Test of PakSense Inc. Ultra Wireless - Label

To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: PAKS01-A8 Rev A

Test Report Serial No.: PAKS01-A8 Rev A

This report supersedes: None

Applicant: PakSense Inc.

5256 Fairview Ave

Boise

Idaho 83714 USA

Product Function: Accumulation of remote

Time/Temperature data

Copy No: pdf Issue Date: 30th November 2008

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Serial #: PAKS01-A8 Rev A **Issue Date:** 30th November 2008

Page: 3 of 62

This page has been left intentionally blank

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 4 of 62

TABLE OF CONTENTS

AC	CCREDITATION & LISTINGS	5
1.	TEST RESULT CERTIFICATE	8
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	9
	2.1. Normative References	
	2.2. Test and Uncertainty Procedures	
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	
•	3.1. Technical Details	
	3.2. Scope of Test Program	
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports	
	3.6. Test Configurations	
	3.7. Equipment Modifications	
	3.8. Deviations from the Test Standard	
	3.9. Subcontracted Testing or Third Party Data	14
4.	TEST SUMMARY	15
5.	TEST RESULTS	17
	5.1. Device Characteristics	
	5.1.1. 6 dB and 99 % Bandwidth	17
	5.1.2. Peak Output Power	22
	5.1.3. Peak Power Spectral Density	28
	5.1.4. Maximum Permissible Exposure	
	5.1.5. Conducted Spurious Emissions	
	5.1.6. Radiated Emissions	
	5.1.7. AC Wireline Conducted Emissions (150 kHz – 30 MHz). Error! Bookmark
	not defined.	
6.	PHOTOGRAPHS	58
	6.1. Radiated Emissions (>1 GHz)	
	6.2. Radiated Emissions (<1 GHz)	
	6.3. AC Wireline Emissions (150 kHz - 30 MHz) Error! Boo	
	0.4. O I M T 4. O - 4. I I -	~~
	6.4. General Measurement Test Set-Up	60

Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 5 of 62

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

ACCREDITED LABORATORY

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-LAF Communiqué dated 18 June 2005).

Presented this 26th day of February 2008.

President
For the Accreditation Council
Certificate Number 2381.01
Valid to November 30, 2009

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 6 of 62

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: 102167

Canada

Industry Canada (IC) Listing #: 4143A-2

RECOGNITION

APEC MRA (Asia-Pacific Economic Community Mutual Recognition Agreement)

Conformity Assessment Body (CAB) - MiCOM Labs

Test data generated by MiCOM Labs is accepted in the following countries under the APEC MRA.

Country	Recognition Body	Phase	CAB Identification
			No.
Australia	Australian Communications and Media Authority (ACMA)	l	
Hong	Office of the Telecommunication Authority	I	
Kong	(OFTA)		
Korea	Ministry of Information and Communication	ı	
	Radio Research Laboratory (RRL)		US0159
Singapore	ore Infocomm Development Authority (IDA)		
Taiwan	Directorate General of Telecommunications		
	(DGT)		
	Bureau of Standards, Metrology and Inspection	I	
	(BSMI)		

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 7 of 62

DOCUMENT HISTORY

	Document History				
Revision	Date	Comments			
Draft					
Rev A	30 th November 2008	Initial Release			

Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 8 of 62

1. TEST RESULT CERTIFICATE

Manufacturer PakSense Inc. Tested By: MiCOM Labs, Inc.

5256 Fairview Ave 440 Boulder Court

Boise Idaho 83714 USA Suite 200

Pleasanton

California, 94566, USA

EUT: PakSense Inc. Ultra Wireless - Telephone: +1 925 462 0304

Label

Model: PSUWL01F Fax: +1 925 462 0306

S/N: Label: Not Available

Test Date(s): 23rd - 30th September '08 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part15.247 & IC RSS-210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

CERTIFICATE #2381.01

ACCREDITED

Graeme Grieve

Quality,∕Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 9 of 62

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2007	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 10 of 62

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the PakSense Inc. Ultra Wireless - Label to
	FCC Part 15.247 and Industry Canada RSS-210
	regulations.
Applicant:	PakSense Inc.
	5256 Fairview Ave
_	Boise Idaho 83714 USA
Manufacturer:	As applicant.
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	PAKS01-A8 Rev A
Date EUT received:	23 rd September 2008
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Dates of test (from - to):	23rd - 30th September '08
No of Units Tested:	1
Type of Equipment:	915 MHz Label
Manufacturers Trade Name:	Ultra Wireless
Model:	PSUWL01F
Location for use:	Indoor and Outdoor
Declared Frequency Range(s):	902 - 928 MHz
Type of Modulation:	FSK (Frequency Shift Keying)
Declared Nominal Output Power:	+2 dBm
EUT Modes of Operation:	Single Mode
Transmit/Receive Operation:	Time Division Duplex
Rated Input Voltage:	Label: 3.3Vdc
Operating Temperature Range:	Client declared range -25°C to +60°C
Software Release	Label: 1.0
Hardware Release:	1.0
ITU Emission Designator:	Label: 811K6F1DCF
Frequency Stability:	±20 ppm max
Equipment Dimensions:	Label: 82h x 55w x 3.4d mm
Weight:	Label: 10g
Primary function of equipment:	Accumulation of remote Time/Temperature data

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

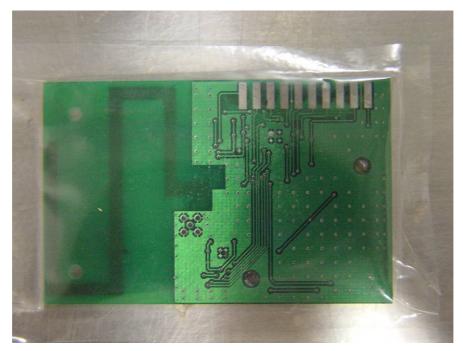
Page: 11 of 62

3.2. Scope of Test Program

The scope of the test program was to test the PakSense Inc. Ultra Wireless - Label in the frequency range 902 -928 MHz for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

The Ultra Wireless consists of a Reader and Label operating at 915 MHz using FSK modulation.

