

	TEST REPORT	
Product	: AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM	
Trade mark	: AUTEL	
Model/Type reference	: MaxiSys MS906 Pro, MaxiCOM MK906 Pro, MaxiCOM MK906S Pro	
Serial Number	: N/A	
Report Number	: EED32O80174501	
FCC ID	: WQ8-MS906PROV4	
Date of Issue	: Jun. 27, 2022	
Test Standards	: 47 CFR Part 15 Subpart C	
Test result	: PASS	
	Prepared for:	

Autel Intelligent Technology Corp.,Ltd. 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

mark

Reviewed by:

0 Tom Chen

Date of Issue:

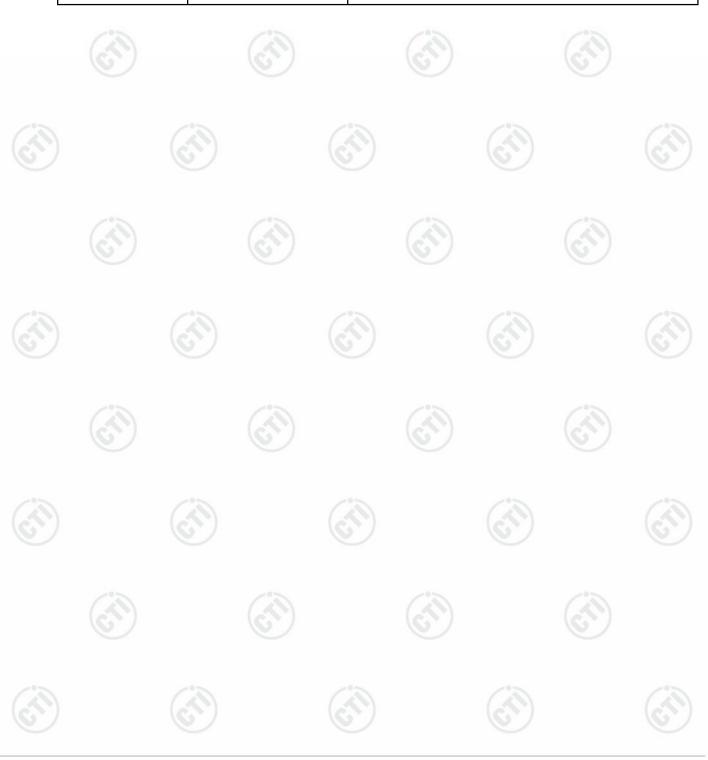
Jun. 27, 2022 Check No.:7923140222

Compiled by:

Javon Ma Aaron Ma

Mark Chen

1 Contents


2 VERSION			
3 TEST SUMMARY			4
4 GENERAL INFORMATION	~~	<u> </u>	5
 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT			5 5 7 8
5 TEST RESULTS AND MEASUREMENT DATA			
 5.1 ANTENNA REQUIREMENT. 5.2 AC POWER LINE CONDUCTED EMISSIONS. 5.3 MAXIMUM CONDUCTED OUTPUT POWER. 5.4 20DB EMISSION BANDWIDTH. 5.5 CARRIER FREQUENCY SEPARATION. 5.6 NUMBER OF HOPPING CHANNEL. 5.7 TIME OF OCCUPANCY. 5.8 BAND EDGE MEASUREMENTS. 5.9 CONDUCTED SPURIOUS EMISSIONS. 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE. 5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BAND 			
6 APPENDIX A			
7 PHOTOGRAPHS OF TEST SETUP			50
8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAI	LS	2	

Version	(C)	(G^{*})	
Version No.	Date	Description	
00	Jun. 27, 2022	Original	

3 Test Summary

Test Item	Test Requirement	Result
	47 CFR Part 15, Subpart C Section	
Antenna Requirement	15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were Provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.: MaxiSys MS906 Pro, MaxiCOM MK906 Pro, MaxiCOM MK906S Pro Only the model MaxiSys MS906 Pro was tested. Their electrical circuit design, layout, components used and internal wiring are identical, only the color and model names are different due to difference agent and

internal wiring are identical, only the color and model names are different due marketing purposes.

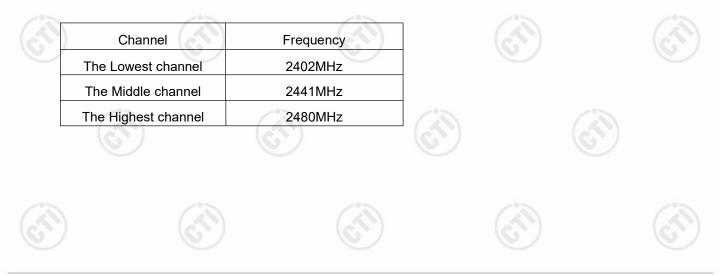
4 General Information

4.1 Client Information

	Applicant:	Autel Intelligent Technology Corp.,Ltd.
-	Address of Applicant:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China
5	Manufacturer:	Autel Intelligent Technology Corp.,Ltd.
9	Address of Manufacturer:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China
	Factory:	Autel Intelligent Technology Corp., Ltd. Guangming Branch
	Address of Factory:	7F&6F, East Wing, Building 2, and 6F of Electronical Building, Yanxiang Industrial Zone, Gaoxin Rd, Dongzhou Community of Guangming New District, Shenzhen

