Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ=0° ### f=600 MHz, TEM ### f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## **Conversion Factor Assessment** f=750 MHz,WGLS R9(H_convF) f=2450 MHz,WGLS R26(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7591 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | | |---|------------|--| | Connector Angle (°) | 67.2 | | | Mechanical Surface Detection Mode | enabled | | | Optical Surface Detection Mode | disable | | | Probe Overall Length | 337mm | | | Probe Body Diameter | 10mm | | | Tip Length | 9mm | | | Tip Diameter | 2.5mm | | | Probe Tip to Sensor X Calibration Point | 1mm | | | Probe Tip to Sensor Y Calibration Point | 1mm | | | Probe Tip to Sensor Z Calibration Point | 1mm | | | Recommended Measurement Distance from Surface | 1.4mm | | In Collaboration with Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn 中国认可 **CALIBRATION CNAS L0570** Client: CTI Certificate No: 721-60559 | | | - Crumcat | e No. 221-00559 | | |---|-------------------|---|---|--| | CALIBRATION | CERTIFIC | ATE | | | | Object | DAE4 - SN: 1458 | | | | | Calibration Procedure(s | FF-2 | Z11-002-01
pration Procedure for the Data Acqui
Ex) | sition Electronics | | | Calibration date: | Janu | nuary 04, 2022 | | | | This calibration Certificon measurements(SI). The pages and are part of the | measurements ar | e traceability to national standards, when the uncertainties with confidence prob | ich realize the physical units o
pability are given on the following | | | All calibrations have b humidity<70%. | een conducted ir | n the closed laboratory facility: enviro | nment temperature(22±3)°C and | | | Calibration Equipment u | sed (M&TE critica | l for calibration) | | | | Primary Standards | ID# C | al Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | Process Calibrator 753 | 1971018 | 15-Jun-21 (CTTL, No.J21X04465) | Jun-22 | | | | Name | Function | Signature | | | Calibrated by: | Yu Zongying | SAR Test Engineer | Smoth | | | Reviewed by: | Lin Hao | SAR Test Engineer | 献为 | | | Approved by: | Qi Dianyuan | SAR Project Leader | | | Issued: January 06, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60559 Page 1 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z21-60559 Page 2 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | 7 | |---------------------|-----------------------------------|-----------------------|-----------------------| | High Range | 404.458 ± 0.15% (k=2) | 404.427 ± 0.15% (k=2) | 404.674 ± 0.15% (k=2) | | Low Range | $3.99150 \pm 0.7\% \text{ (k=2)}$ | 2 00000 | 3.96069 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 334° + 1 ° | |---|------------| | | | In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client E-mail: cttl@chinattl.com CTI Tel: +86-10-62304633-2079 Certificate No: Z21-60013 ### **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 959 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: January 12, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | O-1 D-1- (O 17) | | |-------------------------|------------|--|-----------------------| | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN 7600 | 30-Nov-20(CTTL-SPEAG,No.Z20-60421) | Nov-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | Calibrated by: Name **Function** Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: January 15, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60013 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60013 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | Training aradion, as fair as | not given on page 1. | | |------------------------------|--------------------------|-------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5$ mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | and the state of t | | | | |--|-----------------|--------------|------------------| | | Temperature | Permittivity | Conductivity | | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.78 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | | D magnife with 11 1 701 | | | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|-----------------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 18.7 % (<i>k</i> =2) | # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.7Ω+ 1.34jΩ | |--------------------------------------|---------------| | Return Loss | - 26.6dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | | |----------------------------------|----------| | (one direction) | 1.065 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured | hv | | |--------------|----|-------| | | | SPEAG | | | | | ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 959 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.783$ S/m; $\epsilon_r = 40.08$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN7600; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: 2020-11-30 Date: 01.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.29 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.89 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 47.5% Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg # Impedance Measurement Plot for Head TSL