PakSense Inc.
915 MHz UW Label Model PSUWL01F



Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 12 of 62

PakSense Inc. 915 MHz UW Label Model PSUWL01F

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 13 of 62

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Ultra Wireless Label	PakSense Inc.	PSUWL01F	Not Available

3.4. Antenna Details

Printed circuit board trace antenna Reader and Label

Gain @ 915 MHz: 0dBi

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. USB 1.0 Screened (couples as the dc charging port through USB connector)

3.6. Test Configurations

Matrix of Channel test configurations.

Channel		Frequencies (MHz)
Low	0	902.75
Mid	25	915.25
High	49	927.25

Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 14 of 62

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. When the EUT(s) output power was set for +10dBm the emissions above and below 1 GHz were non-compliant. In order to bring the EUT(s) into compliance the output power was reduced to +2 dBm average power.

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 15 of 62

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	5.1.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power	Shall not exceed 1W	Conducted	Complies	5.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.3
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.4
15.247(d) 15.205 / 15.209 A8.5 2.2	Spurious Emissions (30MHz - 26 GHz)	The radiated emission in any 100 kHz of outband shall be at least 20 dB below the highest inband spectral density	Conducted	Complies	5.1.5

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 16 of 62

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.6
15.205 / 15.209 2.2	Transmitter Radiated Spurious Emissions Radiated Band Edge Radiated Spurious Emissions	Emissions above 1 GHz Band edge results Emissions <1 GHz (30M- 1 GHz)		Complies Complies Complies Class A	5.1.6.1
Industry Canada only RSS-Gen §4.8, §6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.6.2
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Not Applicable Battery Operated		

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

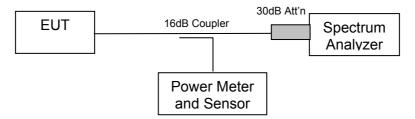
Note 3: Appendix A - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 17 of 62

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 6 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2) Industry Canada RSS-210 §A8.2 Industry Canada RSS-Gen §4.4

Test Procedure

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The analyzer was set for a 6 dB resolution bandwidth filter during this measurement.

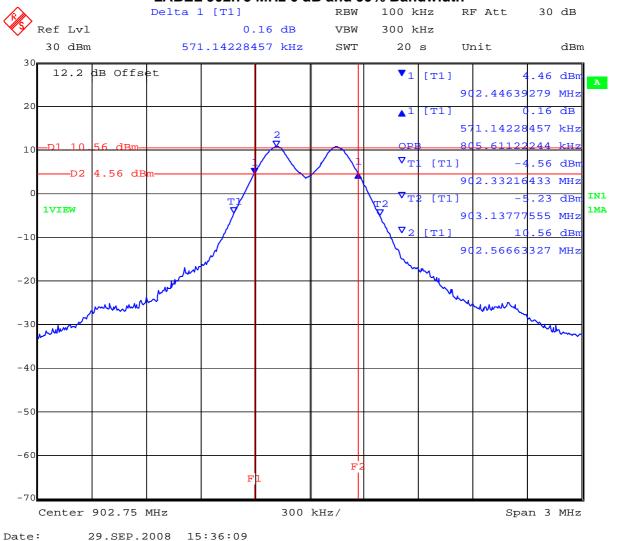
Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 18 of 62

Measurement Results for 6 dB and 99 % Operational Bandwidth(s)

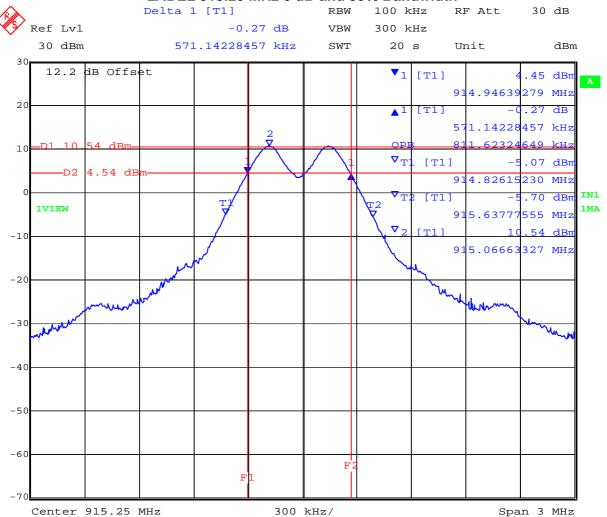

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS - LABEL

Center Frequency (MHz)	6 dB Bandwidth (MHz)	99 % BW (MHz)
902.75	0.5711	0.8056
915.25	0.5711	0.8116
927.25	0.5771	0.8056

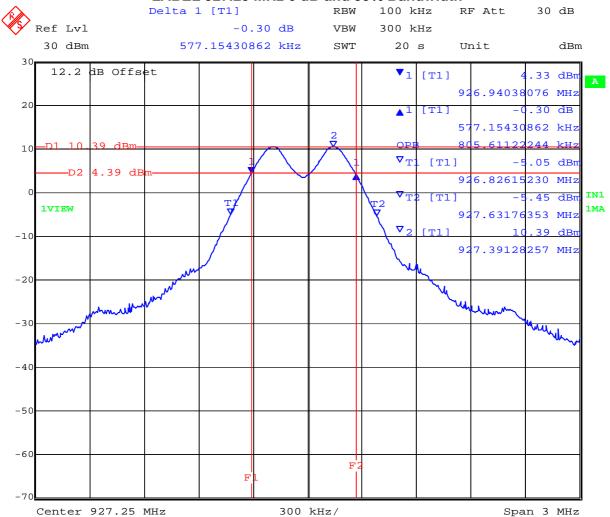
LABEL 902.75 MHz 6 dB and 99% Bandwidth


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel and any changes noted in the Document History section of the report.