4.2 General Description of EUT

~ .	Product Name:	AUTOMOTIVE DIAGNOSIS & ANALYSIS SYSTEM				
	Model No.:	MaxiSys MS906 Pro, MaxiCOM MK906 Pro, MaxiCOM MK906S Pro	(2)			
2	Test Model No.:	MaxiSys MS906 Pro	\sim			
	Trade Mark:	AUTEL				
	Product Type:	Portable				
	Operation Frequency:	2402MHz~2480MHz				
	Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)				
	Modulation Type:	GFSK, π/4DQPSK, 8DPSK				
	Number of Channel:	79				
	Hopping Channel Type:	Adaptive Frequency Hopping systems				
9	Test Software of EUT:	CSR BlueSuite 2.6.2	5			
	Antenna Type:	Chip Antenna				
	Antenna Gain:	0.5dBi				
	Power Supply:	Adapter: Model:GME36E-120300FDR Input:100-240V~50/60Hz 1.2A Output:12V3.0A 36.0W				
	Test Voltage:	AC 120V				
	Sample Received Date:	Feb. 15, 2022	0			
9	Sample tested Date:	Feb. 15, 2022 to Mar. 22, 2022	Ď			

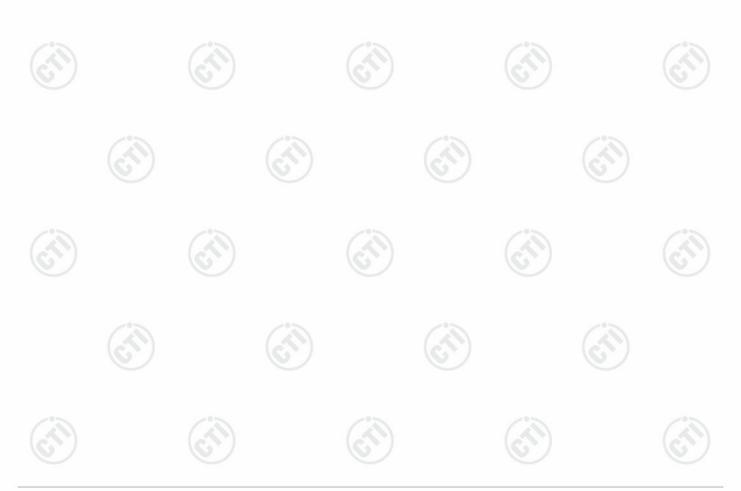


Page 6 of 68

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:



4.3 Test Configuration

EUT Test Software Settings	s:						
Software:	CSR BlueSuite 2.6	CSR BlueSuite 2.6.2 (manufacturer declare)					
EUT Power Grade:	Class2 (Power lev selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)					
Use test software to set the lo transmitting of the EUT.	owest frequency, the m	iddle frequency and the	highest frequency keep				
Mode	Cha	annel	Frequency(MHz)				
	C c	HO	2402				
DH1/DH3/DH5	С	H39	2441				
	С	H78	2480				
	C	HO	2402				
2DH1/2DH3/2DH5	С	H39	2441				
	С	H78	2480				
	C	HO	2402				
3DH1/3DH3/3DH5	C	H39	2441				
(6)	C	H78	2480				

4.4 **Test Environment Operating Environment: Radiated Spurious Emissions:** Temperature: 22~25.0 °C 50~55 % RH Humidity: Atmospheric Pressure: 1010mbar **Conducted Emissions:** Temperature: 22~25.0 °C Humidity: 50~55 % RH Atmospheric Pressure: 1010mbar **RF Conducted:** Temperature:

4.5 Description of Support Units

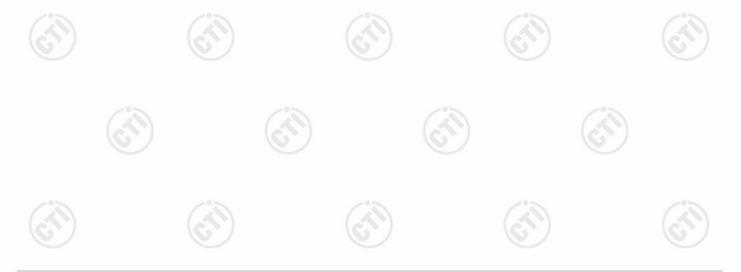
Atmospheric Pressure:

The EUT has been tested with associated equipment below. support equipment

22~25.0 °C 50~55 % RH

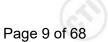
1010mbar

- appere e despisi			I	
Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	CTI

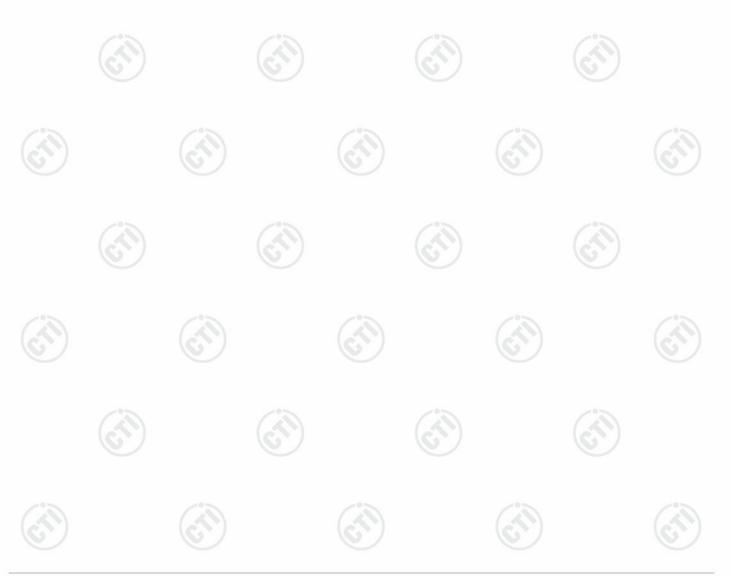

4.6 Test Location

Humidity:

