS	Horizontal	PK	
5	454.2234	-11.65	39.11	27.46	46.00	18.54	PASS	Horizontal	PK	
6	832.5613	-6.02	36.75	30.73	46.00	15.27	PASS	Horizontal	PK	

Test Graph

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	32.5223	-19.69	50.79	31.10	40.00	8.90	PASS	Vertical	PK			
2	75.0125	-21.68	41.96	20.28	40.00	19.72	PASS	Vertical	PK			
3	122.7413	-20.48	47.14	26.66	43.50	16.84	PASS	Vertical	PK			
4	184.3424	-19.36	44.25	24.89	43.50	18.61	PASS	Vertical	PK			
5	332.3792	-14.64	38.96	24.32	46.00	21.68	PASS	Vertical	PK			
6	532.9953	-10.19	37.34	27.15	46.00	18.85	PASS	Vertical	PK			

Report No.: EED32O80175603 Page 27 of 57

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission above 1G was performed in all modes, only the worst case was recorded in the report.

Mode	e:		802.11 n(HT20) Trai	nsmitting	Channel:			5180 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1223.8724	0.90	42.11	43.01	68.20	25.19	Pass	Н	PK
2	2123.7624	4.78	46.81	51.59	68.20	16.61	Pass	Н	PK
3	3339.9340	7.46	38.67	46.13	68.20	22.07	Pass	Н	PK
4	6906.5453	-11.97	63.70	51.73	68.20	16.47	Pass	Н	PK
5	10260.6880	-6.56	53.01	46.45	68.20	21.75	Pass	Н	PK
6	13717.1859	-1.86	51.41	49.55	68.20	18.65	Pass	Н	PK
7	1282.7283	1.09	40.86	41.95	68.20	26.25	Pass	V	PK
8	2129.2629	4.72	45.29	50.01	68.20	18.19	Pass	V	PK
9	3299.2299	7.39	39.53	46.92	68.20	21.28	Pass	V	PK
10	6906.5453	-11.97	59.77	47.80	68.20	20.40	Pass	V	PK
11	10266.4383	-6.51	52.80	46.29	68.20	21.91	Pass	V	PK
12	15524.5012	0.45	50.06	50.51	68.20	17.69	Pass	V	PK

Mode) :		802.11 n(l	HT20) Trar	nsmitting	Channe	d:	5200 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1201.3201	0.82	41.36	42.18	68.20	26.02	Pass	Н	PK
2	2125.9626	4.76	48.42	53.18	68.20	15.02	Pass	Н	PK
3	3884.4884	8.85	37.94	46.79	68.20	21.41	Pass	Н	PK
4	6932.9967	-11.88	62.64	50.76	68.20	17.44	Pass	Н	PK
5	10419.3960	-6.31	52.90	46.59	68.20	21.61	Pass	Н	PK
6	14989.7245	-0.95	50.47	49.52	68.20	18.68	Pass	Н	PK
7	1331.6832	1.24	41.20	42.44	68.20	25.76	Pass	V	PK
8	2123.2123	4.79	44.15	48.94	68.20	19.26	Pass	V	PK
9	4253.0253	10.55	40.47	51.02	68.20	17.18	Pass	V	PK
10	8515.4758	-10.58	58.43	47.85	68.20	20.35	Pass	V	PK
11	11198.5599	-5.73	53.29	47.56	68.20	20.64	Pass	V	PK
12	15360.0430	-0.75	50.20	49.45	68.20	18.75	Pass	V	PK

Report No.: EED32O80175603 Page 28 of 57

1.5					1.5%	(0)	120	~~ '	
Mode	e :		802.11 n(HT20) Trans	smitting		Channe	d:	5240 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1336.0836	1.25	40.57	41.82	68.20	26.38	Pass	Н	PK
2	2127.6128	4.74	31.87	36.61	54.00	17.39	Pass	Н	PK
3	2127.6128	4.74	49.52	54.26	68.20	13.94	Pass	Н	PK
4	3343.2343	7.47	39.75	47.22	68.20	20.98	Pass	Н	PK
5	6986.4743	-11.71	62.25	50.54	68.20	17.66	Pass	Н	PK
6	10293.4647	-6.30	52.32	46.02	68.20	22.18	Pass	Н	PK
7	15048.9524	-0.42	49.69	49.27	68.20	18.93	Pass	Н	PK
8	1403.7404	1.45	40.96	42.41	68.20	25.79	Pass	V	PK
9	2131.4631	4.70	46.19	50.89	68.20	17.31	Pass	V	PK
10	4265.6766	10.66	39.32	49.98	68.20	18.22	Pass	V	PK
11	6986.4743	-11.71	58.78	47.07	68.20	21.13	Pass	V	PK
12	9603.4302	-7.34	53.69	46.35	68.20	21.85	Pass	V	PK
13	14408.3704	0.52	49.01	49.53	68.20	18.67	Pass	V	PK

Mode	e :		802.11 n(HT20) Trar	nsmitting		Channe	l:	5745 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1373.4873	1.77	41.66	43.43	68.20	24.77	Pass	Н	PK
2	2445.5446	5.12	40.52	45.64	68.20	22.56	Pass	Н	PK
3	3883.3883	9.65	38.99	48.64	68.20	19.56	Pass	Н	PK
4	8278.0185	-10.99	55.07	44.08	68.20	24.12	Pass	Н	PK
5	11942.1628	-5.18	53.13	47.95	68.20	20.25	Pass	Н	PK
6	15902.2602	0.12	51.58	51.70	68.20	16.50	Pass	Н	PK
7	1139.1639	1.09	42.07	43.16	68.20	25.04	Pass	V	PK
8	1865.7866	4.39	39.79	44.18	68.20	24.02	Pass	V	PK
9	3805.8306	9.39	38.41	47.80	68.20	20.40	Pass	V	PK
10	7639.3426	-10.79	54.19	43.40	68.20	24.80	Pass	V	PK
11	11207.6472	-5.79	53.44	47.65	68.20	20.55	Pass	V	PK
12	15901.4934	0.12	51.54	51.66	68.20	16.54	Pass	V	PK