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 19 of 62

LABEL 915.25 MHz 6 dB and 99% Bandwidth


Date: 1.JAN.1997 03:37:56

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 20 of 62

LABEL 927.25 MHz 6 dB and 99% Bandwidth

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 21 of 62

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

Laboratory Measurement Uncertainty for Spectrum Measurement

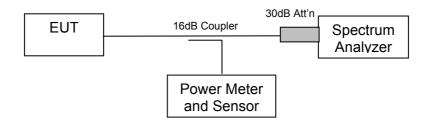
Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 22 of 62


5.1.2. Peak Output Power

FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e) Industry Canada RSS-210 §A8.4(4)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The Peak output power was measured using an average power meter.

Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

Ambient conditions.

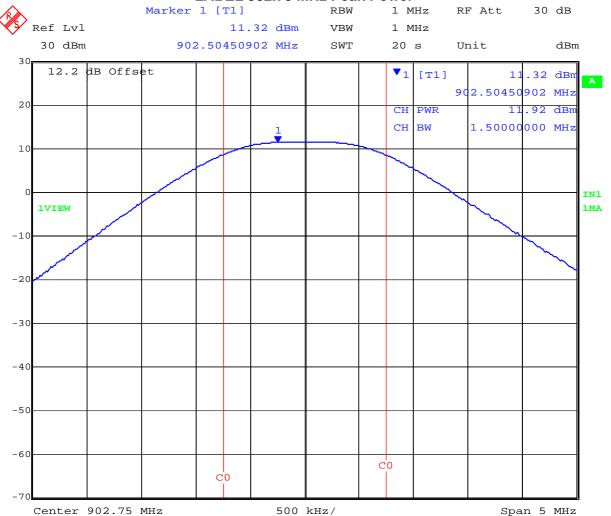
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Printed Circuit Antenna Gain = +0 dBi

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 23 of 62

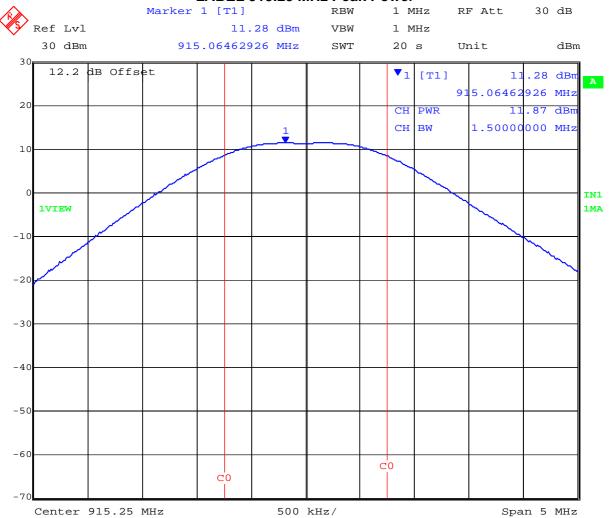
As a result of non-compliance issues, see Section 3.7 Equipment Modifications power was reduced to the following;


Center Frequency (MHz)	Peak Power (dBm)	Peak Power EIRP (dBm)
902.75	+2.17	+2.17
915.25	+2.29	+2.29
927.25	+2.36	+2.36

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 24 of 62

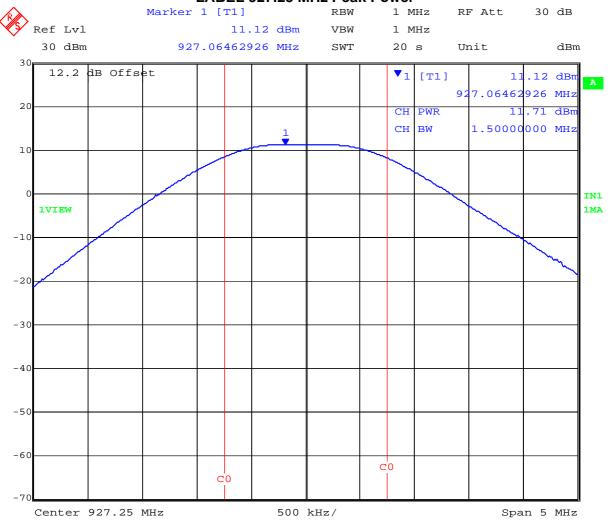
LABEL 902.75 MHz Peak Power



Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 25 of 62

LABEL 915.25 MHz Peak Power



Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 26 of 62

LABEL 927.25 MHz Peak Power

Date: 29.SEP.2008 16:10:19

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 27 of 62

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

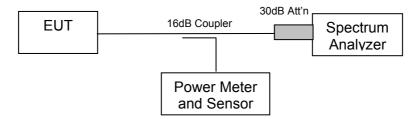
Laboratory Measurement Uncertainty for Power Measurements

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
Power'	

Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 28 of 62


5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.247(e) Industry Canada RSS-210 §A8.2

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time ≥ span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

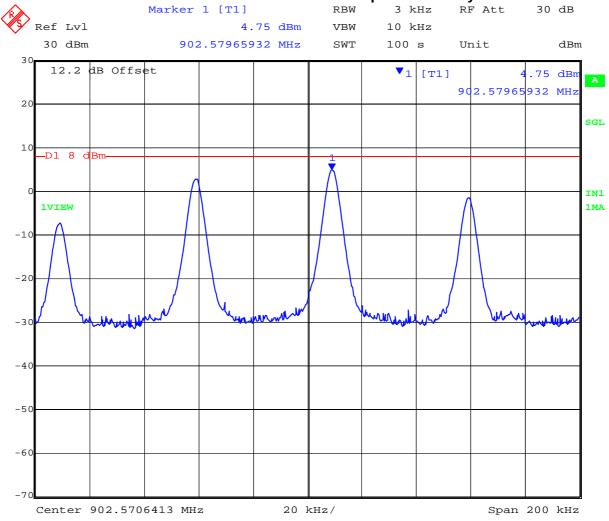
Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