All tests were performed at:


Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	(S) (S)	3.3dB (9kHz-30MHz)
3 Radiated Spur	Dedicted Sourceus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction omission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4.8 Equipment List

RF test system						
Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Keysight	N9010A	MY54510339	12-24-2021	12-23-2022		
Keysight	N5182B	MY53051549	12-24-2021	12-23-2022		
Agilent	N5181A	MY46240094	12-24-2021	12-23-2022		
Keysight	E3642A	MY56376072	12-24-2021	12-23-2022		
R&S	OSP120	101374	12-24-2021	12-23-2022		
JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022		
R&S	CMW500	120765	08-04-2021	08-03-2022		
Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022		
biaozhi	HM10	1804186	06-24-2021	06-23-2022		
JS Tonscend	JS1120-3	2.6.77.0518				
	Keysight Keysight Agilent Agilent Keysight R&S JS Tonscend R&S Dong Guang Qin Zhuo biaozhi	ManufacturerMode No.KeysightN9010AKeysightN5182BAgilentN5181AKeysightE3642AR&SOSP120JS TonscendJS0806-2R&SCMW500Dong Guang Qin ZhuoLK-80GAbiaozhiHM10	ManufacturerMode No.Serial NumberKeysightN9010AMY54510339KeysightN5182BMY53051549AgilentN5181AMY46240094KeysightE3642AMY56376072R&SOSP120101374JS TonscendJS0806-2158060006R&SCMW500120765Dong Guang Qin ZhuoLK-80GAQZ20150611879biaozhiHM101804186	Manufacturer Mode No. Serial Number Cal. Date (mm-dd-yyyy) Keysight N9010A MY54510339 12-24-2021 Keysight N5182B MY53051549 12-24-2021 Agilent N5181A MY46240094 12-24-2021 Keysight E3642A MY56376072 12-24-2021 R&S OSP120 101374 12-24-2021 JS Tonscend JS0806-2 158060006 12-24-2021 Dong Guang Qin Zhuo LK-80GA QZ20150611879 12-24-2021 biaozhi HM10 1804186 06-24-2021		

(d)

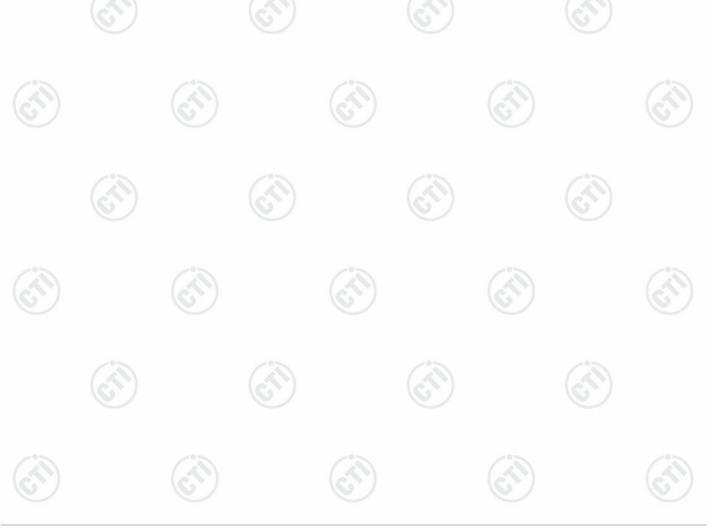
Page 11 of 68

Conducted disturbance Test						
				Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022	
Temperature/ Humidity Indicator	Defu	TH128	1	(<u>~</u>)-	(5	
LISN	R&S	ENV216	100098	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Barometer	changchun	DYM3	1188			

	3M Semi-ar	echoic Chamber (2)	- Radiated distu	rbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/24/2019	05/23/2022
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019	05/22/2022
Multi device Controller	maturo	NCD/070/10711112		(2	- 0
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022

		3M full-anechoi		.	
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021 03-01-2022	03-03-2022 02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021 02-23-2022	03-03-2022 02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021 02-23-2022	03-03-2022 02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3	<u> </u>	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(A)	(2
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	(0	s)
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(\mathcal{O})	(ć
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is Prohil 15.247(b) (4) requirement: The conducted output powe antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. In limit specified in paragraph (b) of this section is based on the use of hins that do not exceed 6 dBi. Except as shown in paragraph (c) of this mas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as apPropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Please see Internal photos
The antenna is Chip antenn	a. The best case gain of the antenna is 0.5dBi.