Report No.: EED32O80175603 Page 29 of 57

1 2	1.2	10						(201			
Mode	е:		802.11 n(HT20) Transmitting					l:	5785 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark		
1	1196.3696	1.08	42.86	43.94	68.20	24.26	Pass	Н	PK		
2	2026.4026	5.23	39.92	45.15	68.20	23.05	Pass	Н	PK		
3	4354.7855	12.08	37.34	49.42	68.20	18.78	Pass	Н	PK		
4	8358.5239	-10.81	54.45	43.64	68.20	24.56	Pass	Н	PK		
5	10403.3602	-6.28	53.05	46.77	68.20	21.43	Pass	Н	PK		
6	14968.3979	-0.94	51.22	50.28	68.20	17.92	Pass	Н	PK		
7	1337.1837	1.71	41.61	43.32	68.20	24.88	Pass	V	PK		
8	2533.0033	5.53	40.57	46.10	68.20	22.10	Pass	V	PK		
9	4279.4279	11.60	36.65	48.25	68.20	19.95	Pass	V	PK		
10	7633.9756	-10.75	54.34	43.59	68.20	24.61	Pass	V	PK		
11	11925.2950	-5.29	53.73	48.44	68.20	19.76	Pass	V	PK		
12	15911.4608	0.09	51.06	51.15	68.20	17.05	Pass	V	PK		

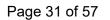
:		802.11 n(l	HT20) Trai	nsmitting	Channe	l:	5825 MHz	
Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1485.1485	1.91	41.20	43.11	68.20	25.09	Pass	Н	PK
2128.1628	5.28	40.22	45.50	68.20	22.70	Pass	Н	PK
3442.7943	8.24	39.23	47.47	68.20	20.73	Pass	Н	PK
7648.5432	-10.85	54.48	43.63	68.20	24.57	Pass	Н	PK
11830.9887	-5.96	53.84	47.88	68.20	20.32	Pass	Н	PK
15896.8931	0.08	51.32	51.40	68.20	16.80	Pass	Н	PK
1238.7239	1.30	42.03	43.33	68.20	24.87	Pass	V	PK
2127.6128	5.28	40.56	45.84	68.20	22.36	Pass	V	PK
3801.4301	9.37	38.07	47.44	68.20	20.76	Pass	V	PK
7616.3411	-10.64	53.94	43.30	68.20	24.90	Pass	V	PK
12461.2307	-4.17	52.57	48.40	68.20	19.80	Pass	V	PK
16611.4741	1.38	51.33	52.71	68.20	15.49	Pass	V	PK
	Freq. [MHz] 1485.1485 2128.1628 3442.7943 7648.5432 11830.9887 15896.8931 1238.7239 2127.6128 3801.4301 7616.3411 12461.2307	Freq. [dB] 1485.1485	Freq. [MHz] Factor [dB] Reading [dBμV] 1485.1485 1.91 41.20 2128.1628 5.28 40.22 3442.7943 8.24 39.23 7648.5432 -10.85 54.48 11830.9887 -5.96 53.84 15896.8931 0.08 51.32 1238.7239 1.30 42.03 2127.6128 5.28 40.56 3801.4301 9.37 38.07 7616.3411 -10.64 53.94 12461.2307 -4.17 52.57	Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] 1485.1485 1.91 41.20 43.11 2128.1628 5.28 40.22 45.50 3442.7943 8.24 39.23 47.47 7648.5432 -10.85 54.48 43.63 11830.9887 -5.96 53.84 47.88 15896.8931 0.08 51.32 51.40 1238.7239 1.30 42.03 43.33 2127.6128 5.28 40.56 45.84 3801.4301 9.37 38.07 47.44 7616.3411 -10.64 53.94 43.30 12461.2307 -4.17 52.57 48.40	Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 1485.1485 1.91 41.20 43.11 68.20 2128.1628 5.28 40.22 45.50 68.20 3442.7943 8.24 39.23 47.47 68.20 7648.5432 -10.85 54.48 43.63 68.20 11830.9887 -5.96 53.84 47.88 68.20 15896.8931 0.08 51.32 51.40 68.20 1238.7239 1.30 42.03 43.33 68.20 2127.6128 5.28 40.56 45.84 68.20 3801.4301 9.37 38.07 47.44 68.20 7616.3411 -10.64 53.94 43.30 68.20 12461.2307 -4.17 52.57 48.40 68.20	Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1485.1485 1.91 41.20 43.11 68.20 25.09 2128.1628 5.28 40.22 45.50 68.20 22.70 3442.7943 8.24 39.23 47.47 68.20 20.73 7648.5432 -10.85 54.48 43.63 68.20 24.57 11830.9887 -5.96 53.84 47.88 68.20 20.32 15896.8931 0.08 51.32 51.40 68.20 16.80 1238.7239 1.30 42.03 43.33 68.20 24.87 2127.6128 5.28 40.56 45.84 68.20 22.36 3801.4301 9.37 38.07 47.44 68.20 20.76 7616.3411 -10.64 53.94 43.30 68.20 24.90 12461.2307 -4.17 52.57 48.40 68.20 19.80	Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1485.1485 1.91 41.20 43.11 68.20 25.09 Pass 2128.1628 5.28 40.22 45.50 68.20 22.70 Pass 3442.7943 8.24 39.23 47.47 68.20 20.73 Pass 7648.5432 -10.85 54.48 43.63 68.20 24.57 Pass 11830.9887 -5.96 53.84 47.88 68.20 20.32 Pass 15896.8931 0.08 51.32 51.40 68.20 16.80 Pass 1238.7239 1.30 42.03 43.33 68.20 24.87 Pass 2127.6128 5.28 40.56 45.84 68.20 22.36 Pass 3801.4301 9.37 38.07 47.44 68.20 20.76 Pass 7616.3411 -10.64 53.94 43.30 68.20 24.90 Pass	Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polarity 1485.1485 1.91 41.20 43.11 68.20 25.09 Pass H 2128.1628 5.28 40.22 45.50 68.20 22.70 Pass H 3442.7943 8.24 39.23 47.47 68.20 20.73 Pass H 7648.5432 -10.85 54.48 43.63 68.20 24.57 Pass H 11830.9887 -5.96 53.84 47.88 68.20 20.32 Pass H 15896.8931 0.08 51.32 51.40 68.20 16.80 Pass H 1238.7239 1.30 42.03 43.33 68.20 24.87 Pass V 2127.6128 5.28 40.56 45.84 68.20 22.36 Pass V 3801.4301 9.37 38.07 47.44 68.20 20.76 Pass