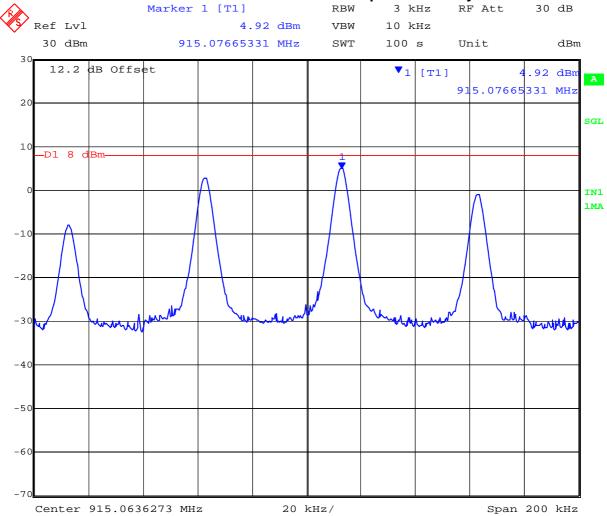

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 29 of 62

TABLE OF RESULTS - LABEL

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)
902.75	902.57965932	+4.75	+8	-3.25
915.25	915.07665331	+4.92	+8	-3.08
927.25	927.37304609	+4.54	+8	-3.46

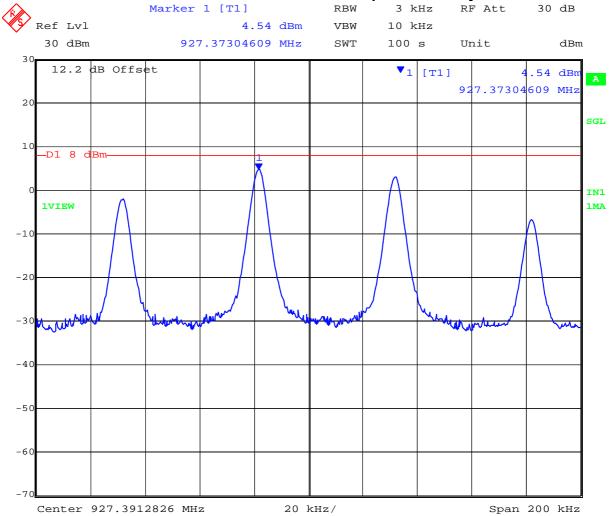
LABEL 902.75 MHz Peak Power Spectral Density


Date: 29.SEP.2008 15:41:52

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 30 of 62

LABEL 915.25 MHz Peak Power Spectral Density


Date: 29.SEP.2008 15:48:00

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 31 of 62

LABEL 927.25 MHz Peak Power Spectral Density

Date: 29.SEP.2008 15:52:32

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 32 of 62

Specification Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 33 of 62

5.1.4. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i)

Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (GHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
0.915	0.0	1.0	+4.36	2.73	0.47	20.0

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

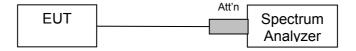
RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 34 of 62


5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2 Industry Canada RSS-Gen 4.7

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

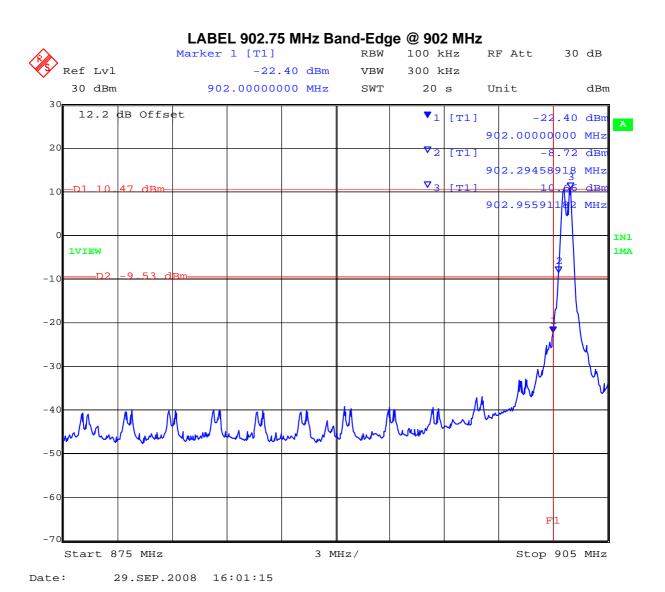
Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

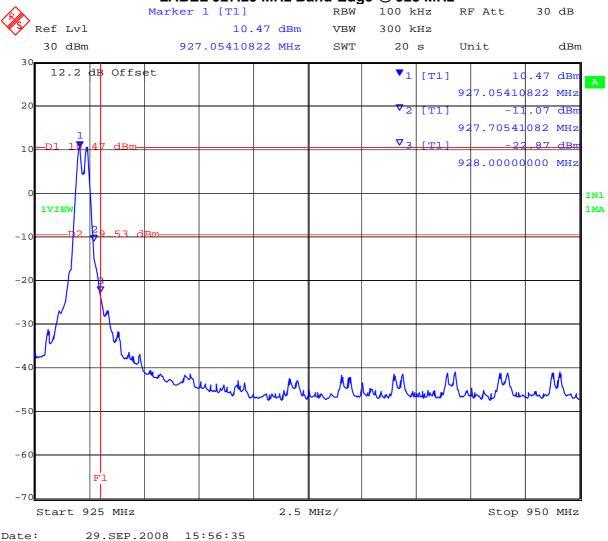

Page: 35 of 62

Conducted Band-Edge Results

Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement.

TABLE OF RESULTS - Label

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental)	Amplitude @ Band edge (dBm)	Margin (dB)
902.75	902.0	-9.53	-22.40	-12.87
927.25	928.0	-9.53	-22.87	-13.34


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel and any changes noted in the Document History section of the report.