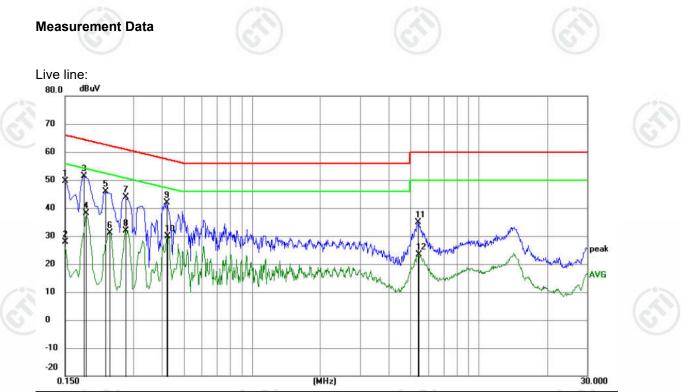
5.2 AC Power Line Conducted Emissions

5.2	AC Power Line Cor	nducted Emissions		
	Test Requirement:	47 CFR Part 15C Section 15.2	07	(\mathcal{C})
	Test Method:	ANSI C63.10: 2013		
	Test Frequency Range:	150kHz to 30MHz		
- 61	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	weep time=auto	150
4	Limit:		Limit (d	BuV)
2		Frequency range (MHz)	Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarithm		(3)
		Shielding Room	AE USN2 + AC Ground Reference Plane	Test Receiver
	Test Procedure:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Ne impedance. The power cab connected to a second LIS reference plane in the sam 	AC power source thro etwork) which Provides les of all other units of N 2, which was bonded	bugh a LISN 1 (Line a 50Ω/50µH + 5Ω linea the EUT were d to the ground
		 measured. A multiple socker power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference with of the EUT shall be 0.4 m f vertical ground reference plane. The LISN unit under test and bonded mounted on top of the grout 	SN Provided the rating ed upon a non-metallic of for floor-standing arr bund reference plane, h a vertical ground refe rom the vertical ground lane was bonded to the 1 was placed 0.8 m fro to a ground reference nd reference plane. Th	of the LISN was not table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was
ŝ		between the closest points the EUT and associated ec 5) In order to find the maximu equipment and all of the int	uipment was at least 0 m emission, the relative).8 m from the LISN 2. e positions of

Report No. : EED32O80174501

Page 15 of 68

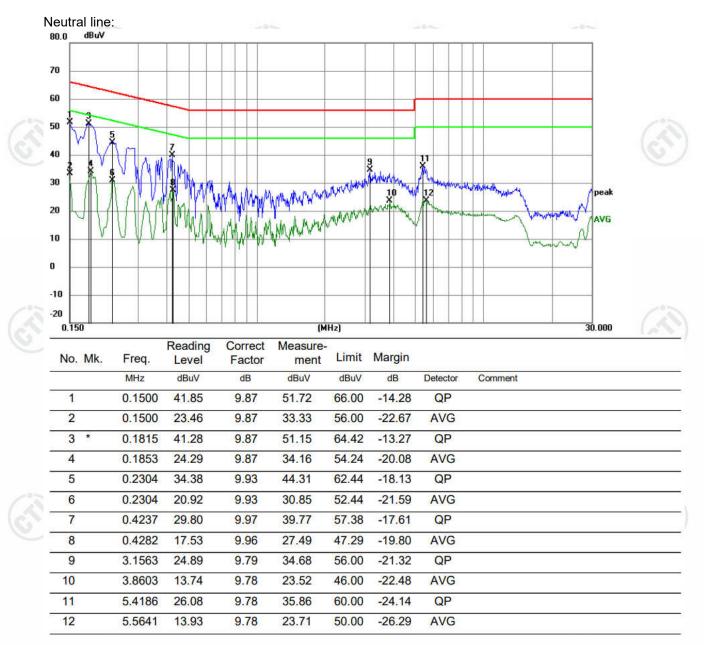
G	Test Results:	Pass			
	Final Test Mode:	lowest chann	-scan, find the DF lel is the worst case st case is recorded		modulation at the
	Exploratory Test Mode:		transmitting mode he lowest, middle,	with all kind of modulation a high channel.	nd all kind of
[ANSI C63	8.10: 2013 on condu	ucted measurement.	



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	39.83	9.87	49.70	66.00	-16.30	QP	
2	0.1500	17.92	9.87	27.79	56.00	-28.21	AVG	
3 *	0.1815	41.58	9.87	51.45	64.42	-12.97	QP	
4	0.1860	28.32	9.87	38.19	54.21	-16.02	AVG	
5	0.2265	35.88	9.92	45.80	62.58	-16.78	QP	
6	0.2355	21.22	9.94	31.16	52.25	-21.09	AVG	
7	0.2760	33.88	10.02	43.90	60.94	-17.04	QP	
8	0.2760	21.90	10.02	31.92	50.94	-19.02	AVG	
9	0.4200	31.80	9.97	41.77	57.45	-15.68	QP	
10	0.4245	20.01	9.97	29.98	47.36	-17.38	AVG	
11	5.4150	25.19	9.78	34.97	60.00	-25.03	QP	
12	5.4420	13.54	9.78	23.32	50.00	-26.68	AVG	

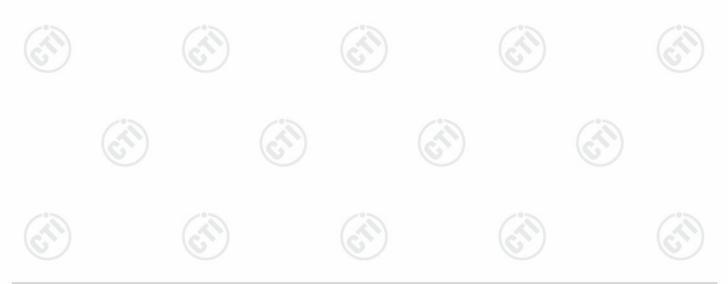
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



5.3 Maximum Conducted Output Power

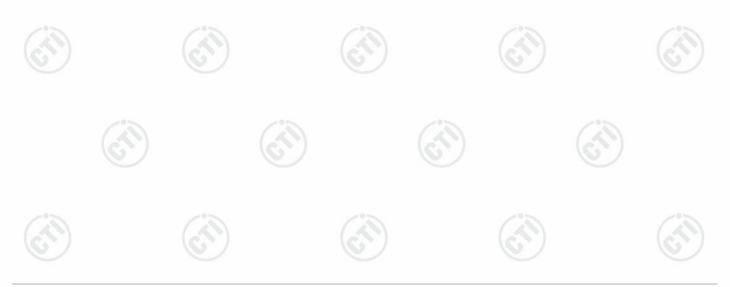
	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
67	Test Setup:	
		Control Computer Supply Forwar Supply Table
13		Remark: Offset=Cable loss+ attenuation factor.
Ś	Test Procedure:	Use the following spectrum analyzer settings: Span = apProximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
13	Limit:	21dBm
S)	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.