Report No.: EED32O80175603

Page	っつ	of 57	
Faue	. 7()	01:57	

1	1.0	1			100				
Mode	e:		802.11 n(HT40) Trai	nsmitting		Channe	l:	5190 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1195.2695	0.81	47.02	47.83	68.20	20.37	Pass	Н	PK
2	2443.3443	4.72	39.83	44.55	68.20	23.65	Pass	Н	PK
3	3952.1452	9.18	38.27	47.45	68.20	20.75	Pass	Н	PK
4	6919.7710	-11.93	64.19	52.26	68.20	15.94	Pass	Н	PK
5	11015.7008	-5.91	53.21	47.30	68.20	20.90	Pass	Н	PK
6	15891.9446	0.01	51.87	51.88	68.20	16.32	Pass	Н	PK
7	1072.6073	0.77	44.09	44.86	68.20	23.34	Pass	V	PK
8	1986.2486	4.56	39.64	44.20	68.20	24.00	Pass	V	PK
9	3195.2695	6.96	39.01	45.97	68.20	22.23	Pass	V	PK
10	6919.7710	-11.93	59.98	48.05	68.20	20.15	Pass	V	PK
11	9792.6146	-7.20	52.52	45.32	68.20	22.88	Pass	V	PK
12	13863.2432	-1.42	50.91	49.49	68.20	18.71	Pass	V	PK

Mode) :		802.11 n(l	HT40) Trai	nsmitting		Channe	el:	5230 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1286.0286	1.10	41.68	42.78	68.20	25.42	Pass	Н	PK
2	2068.7569	4.92	40.63	45.55	68.20	22.65	Pass	Н	PK
3	3313.5314	7.41	39.20	46.61	68.20	21.59	Pass	Н	PK
4	6973.2487	-11.76	63.45	51.69	68.20	16.51	Pass	Н	PK
5	11229.6115	-5.97	52.99	47.02	68.20	21.18	Pass	Н	PK
6	14373.2937	0.35	49.33	49.68	68.20	18.52	Pass	Н	PK
7	1286.5787	1.11	41.54	42.65	68.20	25.55	Pass	V	PK
8	2183.7184	4.11	40.07	44.18	68.20	24.02	Pass	V	PK
9	3946.6447	9.15	37.28	46.43	68.20	21.77	Pass	V	PK
10	6973.2487	-11.76	60.35	48.59	68.20	19.61	Pass	V	PK
11	10272.1886	-6.47	52.86	46.39	68.20	21.81	Pass	V	PK
12	14399.1700	0.63	48.76	49.39	68.20	18.81	Pass	V	PK



Report No. : EED32O80175603

					100				
Mode	e :		802.11 n(HT40) Trai	nsmitting		Channe	l:	5755 MHz
NO	Freq. [MHz]	i i i i i i i i i i i i i i i i i i i		Result	Polarity	Remark			
1	1286.0286	1.56	41.80	43.36	68.20	24.84	Pass	Н	PK
2	2299.7800	4.61	39.87	44.48	68.20	23.72	Pass	Н	PK
3	4469.7470	12.23	37.31	49.54	68.20	18.66	Pass	Н	PK
4	7695.3130	-11.16	53.77	42.61	68.20	25.59	Pass	Н	PK
5	11237.5492	-6.04	53.72	47.68	68.20	20.52	Pass	Н	PK
6	14402.5602	0.60	48.95	49.55	68.20	18.65	Pass	Н	PK
7	1396.5897	1.81	40.61	42.42	68.20	25.78	Pass	V	PK
8	2088.0088	5.56	40.01	45.57	68.20	22.63	Pass	V	PK
9	3731.0231	8.61	38.82	47.43	68.20	20.77	Pass	V	PK
10	7594.1063	-10.57	53.99	43.42	68.20	24.78	Pass	V	PK
11	11812.5875	-6.10	54.24	48.14	68.20	20.06	Pass	V	PK
12	14364.2243	0.25	50.01	50.26	68.20	17.94	Pass	V	PK

Mode) :		802.11 n(l	HT40) Trai	nsmitting		Channe	l:	5795 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1277.2277	1.51	41.36	42.87	68.20	25.33	Pass	Н	PK
2	2066.5567	5.45	40.79	46.24	68.20	21.96	Pass	Н	PK
3	3321.7822	8.28	38.83	47.11	68.20	21.09	Pass	Н	PK
4	7387.8592	-11.45	54.84	43.39	68.20	24.81	Pass	Н	PK
5	11275.8851	-6.37	53.72	47.35	68.20	20.85	Pass	Н	PK
6	14448.5632	-0.07	49.59	49.52	68.20	18.68	Pass	Н	PK
7	1315.7316	1.67	41.11	42.78	68.20	25.42	Pass	V	PK
8	2095.1595	5.60	40.27	45.87	68.20	22.33	Pass	V	PK
9	3054.4554	7.41	43.62	51.03	68.20	17.17	Pass	V	PK
10	6973.0649	-11.76	55.61	43.85	68.20	24.35	Pass	V	PK
11	11423.0949	-6.13	53.05	46.92	68.20	21.28	Pass	V	PK
12	15519.6680	0.46	50.21	50.67	68.20	17.53	Pass	V	PK

Report No.: EED32O80175603 Page 32 of 57

		- /			100				
Mode	e :		802.11 ac	(VHT80) T	ransmitting		Channe	l:	5210 MHz
NO	Freq. [dB]		Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1283.2783	1.09	41.10	42.19	68.20	26.01	Pass	Н	PK
2	2017.6018	4.70	39.97	44.67	68.20	23.53	Pass	Н	PK
3	4146.8647	9.84	37.41	47.25	68.20	20.95	Pass	Н	PK
4	6946.7973	-11.84	65.39	53.55	68.20	14.65	Pass	Н	PK
5	10407.8954	-6.29	52.48	46.19	68.20	22.01	Pass	Н	PK
6	14410.6705	0.48	48.74	49.22	68.20	18.98	Pass	Н	PK
7	1430.6931	1.48	41.30	42.78	68.20	25.42	Pass	V	PK
8	2125.4125	4.77	40.11	44.88	68.20	23.32	Pass	V	PK
9	3053.9054	6.69	42.35	49.04	68.20	19.16	Pass	V	PK
10	6946.7973	-11.84	60.37	48.53	68.20	19.67	Pass	V	PK
11	9732.8116	-7.44	52.37	44.93	68.20	23.27	Pass	V	PK
12	13137.5569	-3.06	53.20	50.14	68.20	18.06	Pass	V	PK