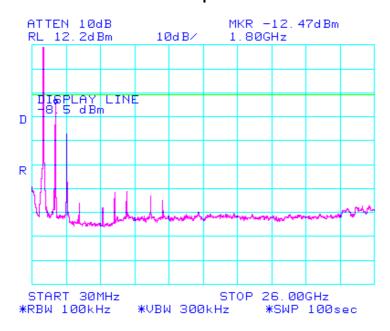
Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 36 of 62

LABEL 927.25 MHz Band-Edge @ 928 MHz

The Peak Emission breaking the limit line is the fundamental.

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008


Page: 37 of 62

Spurious Emissions (30 - 26,000 MHz)

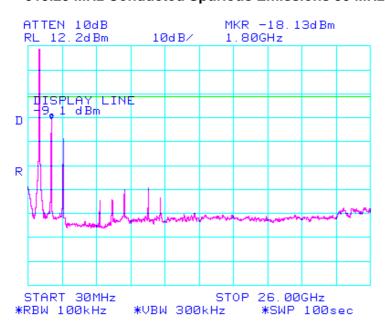
TABLE OF RESULTS - Label

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
902.75	30	26,000	-12.47	-8.5	-3.97

Label
902.75 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

The Peak Emission breaking the limit line is the fundamental.

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008


Page: 38 of 62

Spurious Emissions (30 - 26,000 MHz)

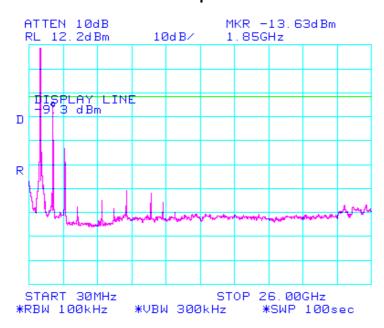
TABLE OF RESULTS - Label

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
915.25	30	26,000	-18.13	-9.1	-9.03

Label
915.25 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

The Peak Emission breaking the limit line is the fundamental.

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008


Page: 39 of 62

Spurious Emissions (30 - 26,000 MHz)

TABLE OF RESULTS - Label

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
927.25	30	26,000	-13.63	-9.3	-4.33

Label
927.25 MHz Conducted Spurious Emissions 30 MHz to 26,000 MHz

The Peak Emission breaking the limit line is the fundamental.

Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 40 of 62

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
902 MHz	928 MHz	≥ 20 dB

§15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0287, 0158, 0193, 0252, 0313, 0314, 0070,
instruction WI-05 'Measurement of	0116, 0117.
Spurious Emissions'	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel and any changes noted in the Document History section of the report.

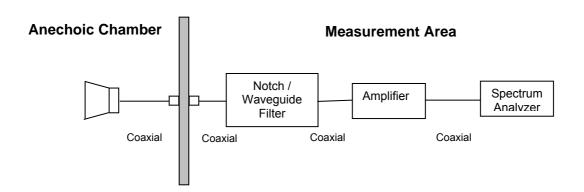
Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 41 of 62

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Spurious Emissions

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7


Test Procedure

Radiated emissions above and below 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies below 1 GHz are based on the use of measurement instrumentation employing a quasi-peak detector. Peak emissions measurements below 1 GHz were performed using a minimum resolution bandwidth of 100 kHz.

All measurements on any frequency or frequencies over 1 GHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 42 of 62

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

Maximizing Emissions

It was found that the Reader and Label lying flat on the polystyrene table in the Radiated Emissions chamber was the worst case orientation for emissions.

Radio Setting

Power Setting: +2 dBm (Reader + Label)

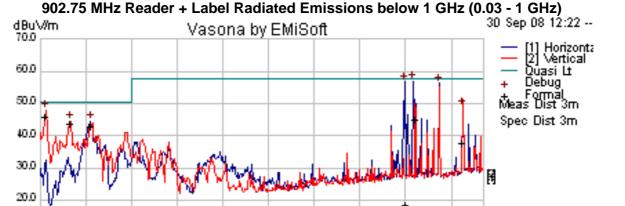
Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 43 of 62

Results for Channel 902.75 MHz

110041	Results for Original 302.73 Willia											
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
902.525	61.16	17.32	22.7	101.18	Peak Emission	Н					N/A	Peak
850.86	58.85	7.17	-20.85	45.17	Quasi Max	Н	101	327	57.5	-12.33	Pass	
829.637	32.18	7.17	-20.84	18.52	Quasi Max	Н	182	136	57.5	-38.98	Pass	
42.64	67.55	3.6	-25.33	45.83	Quasi Max	V	152	20	50.5	-4.67	Pass	
141.086	67.49	4.43	-29.02	42.89	Quasi Max	V	234	204	50.5	-7.61	Pass	
96.235	71.66	4.12	-32.17	43.61	Quasi Max	V	124	296	50.5	-6.89	Pass	
954.851	50.08	7.55	-19.66	37.97	Quasi Max	Н	287	92	57.5	-19.53	Pass	
1805.611	77.36	9.74	-13.65	73.44	Peak [Scan]	Н	100	0	81.18	-7.74	Pass	NRB
5415.304	55.76	4.62	-8.43	51.95	Average Max	Н	110	282	54	-2.05	Pass	RB
5415.304	71.23	4.62	-8.43	67.42	Peak Max	Н	110	282	74	-6.58	Pass	RB
9025.333	30.42	6.21	0.03	36.66	Average Max	Н	139	98	54	-17.34	Pass	RB
3610.385	41.29	3.67	-11.09	33.87	Average Max	Н	120	118	54	-20.13	Pass	RB
9025.333	46.42	6.21	0.03	52.66	Peak Max	Н	139	98	74	-21.34	Pass	RB
2707.63	60.43	3.17	-10.94	52.65	Peak Max	Н	117	20	74	-21.35	Pass	RB

Peak - Peak Emission RB - Restricted band emission NRB - Non-restricted band emission