5.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
	Test Method:	ANSI C63.10:2013				
ँँ	Test Setup:	Control Control Computer Power Power				
2		Remark: Offset=Cable loss+ attenuation factor.				
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = apProximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
	Limit:	NA				
5	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type				
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.				
	Test Results:	Refer to Appendix A				

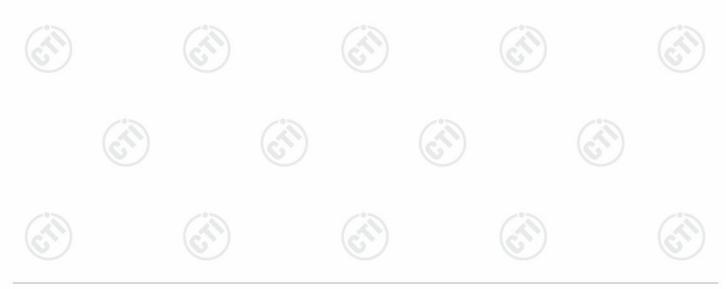
5.5 Carrier Frequency Separation

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
C	Test Setup:	Control Computer Computer Power Suppl Power Suppl TEMPERATURE CABNET Table
~		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to apProximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode	: Hopping transmitting with all kind of modulation and all kind of data type
6	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
2	Test Results:	Refer to Appendix A



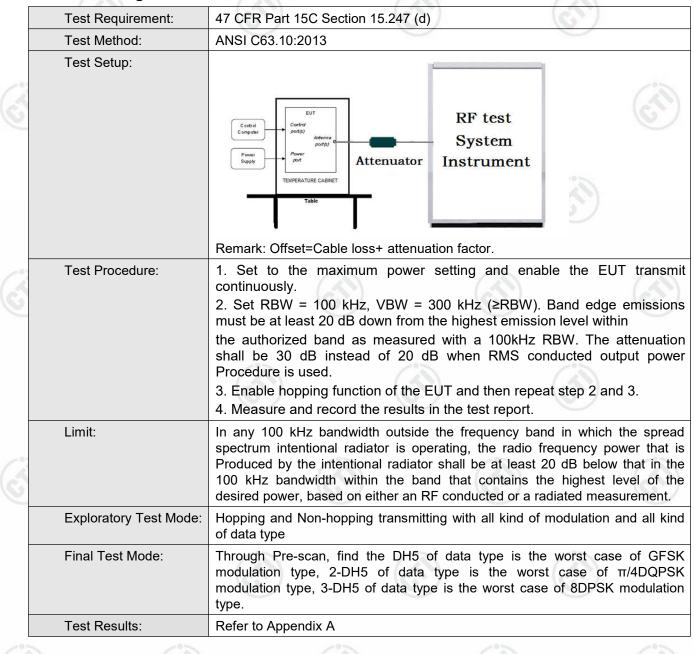
5.6 Number of Hopping Channel

(2)			
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Control Congruer Power Supply Table RF test System Instrument		
	Remark: Offset=Cable loss+ attenuation factor.		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by R cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmic continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequence band of operation; set the RBW to less than 30% of the channel spacin 		
	or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.		
3	5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.		
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.		
Test Mode:	Hopping transmitting with all kind of modulation		
Test Results:	Refer to Appendix A		



5.7 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
3	Test Setup:	Control Computer Computer Power Power Supple Table RF test System Instrument
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor.1. The RF output of EUT was connected to the spectrum analyzer by RF
5		 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace =
		max hold. 5. Measure and record the results in the test report.
3	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix A
	G	



5.8 **Band edge Measurements**

Hotline:400-6788-333

5.9 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d	
	Test Method:	ANSI C63.10:2013	
	Test Setup:	Control Computer Power Supply Tel/Pewer Supply Tel/Pewer Tel/Pewer Table	RF test System Instrument
		Remark: Offset=Cable loss+ attenua	ation factor.
	Test Procedure:	 The RF output of EUT was concable and attenuator. The path loss measurement. Set to the maximum power continuously. Set RBW = 100 kHz, VBW = 300 harmonics / spurs must be at least level within the authorized band as referenced. 	nected to the spectrum analyzer by RF was compensated to the results for each setting and enable the EUT transmit 0kHz, scan up through 10th harmonic. All t 20 dB down from the highest emission measured with a 100kHz RBW.
Ś	Limit:	spectrum intentional radiator is ope Produced by the intentional radiator 100 kHz bandwidth within the ban	the frequency band in which the spread erating, the radio frequency power that is shall be at least 20 dB below that in the d that contains the highest level of the er an RF conducted or a radiated
	Exploratory Test Mode:	Non-hopping transmitting with all kir	nd of modulation and all kind of data type
	Final Test Mode:	modulation type, 2-DH5 of data	of data type is the worst case of GFSK type is the worst case of $\pi/4DQPSK$ e is the worst case of 8DPSK modulation

Page 25 of 68

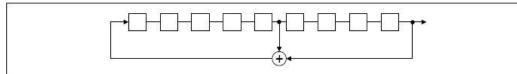
5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