Mode) :		802.11 ac	(VHT80) T	ransmitting		Channe	l:	5775 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1324.5325	1.68	40.73	42.41	68.20	25.79	Pass	Н	PK
2	2743.1243	6.27	39.94	46.21	68.20	21.99	Pass	Н	PK
3	4510.4510	12.22	37.12	49.34	68.20	18.86	Pass	Н	PK
4	8767.1845	-9.43	52.77	43.34	68.20	24.86	Pass	Н	PK
5	11940.6294	-5.19	52.84	47.65	68.20	20.55	Pass	Н	PK
6	15498.1999	0.45	50.59	51.04	68.20	17.16	Pass	Н	PK
7	1194.7195	1.08	43.27	44.35	68.20	23.85	Pass	V	PK
8	2097.3597	5.62	41.30	46.92	68.20	21.28	Pass	V	PK
9	4225.5226	11.14	36.72	47.86	68.20	20.34	Pass	V	PK
10	7603.3069	-10.55	54.18	43.63	68.20	24.57	Pass	V	PK
11	10254.6170	-6.60	52.92	46.32	68.20	21.88	Pass	V	PK
12	13696.4131	-1.74	51.33	49.59	68.20	18.61	Pass	V	PK

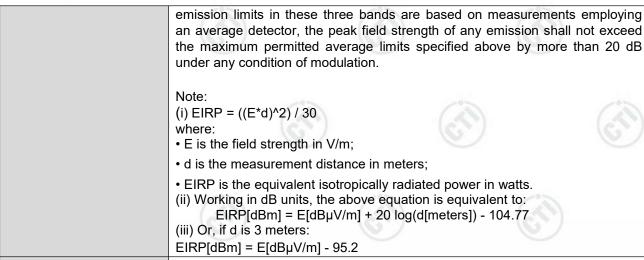
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No. : EED32O80175603 Page 33 of 57

7.9 Radiated Emission which fall in the restricted bands

0.110MHz-0.490MHz Peak 10kHz 30kHz Peak 0.110MHz-0.490MHz Average 10kHz 30kHz Average 0.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi-peak 30MHz-1GHz Quasi-peak 100 kHz 300kHz Quasi-peak Above 1GHz Peak 1MHz 3MHz Peak Peak 1MHz 10kHz Average Limit: Frequency Field strength Limit Remark Measurement	Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)						
Frequency	Test Method:										
0.009MHz-0.090MHz	Test Site:	Measurement Distance	e: 3m	n (Semi-Aned	choic Char	nbe	r)	(67)			
0.009MHz-0.090MHz	Receiver Setup:	Frequency		Detector	RBV	٧	VBW	Remark			
0.090MHz-0.110MHz		0.009MHz-0.090MH	lz	Peak	10kF	łz	30kHz	Peak			
0.110MHz-0.490MHz Peak 10kHz 30kHz Average 0.490MHz-0.490MHz Average 10kHz 30kHz Average 0.490MHz-30MHz Quasi-peak 10kHz 30kHz Quasi-peak 30MHz-1GHz Quasi-peak 100 kHz 300kHz Quasi-peak 100 kHz 300kHz Quasi-peak 100 kHz Above 1GHz Peak 1MHz 10kHz Average 10.099MHz-0.490MHz Peak 1MHz 10kHz Average 10.099MHz-0.490MHz Peak 1MHz 10kHz Average 10.099MHz-0.490MHz 2400/F(kHz) - 300 0.490MHz-1.705MHz 24000/F(kHz) - 300 0.490MHz-1.705MHz 300 300 0.490MHz-30MHz 30 300 0.490MHz-30MHz 150 43.5 Quasi-peak 3 0.400MHz-30MHz 150 54.0 Quasi-peak 3 0.400MHz-30MHz-30MHz 150 54.0 Quasi-peak 3 0.400MHz-30		0.009MHz-0.090MH	łz	Average	10kF	lz	30kHz	Average			
0.110MHz-0.490MHz Average 10kHz 30kHz Average 0.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi-peak 30MHz-1GHz Quasi-peak 10kHz 30kHz Quasi-peak 10kHz Above 1GHz Peak 1MHz 3MHz Peak Peak 1MHz 10kHz Average Peak 1MHz 10kHz Average 1 No.009MHz-0.490MHz 10kHz Average 1 No.009MHz-0.490MHz 10kHz No.009MHz-0.490MHz 10kHz 10kHz No.009MHz-0.490MHz 10kHz 10kHz 10kHz No.009MHz-1.705MHz 10kHz 10k		0.090MHz-0.110MH	łz	Quasi-pea	k 10kH	łz	30kHz	Quasi-peak			
D.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi-peak 30MHz-1GHz Quasi-peak 100 kHz 300kHz Quasi-peak 100 kHz 300kHz Quasi-peak 100 kHz 300kHz Quasi-peak Peak 1MHz 10kHz Average Peak 1MHz 10kHz Average Limit Remark Measuremm (incrovolt/meter) (incrovol		0.110MHz-0.490MH	łz	Peak	10kH	łz	30kHz	Peak			
Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10kHz Average		0.110MHz-0.490MH	łz	Average	10kH	łΖ	30kHz	Average			
Limit: Frequency		0.490MHz -30MHz	<u> </u>	Quasi-pea	k 10kH	łz	30kHz	Quasi-peak			
Limit: Frequency		30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak			
Limit: Frequency		Above 1CHz		Peak	1MH	lz	3MHz	Peak			
Frequency Field strength (microvolt/meter) Field strength (dBuV/m) Field strength (distance (r 300 1.705MHz - 300 Field strength (distance (r 300 Field strength (distance (distan		Above 1G112		Peak	1MH	lz	10kHz	Average			
0.490MHz-1.705MHz 24000/F(kHz) 30 1.705MHz-30MHz 30 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emissic outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emission outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or mabove or below the band edge, and from 25 MHz above or below the band edge increasing linearly to 10 dBm/MHz at 25 M above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.	Limit:	Frequency		/ / //		F	Remark	Measurement distance (m)			
1.705MHz-30MHz 30 30 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emission outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emission outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or mabove or below the band edge increasing linearly to 10 dBm/MHz at 25 Mabove or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increas linearly to a level of 27 dBm/MHz at the band edge.		0.009MHz-0.490MHz	24	00/F(kHz)	-		- (6	300			
30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emissic outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissic outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or mathematical above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasilinearly to a level of 27 dBm/MHz at the band edge.		0.490MHz-1.705MHz	24000/F(kHz)		-		-	30			
88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emissic outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissic outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or me above or below the band edge increasing linearly to 10 dBm/MHz at 25 M above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.		1.705MHz-30MHz	30		- /0		-	30			
216MHz-960MHz 200 46.0 Quasi-peak 3 960MHz-1GHz 500 54.0 Quasi-peak 3 Above 1GHz 500 54.0 Average 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emission outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emission outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or matabove or below the band edge increasing linearly to 10 dBm/MHz at 25 M above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasilinearly to a level of 27 dBm/MHz at the band edge.		30MHz-88MHz	1	100	40.0	Qu	asi-peak	3			
960MHz-1GHz 500 54.0 Quasi-peak 3 *(1) For transmitters operating in the 5.15-5.25 GHz band: All emission outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emission outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or mabove or below the band edge increasing linearly to 10 dBm/MHz at 25 M above or below the band edge, and from 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.		88MHz-216MHz		150	43.5	Qu	asi-peak	3			
*(1) For transmitters operating in the 5.15-5.25 GHz band: All emission outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emission outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or material above or below the band edge increasing linearly to 10 dBm/MHz at 25 M above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.		216MHz-960MHz		200	46.0	Qu	asi-peak	3			
*(1) For transmitters operating in the 5.15-5.25 GHz band: All emissic outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissic outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or make above or below the band edge increasing linearly to 10 dBm/MHz at 25 M above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.		960MHz-1GHz		500	54.0	Qu	asi-peak	3			
outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outs of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emission outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or material band and edge increasing linearly to 10 dBm/MHz at 25 M above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.		Above 1GHz		500	54.0	Α	verage	3			
measurements employing a CISPR quasi-peak detector except for		outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz (3) For transmitters operating in the 5.47-5.725 GHz band: All en outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz above or below the band edge increasing linearly to 10 dBm/MHz at 3 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge inclinearly to a level of 27 dBm/MHz at the band edge.									