130.0

330.0

£30.0

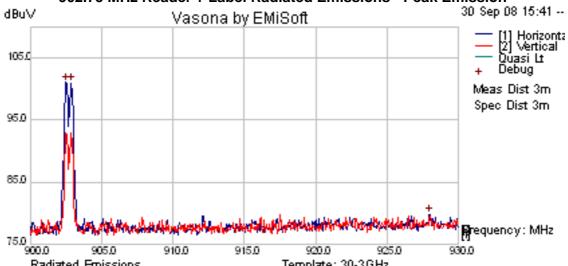
530.0

10.0

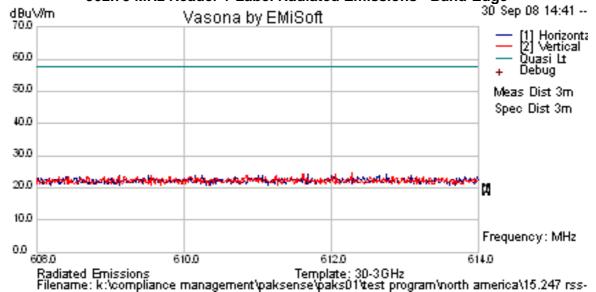
0.0 L 30.0 630.0 Radiated Emissions Template: 30-3 GHz Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-

730.0

Frequency: MHz


930.0 1000.0

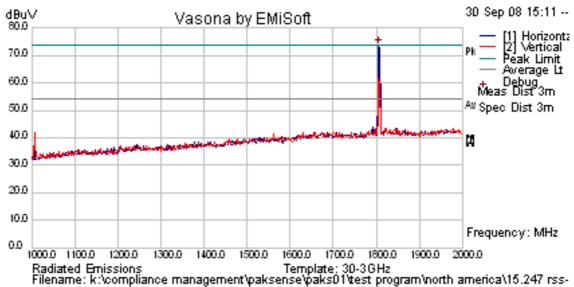
Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008


Page: 44 of 62

902.75 MHz Reader + Label Radiated Emissions - Peak Emission

Radiated Emissions Template: 30-3 GHz
Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-

902.75 MHz Reader + Label Radiated Emissions - Band-Edge

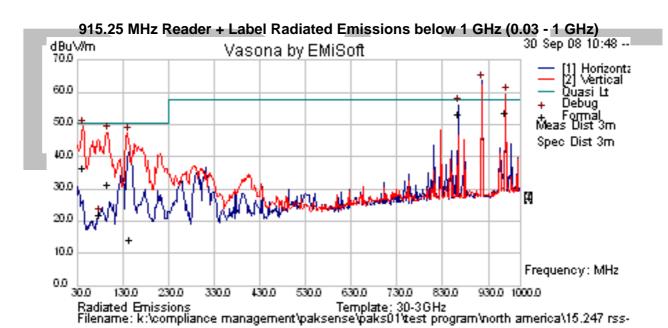


Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 45 of 62

902.75 MHz Reader + Label Radiated Emissions Above 1 GHz (1 – 2 GHz)

Radiated Emissions Template: 18Amp RE 1-18 GHz Mitec 30 Aug Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-

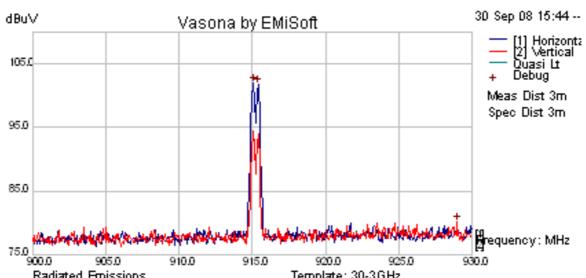

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

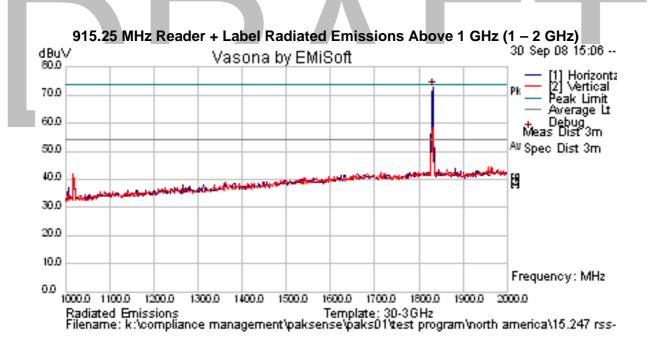
Page: 46 of 62

Results for Channel 915.25 MHz

11004	Results for Gridinici 310:25 mile											
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
915.09	61.74	17.38	22.9	102.02	Peak [Scan]	Н					N/A	Peak
967.043	65.63	7.59	-19.65	53.56	Quasi Max	Н	141	166	57.5	-3.94	Pass	
42.735	58.24	3.6	-25.4	36.45	Quasi Max	V	152	230	50.5	-14.05	Pass	
863.049	66.8	7.21	-20.69	53.32	Quasi Max	Н	184	167	57.5	-4.18	Pass	
98.086	56.93	4.14	-31.65	29.42	Quasi Max	V	127	229	50.5	-21.08	Pass	
77.309	58.81	3.94	-32.47	30.28	Quasi Max	V	109	221	50.5	-20.22	Pass	
145.211	59.99	4.45	-29.38	35.06	Quasi Max	V	182	186	50.5	-15.44	Pass	
1831.663	76.3	9.81	-13.48	72.64	Peak [Scan]	Н	100	0	82.02	-9.38	Pass	NRB
7320.325	62.38	5.44	-2.88	64.94	Peak Max	V	98	198	74	-9.06	Pass	RB
9150.539	51.82	6.22	-0.25	57.79	Peak Max	V	114	252	74	-16.21	Pass	RB
3661.413	60.57	3.7	-10.9	53.37	Peak Max	Н	98	178	74	-20.63	Pass	RB
2745.14	61.4	3.19	-11.01	53.59	Peak Max	Н	98	29	74	-20.41	Pass	RB
7320.325	27.11	5.44	-2.88	29.67	Average Max	V	98	198	54	-24.33	Pass	RB
9150.539	25.43	6.22	-0.25	31.4	Average Max	V	114	252	54	-22.6	Pass	RB