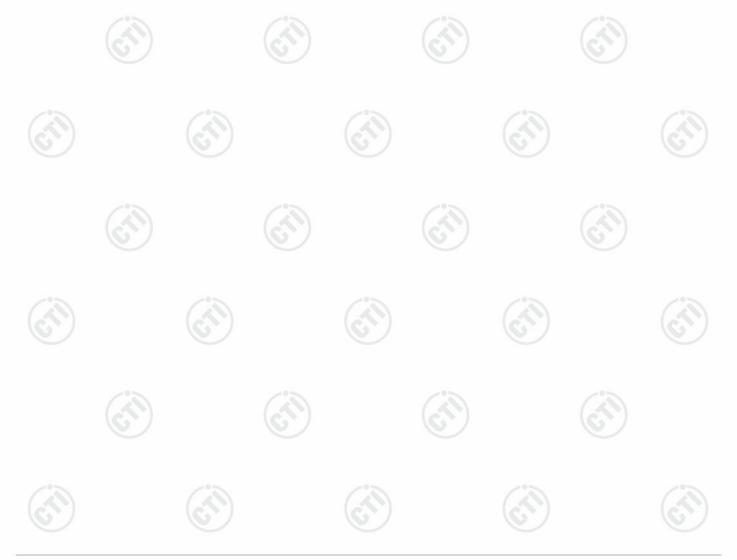
- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:										
20 62 46 77 7 64 8 73 16 75 1										
Each frequency used equally on the average by each transmitter.										
According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.										
Compliance for section 15.247(g)										
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the										

Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

Report No. : EED32O80174501


Page 26 of 68

hopping frequency system.

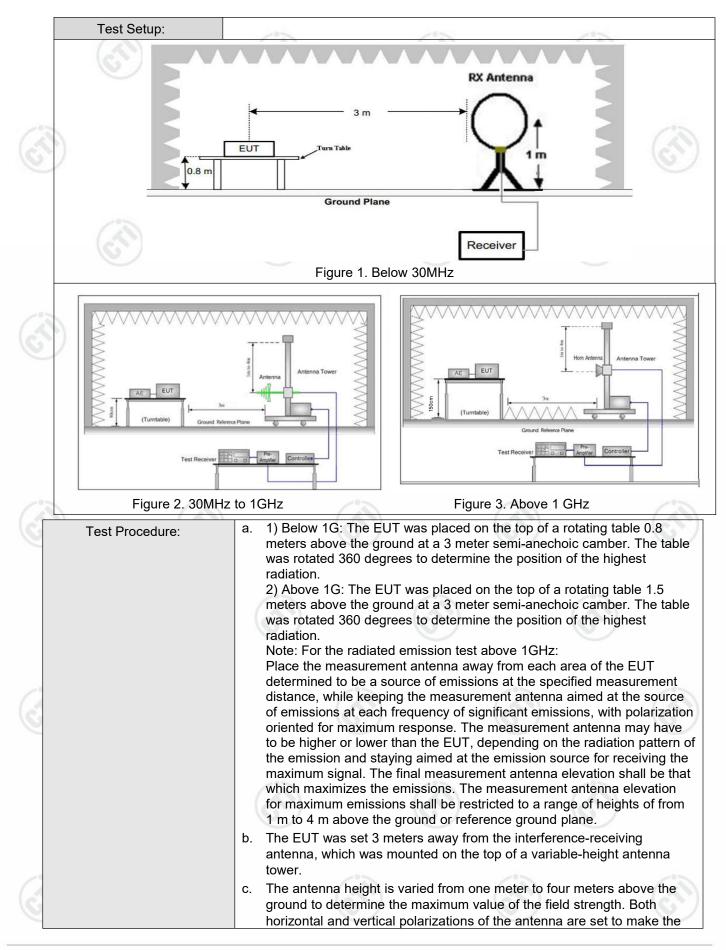
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

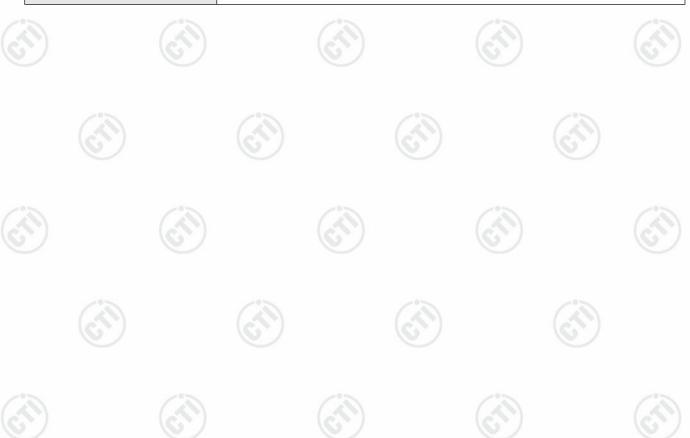
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.11 Radiated Spurious Emission & Restricted bands

			10.2		10.2	
	Test Requirement:	47 CFR Part 15C Section	on 15.209 and 15	.205	e	
	Test Method:	ANSI C63.10: 2013				
- 0 - 0	Test Site:	Measurement Distance	: 3m (Semi-Anecl	noic Chaml	ber)	100
8	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
2		0.009MHz-0.090MH	z Peak	10kHz	30kHz	Peak
		0.009MHz-0.090MH	z Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	z Quasi-peak	10kHz	30kHz	Quasi-peak
		0.110MHz-0.490MH	z Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MH	z Average	10kHz	30kHz	Average
		0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
		30MHz-1GHz	z 300kHz	Peak		
1			Peak	1MHz	3MHz	Peak
3		Above 1GHz	Peak			Average
	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	2400/F(kHz)	-	-/3	300
		0.490MHz-1.705MHz	24000/F(kHz)	-	(c)	30
		1.705MHz-30MHz	30	-		30
		30MHz-88MHz	100	40.0	Quasi-peak	3
		88MHz-216MHz	150	43.5	Quasi-peak	3
		216MHz-960MHz	200	46.0	Quasi-peak	3
2		960MHz-1GHz	500	54.0	Quasi-peak	3
		Above 1GHz	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	above the maxir equipment under	num permi test. This p	tted average	emission limit