Test Setup:

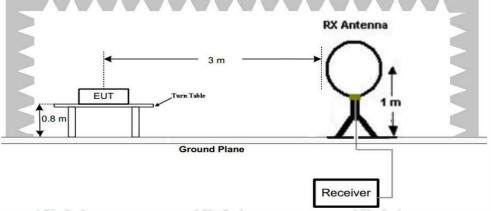
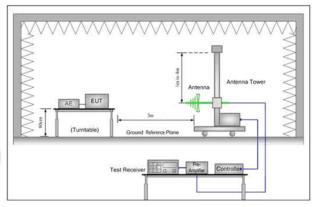



Figure 1. Below 30MHz

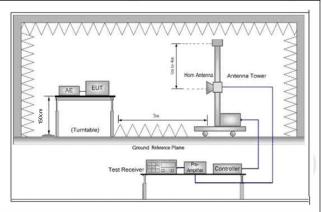
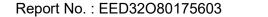


Figure 2. 30MHz to 1GHz

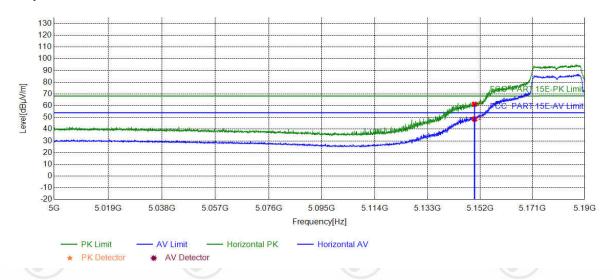
Figure 3. Above 1 GHz

Test Procedure:

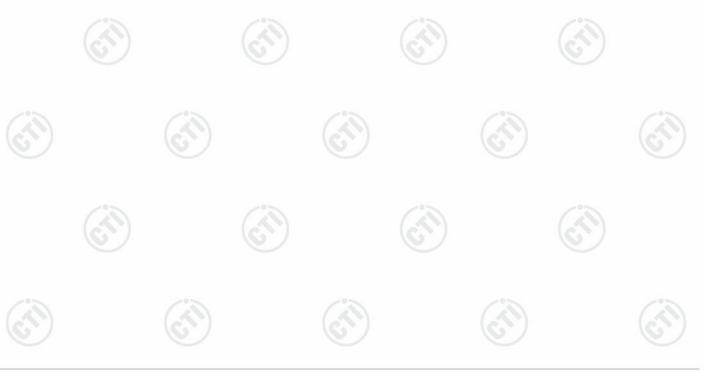
- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.



Page 35 of 57 Report No.: EED32O80175603


Page 36 of 57

Test Data:

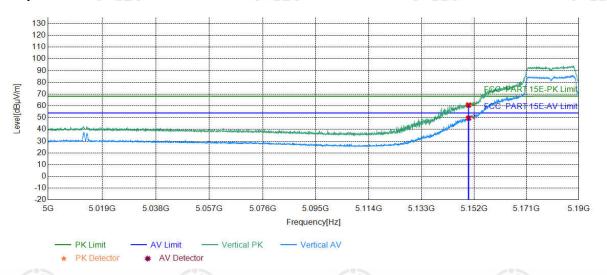

Remark: During the test, the restricted bands above 1G was performed in all modes, only the worst case recorded in the report.