Peak – Peak Emission RB – Restricted band emission NRB – Non-restricted band emission

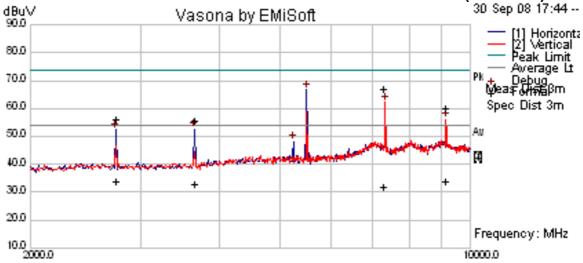



Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 47 of 62

915.25 MHz Reader + Label Radiated Emissions - Peak Emission

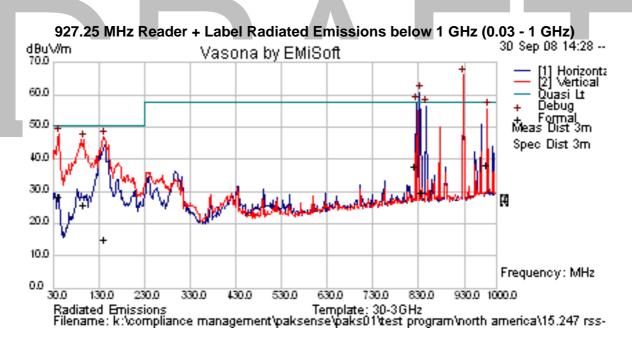
Radiated Emissions Template: 30-3 GHz
Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-



Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 48 of 62

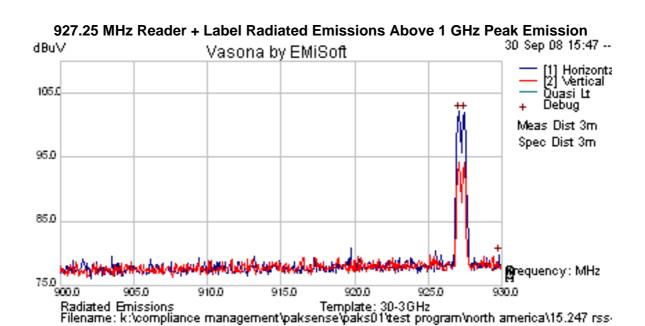
Radiated Emissions Template: 18Amp RE 1-18 GHz Mitec 30 Aug Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-

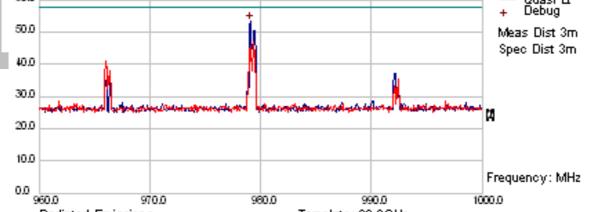

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 49 of 62

Results for Channel 927.25 MHz

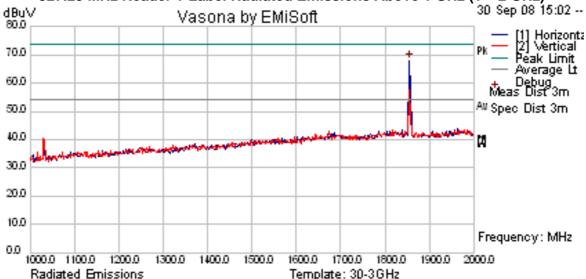
1,444114 141 411114 11111												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
927.054	61.75	17.43	23.1	102.28	Peak [Scan]	Н					N/A	Peak
967.043	65.63	7.59	-19.65	53.56	Quasi Max	Н	141	166	57.5	-3.94	Pass	
42.735	58.24	3.6	-25.4	36.45	Quasi Max	V	152	230	50.5	-14.05	Pass	
863.049	66.8	7.21	-20.69	53.32	Quasi Max	Н	184	167	57.5	-4.18	Pass	
98.086	56.93	4.14	-31.65	29.42	Quasi Max	V	127	229	50.5	-21.08	Pass	
77.309	58.81	3.94	-32.47	30.28	Quasi Max	V	109	221	50.5	-20.22	Pass	
145.211	59.99	4.45	-29.38	35.06	Quasi Max	V	182	186	50.5	-15.44	Pass	
979.078	65.05	7.62	-19.46	53.21	Peak [Scan]	Н	100	0	57.5	-4.29	Pass	Band-edge
1855.711	71.58	9.88	-13.45	68.01	Peak [Scan]	Н	100	0	82.28	-14.27	Pass	NRB
7419.269	57.73	5.46	-3.41	59.79	Peak Max	Н	98	201	74	-14.21	Pass	RB
3708.061	63.48	3.73	-10.78	56.43	Peak Max	Н	98	169	74	-17.57	Pass	RB
2781.187	60.57	3.22	-10.95	52.84	Peak Max	Н	142	26	74	-21.16	Pass	RB
7419.269	26.92	5.46	-3.41	28.98	Average Max	Н	98	201	54	-25.02	Pass	RB
3708.061	45.02	3.73	-10.78	37.97	Average Max	Н	98	169	54	-16.03	Pass	RB
2781.187	38.72	3.22	-10.95	30.99	Average Max	Н	142	26	54	-23.01	Pass	RB

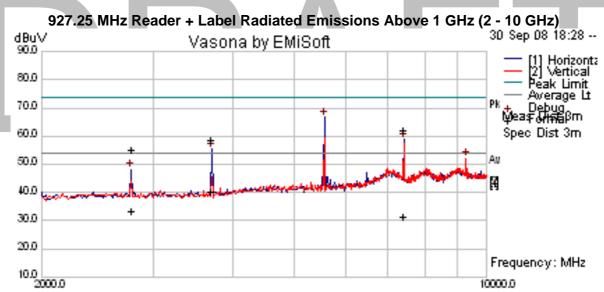

Peak – Peak Emission RB – Restricted band emission NRB – Non-restricted band emission Band-edge – Restricted band-edge



Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 50 of 62


Radiated Emissions Template: 30-3 GHz
Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-


Serial #: PAKS01-A8 Rev A 30th November 2008 **Issue Date:**

> 51 of 62 Page:

Radiated Emissions Template: 30-3 GHz
Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-

Radiated Emissions Template: 18Amp RE 1-18 GHz Mitec 30 Aug Filename: k:\compliance management\paksense\paks01\test program\north america\15.247 rss-

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 52 of 62

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 53 of 62

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

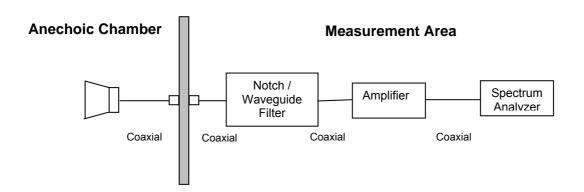
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0158, 0134, 0304, 0311, 0315, 0310, 0312

Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 54 of 62

5.1.6.2. Receiver Radiated Spurious Emissions (above 1 GHz)


Industry Canada RSS-Gen §4.8, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 55 of 62

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

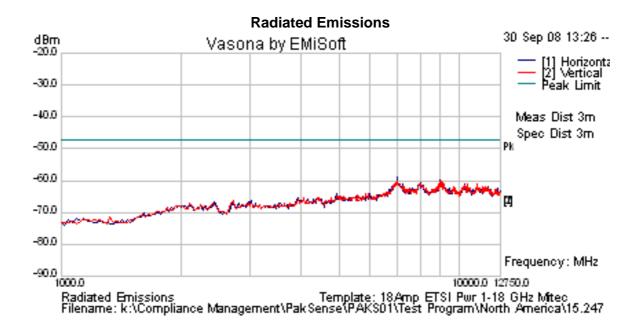
$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008


Page: 56 of 62

Test Setup – System communicating between Reader and Label

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Raw Reading (dBµV/m)	Correction Factor (dB)	Corrected Field Strength (dBμV/m)	Limit (dBμV/m)	Margin (dB)
			_			

No emissions within 6 dB of the limit line

The above plot identifies peak emissions

Serial #: PAKS01-A8 Rev A Issue Date: 30th November 2008

Page: 57 of 62

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

(a) If a radiated measurement is made, all spurious emissions hall comply with the limits of Table 1.

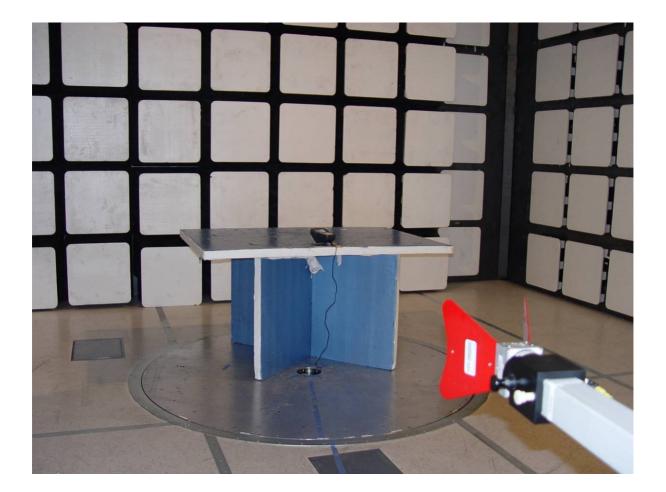
Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0158, 0134, 0304, 0311, 0315, 0310, 0312



Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 58 of 62

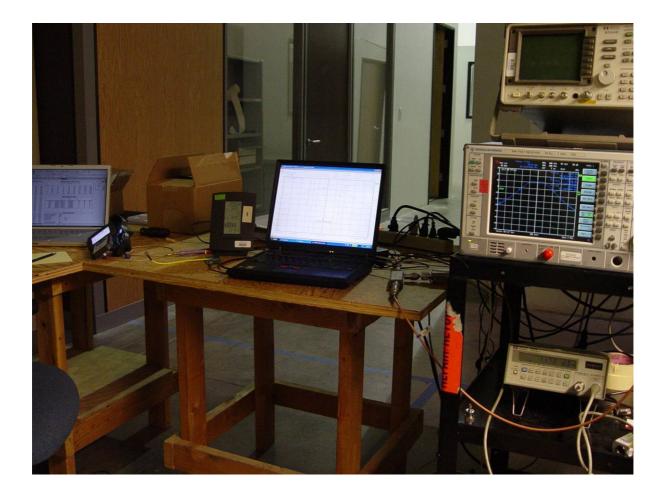
6. PHOTOGRAPHS

6.1. Radiated Emissions (>1 GHz)

Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 59 of 62

6.2. Radiated Emissions (<1 GHz)



Serial #: PAKS01-A8 Rev A lssue Date: 30th November 2008

Page: 60 of 62

6.3. General Measurement Test Set-Up

Serial #: PAKS01-A8 Rev A
Issue Date: 30th November 2008

Page: 61 of 62

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0287	EMI Receiver	Rhode & Schwartz	ESIB 40	100201
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0304	2.4GHzHz Notch Filter	Micro-Tronics		001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs		
0338	Antenna	Sunol Sciences	JB-3	A052907
Dipole	20MHz-1GHz Dipole Antennas	EMCO	3121C	9009-505
0072	Signal Generator	Hewlett Packard	HP 83640A	2927A00105
0075	Environmental Chamber	Thermatron	SE-300-2-2	27946
0083	Coupler	Hewlett Packard	HP 87301D	3116A00389

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306

www.micomlabs.com