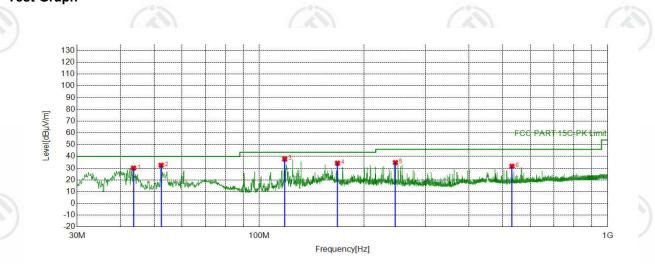


Page 28 of 68



Report No. : EED32O80174501

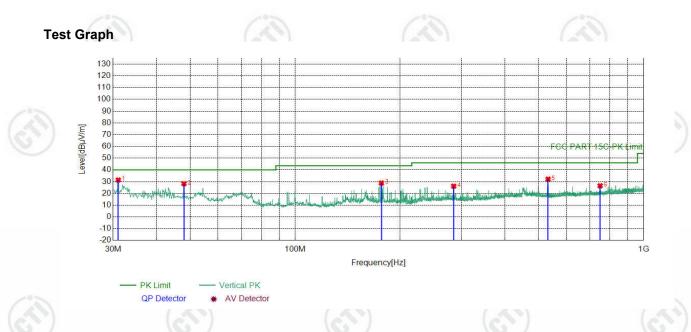
		measurement.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
Q		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		 Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
		 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		i. Repeat above Procedures until all frequencies measured was complete.
	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
		Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
		Only the worst case is recorded in the report.
	Test Results:	Pass



Page 30 of 68

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.



	Sueno	cted List		1.0.0		1.02.02	· · · · · · · · · · · · · · · · · · ·		1.12.12.1	
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	43.5814	-17.40	47.48	30.08	40.00	9.92	PASS	Horizontal	PK
6	2	52.3122	-17.48	50.01	32.53	40.00	7.47	PASS	Horizontal	PK
	3	118.3758	-19.80	57.55	37.75	43.50	5.75	PASS	Horizontal	PK
	4	167.7538	-20.61	54.85	34.24	43.50	9.26	PASS	Horizontal	PK
	5	246.0406	-16.65	51.42	34.77	46.00	11.23	PASS	Horizontal	PK
	6	531.5402	-10.22	41.85	31.63	46.00	14.37	PASS	Horizontal	PK

Page 31 of 68

Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	31.0671	-19.74	51.15	31.41	40.00	8.59	PASS	Vertical	PK
2	47.9468	-17.17	45.47	28.30	40.00	11.70	PASS	Vertical	PK
3	176.7757	-20.02	48.88	28.86	43.50	14.64	PASS	Vertical	PK
4	285.0385	-15.83	42.02	26.19	46.00	19.81	PASS	Vertical	PK
5	531.9282	-10.21	42.34	32.13	46.00	13.87	PASS	Vertical	PK
6	750.1030	-7.00	33.49	26.49	46.00	19.51	PASS	Vertical	PK

Radiated Spurious Emission above 1GHz:

Mode:			GFSK Trans	mitting			Channe	l:	2402 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1294.0294	1.04	41.88	42.92	74.00	31.08	Pass	н	PK		
2	1761.6762	3.15	40.37	43.52	74.00	30.48	Pass	Н	PK		
3	4804.1203	-16.23	57.26	41.03	74.00	32.97	Pass	Н	PK		
4	7166.2778	-11.75	53.06	41.31	74.00	32.69	Pass	Н	PK		
5	9225.4150	-7.90	51.42	43.52	74.00	30.48	Pass	Н	PK		
6	13304.6870	-3.43	50.26	46.83	74.00	27.17	Pass	Н	PK		
7	1238.0238	0.90	41.57	42.47	74.00	31.53	Pass	V	PK		
8	2048.9049	4.71	40.04	44.75	74.00	29.25	Pass	V	PK		
9	4804.1203	-16.23	58.36	42.13	74.00	31.87	Pass	V	PK		
10	6910.2607	-11.83	52.65	40.82	74.00	33.18	Pass	V	PK		
11	8518.3679	-10.51	58.38	47.87	74.00	26.13	Pass	V	PK		
12	13245.6830	-3.27	49.90	46.63	74.00	27.37	Pass	V	PK		
1							1				

N	/lode:			GFSK Transmitting				Channel:		2441 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1269.2269	0.98	41.27	42.25	74.00	31.75	Pass	Н	PK
	2	1878.0878	3.87	40.61	44.48	74.00	29.52	Pass	Н	PK
	3	4882.1255	-16.21	58.60	42.39	74.00	31.61	Pass	Н	PK
3	4	6854.2570	-12.10	52.64	40.54	74.00	33.46	Pass	Н	PK
	5	9284.4190	-7.94	51.69	43.75	74.00	30.25	Pass	Н	PK
-	6	14389.7593	1.05	47.75	48.80	74.00	25.20	Pass	Н	PK
	7	1220.8221	0.85	41.72	42.57	74.00	31.43	Pass	V	PK
	8	1807.0807	3.33	40.61	43.94	74.00	30.06	Pass	V	PK
	9	4255.0837	-17.58	67.16	49.58	74.00	24.42	Pass	V	PK
	10	6375.2250	-12.87	57.39	44.52	74.00	29.48	Pass	V	PK
	11	8522.3682	-10.51	55.79	45.28	74.00	28.72	Pass	V	PK
	12	12499.6333	-4.83	51.18	46.35	74.00	27.65	Pass	V	PK