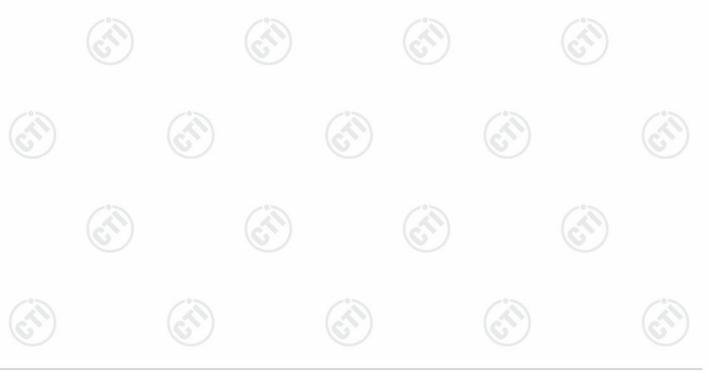
Mode:	802.11 n(HT20) Transmitting	Channel:	5180
Remark:	MIMO		

Test Graph

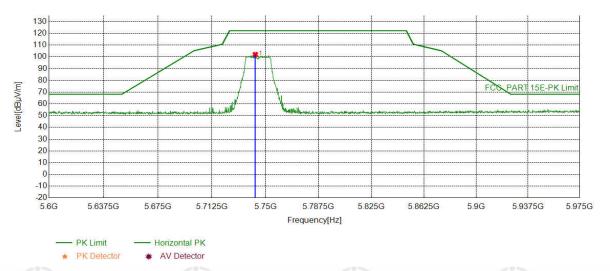


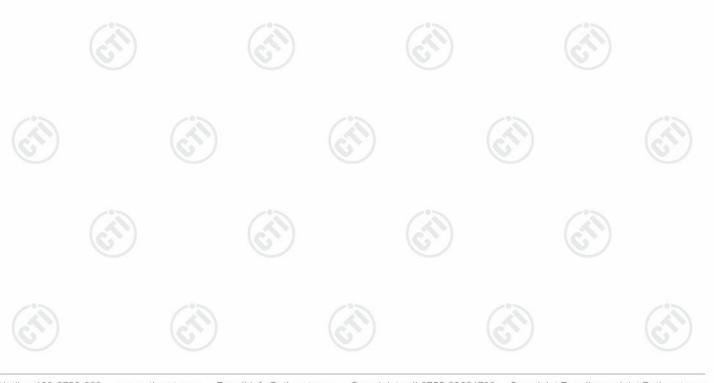
	Suspected List										
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5150.0000	-15.08	76.31	61.23	68.29	7.06	PASS	Horizontal	PK	
	2	5150.0000	-15.08	63.66	48.58	54.00	5.42	PASS	Horizontal	AV	



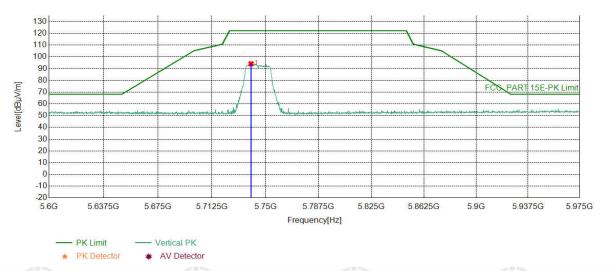


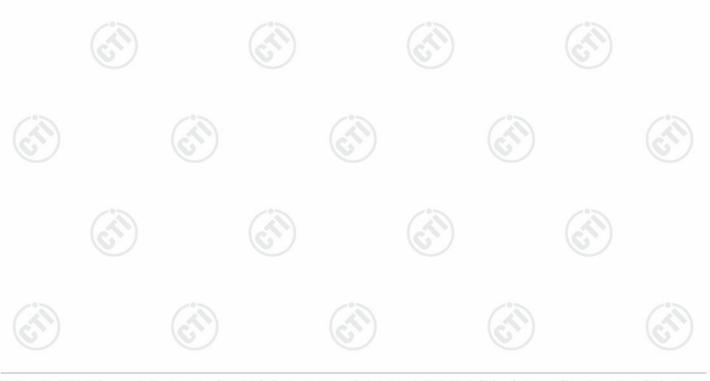
Mode:	802.11 n(HT20) Transmitting	Channel:	5180
Remark:	MIMO		


	-					/ / /						
	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	5150.0000	-15.08	75.75	60.67	68.29	7.62	PASS	Vertical	PK		
3	2	5150.0000	-15.08	64.70	49.62	54.00	4.38	PASS	Vertical	AV		



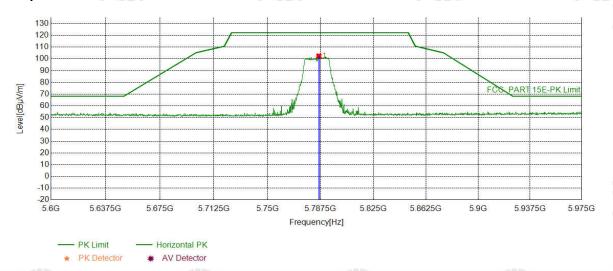
Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:	MIMO		


Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5742.9465	13.84	88.22	102.06	122.20	20.14	PASS	Horizontal	PK		



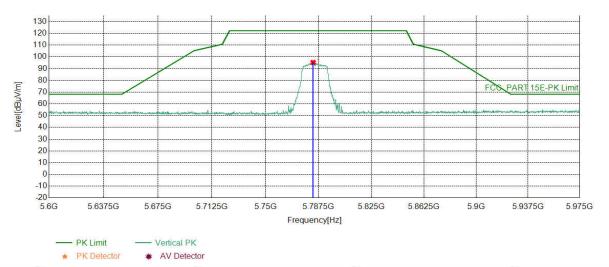
Mode:	802.11 n(HT20) Transmitting	Channel:	5745
Remark:	MIMO		

Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5739.9450	13.84	80.28	94.12	122.20	28.08	PASS	Vertical	PK			

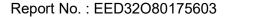

Page 39 of 57

Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:	MIMO		

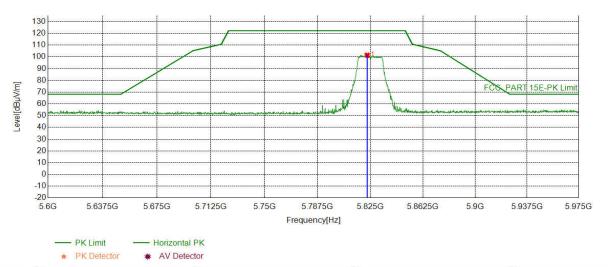
Suspec	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5786.2806	13.92	88.52	102.44	122.20	19.76	PASS	Horizontal	PK		

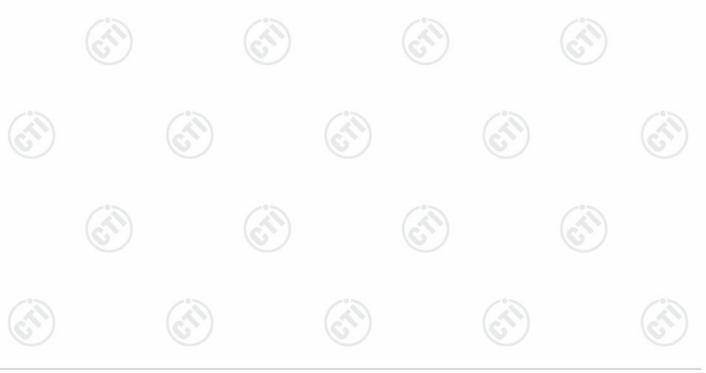


Page 41 of 57


Mode:	802.11 n(HT20) Transmitting	Channel:	5785
Remark:	MIMO		

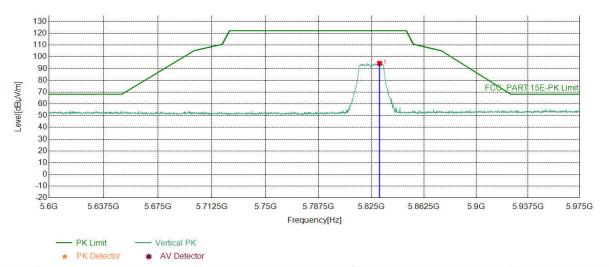
Suspe	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5783.6543	13.91	81.37	95.28	122.20	26.92	PASS	Vertical	PK		





Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:	MIMO		

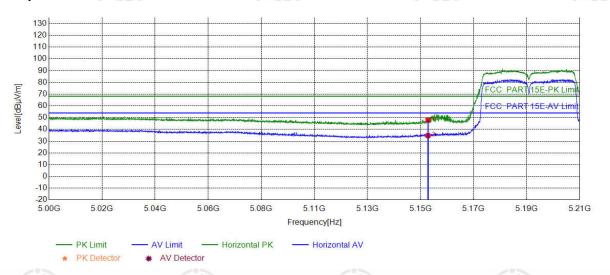
Sus	Suspected List										
N	0	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1		5822.6738	14.02	87.41	101.43	122.20	20.77	PASS	Horizontal	PK	





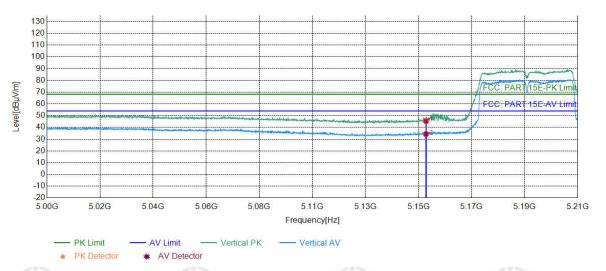
Mode:	802.11 n(HT20) Transmitting	Channel:	5825
Remark:	MIMO		

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5830.7404	14.05	80.47	94.52	122.20	27.68	PASS	Vertical	PK



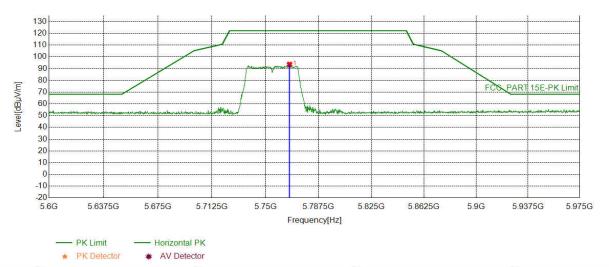
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:	MIMO		

	-					/ / /				
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150.0000	12.36	35.59	47.95	68.20	20.25	PASS	Horizontal	PK
3	2	5150.0000	12.36	22.40	34.76	54.00	19.24	PASS	Horizontal	AV



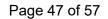
Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:	MIMO		

	27/1				/ / /				
Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150.0000	12.36	33.05	45.41	68.20	22.79	PASS	Vertical	PK
2	5150.0000	12.36	22.06	34.42	54.00	19.58	PASS	Vertical	AV

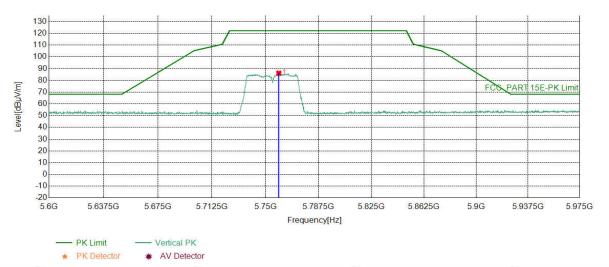





Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:	MIMO		

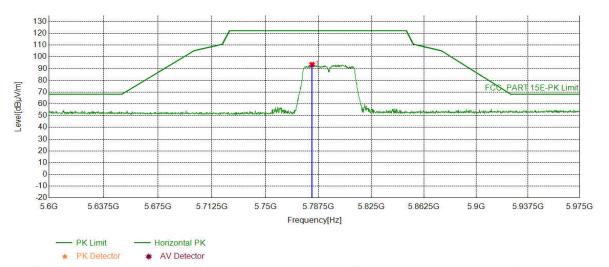


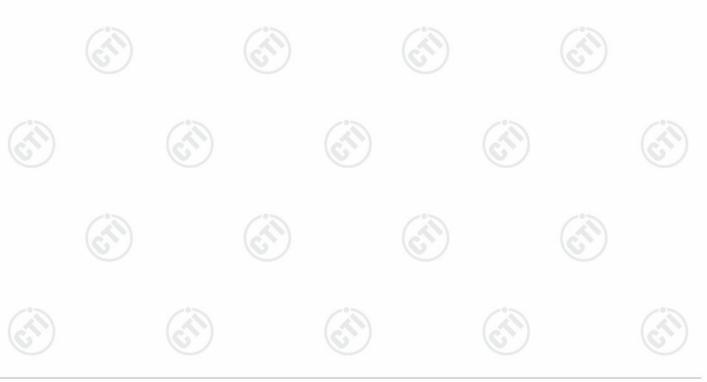
Suspec	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5766.9585	13.88	79.79	93.67	122.20	28.53	PASS	Horizontal	PK