CTI华测检测 Report No. : EED32O80174501

Page 33 of 68

	Mode:			GFSK Tra	nsmitting			Channel:		2480 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1116.6117	0.84	41.77	42.61	74.00	31.39	Pass	н	PK
-	2	1780.4780	3.21	41.01	44.22	74.00	29.78	Pass	н	PK
	3	4960.1307	-15.97	57.36	41.39	74.00	32.61	Pass	н	PK
_	4	6657.2438	-12.63	53.68	41.05	74.00	32.95	Pass	н	PK
Ī	5	9199.4133	-7.88	52.53	44.65	74.00	29.35	Pass	н	PK
	6	12419.6280	-4.72	51.18	46.46	74.00	27.54	Pass	н	PK
	7	1193.8194	0.80	41.49	42.29	74.00	31.71	Pass	V	PK
	8	1782.6783	3.22	40.09	43.31	74.00	30.69	Pass	V	PK
	9	4960.1307	-15.97	58.16	42.19	74.00	31.81	Pass	V	PK
	10	8497.3665	-10.56	57.70	47.14	74.00	26.86	Pass	V	PK
	11	11927.5952	-5.67	52.55	46.88	74.00	27.12	Pass	V	PK
	12	13716.7144	-1.75	50.07	48.32	74.00	25.68	Pass	V	PK
5	/		37/		<u>(G)</u>			37)		67
	Mode:			π/4DQPSk	<pre>K Transmitting</pre>	g	Channel:	2402 MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1268.0268	0.98	42.51	43.49	74.00	30.51	Pass	Н	PK
	2	2036.9037	4.67	40.31	44.98	74.00	29.02	Pass	Н	PK
	3	4261.0841	-17.54	65.49	47.95	74.00	26.05	Pass	Н	PK
in and	4	5870.1913	-13.60	53.84	40.24	74.00	33.76	Pass	Н	PK
	5	7700.3134	-11.04	53.05	42.01	74.00	31.99	Pass	Н	PK
5	6	10290.4860	-6.52	50.69	44.17	74.00	29.83	Pass	Н	PK
	7	1311.2311	1.10	41.67	42.77	74.00	31.23	Pass	V	PK
	8	1869.2869	3.80	40.17	43.97	74.00	30.03	Pass	V	PK
	9	4260.0840	-17.55	66.02	48.47	74.00	25.53	Pass	V	PK
	10	5797.1865	-13.58	54.29	40.71	74.00	33.29	Pass	V	PK
	11	8516.3678	-10.52	54.33	43.81	74.00	30.19	Pass	V	PK
	12	11941.5961	-5.59	51.33	45.74	74.00	28.26	Pass	V	PK

CTI 华测检测 Report No.: EED32080174501

Page 34 of 68

	Mode	:		π/4DQPSk	<pre>K Transmitting</pre>]		Channel:		2441 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1292.4292	1.04	42.04	43.08	74.00	30.92	Pass	н	PK
2	2	1836.0836	3.55	40.79	44.34	74.00	29.66	Pass	Н	PK
	3	4262.0841	-17.53	65.03	47.50	74.00	26.50	Pass	Н	PK
2	4	6009.2006	-12.98	52.92	39.94	74.00	34.06	Pass	Н	PK
	5	9186.4124	-7.99	51.28	43.29	74.00	30.71	Pass	Н	PK
	6	13195.6797	-3.13	50.22	47.09	74.00	26.91	Pass	Н	PK
	7	1201.0201	0.80	42.13	42.93	74.00	31.07	Pass	V	PK
	8	1763.2763	3.16	40.78	43.94	74.00	30.06	Pass	V	PK
	9	4266.0844	-17.50	67.90	50.40	74.00	23.60	Pass	V	PK
	10	6549.2366	-12.76	53.35	40.59	74.00	33.41	Pass	V	PK
	11	8531.3688	-10.49	54.56	44.07	74.00	29.93	Pass	V	PK
	12	13669.7113	-1.73	48.20	46.47	74.00	27.53	Pass	V	PK
1			57		GT)			57		67

	Mode	:		π/4DQPSł	< Transmitting	g		Channel:		2480 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Γ	1	1238.0238	0.90	41.49	42.39	74.00	31.61	Pass	Н	PK
	2	1640.0640	2.55	41.02	43.57	74.00	30.43	Pass	Н	PK
	3	4261.0841	-17.54	65.22	47.68	74.00	26.32	Pass	Н	PK
	4	6053.2035	-13.06	52.87	39.81	74.00	34.19	Pass	Н	PK
	5	9146.4098	-8.31	51.28	42.97	74.00	31.03	Pass	Н	PK
	6	13204.6803	-3.13	50.29	47.16	74.00	26.84	Pass	Н	PK
	7	1145.0145	0.83	42.12	42.95	74.00	31.05	Pass	V	PK
Γ	8	1665.6666	2.72	40.55	43.27	74.00	30.73	Pass	V	PK
	9	4254.0836	-17.59	66.67	49.08	74.00	24.92	Pass	V	PK
	10	6636.2424	-12.70	57.09	44.39	74.00	29.61	Pass	V	PK
	11	8500.3667	-10.55	56.63	46.08	74.00	27.92	Pass	V	PK
	12	11345.5564	-6.40	51.37	44.97	74.00	29.03	Pass	V	PK