Mode:	802.11 n(HT40) Transmitting	Channel:	5755
Remark:	MIMO		

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5759.4547	13.87	72.28	86.15	122.20	36.05	PASS	Vertical	PK

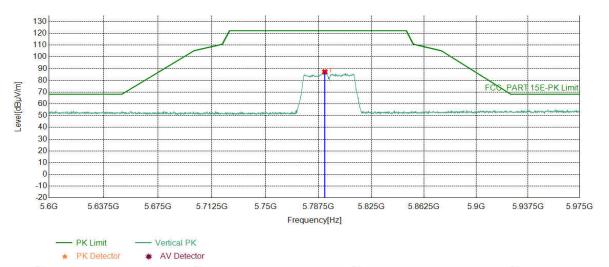


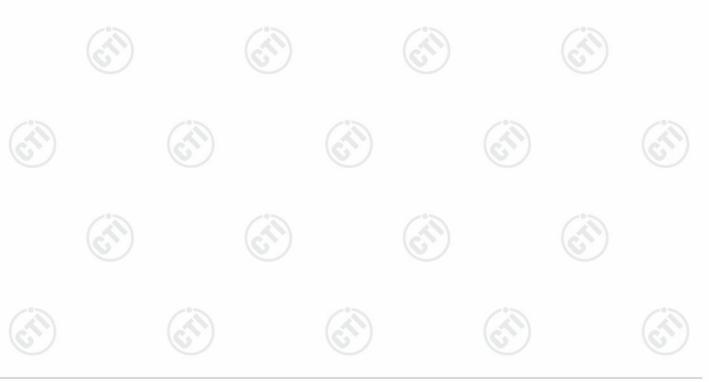


Page 48 of 57

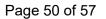
Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:	MIMO		

ng Level	Limit	Manain			
<u> </u>	[dBµV/m]	Margin [dB]	Result	Polarity	Remark
93.50	122.20	28.70	PASS	Horizontal	PK
	1 1 1 1			vi (agh _A /wi) (agh _A /wi) (agi	vì [aghʌ/w] [aghʌ/w] [agì

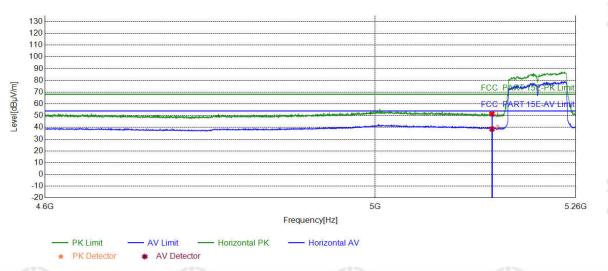


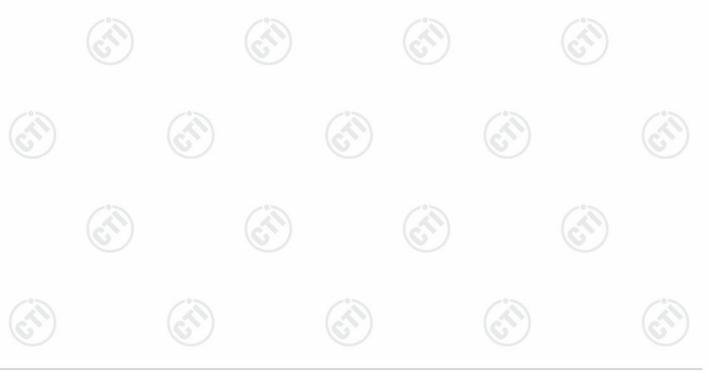


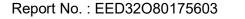
Mode:	802.11 n(HT40) Transmitting	Channel:	5795
Remark:	MIMO		



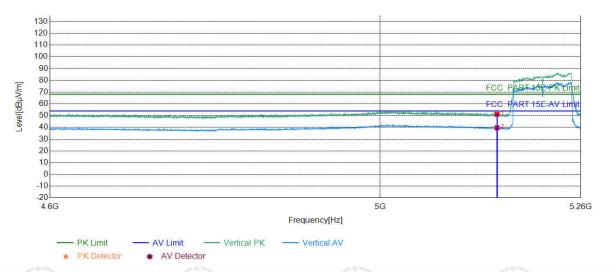
	Suspected List												
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
_	1	5791.9085	13.93	73.32	87.25	122.20	34.95	PASS	Vertical	PK			



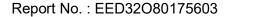



Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:	MIMO		

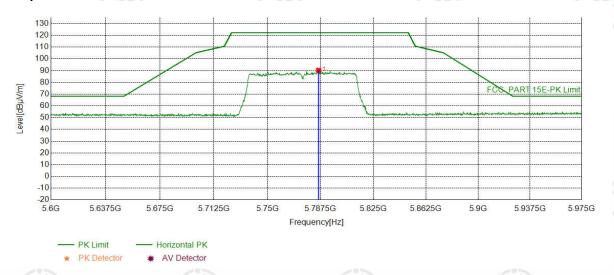
ſ	Suspected List											
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
	1	5150.0000	12.36	39.16	51.52	68.20	16.68	PASS	Horizontal	PK		
3	2	5150.0000	12.36	26.27	38.63	54.00	15.37	PASS	Horizontal	AV		



Page 51 of 57


Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:	MIMO		

	-	201				/ / /			/ A W \				
	Suspected List												
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
	1	5150.0000	12.36	38.82	51.18	68.20	17.02	PASS	Vertical	PK			
8	2	5150.0000	12.36	27.26	39.62	54.00	14.38	PASS	Vertical	AV			



Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:	MIMO		

Suspec	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	5786.0930	13.92	76.35	90.27	122.20	31.93	PASS	Horizontal	PK				

Report No. : EED32O80175603 Page 53 of 57

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5775
Remark:	МІМО		

Test Graph

Suspec	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	5782.9040	13.91	69.32	83.23	122.20	38.97	PASS	Vertical	PK				

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32O80175603

Page 54 of 57

8 Appendix A

Report No.: EED32O80175603

Page 55 of 57

PHOTOGRAPHS OF TEST SETUP

Test model No.: MaxiSys MS906 Pro-TS

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32O80175603 Page 56 of 57

Conducted Emissions Test Setup

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O80175601 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written apProval of CTI, this report can't be reProduced

