

Customer:

Elatec GmbH

Lilienthalstraße 3 82178 Puchheim

Tel.: +49 89 5529961-13 Fax: +49 89 5529961-29

RF test report 170353-AU01+W03

stry Industrie ada Canada

Elatec GmbH RFID Reader

TWN4 MultiTech 3

The test result refers exclusively to the tested model. This test report may not be copied or published in a part without the written authorization of the accreditation agency and/or EMV **TESTHAUS** GmbH

Page 2 of 40

Table of contents

Test regulations	5
Summary of test results	6
Equipment under Test (EUT)	7
AC power line conducted emissions	. 10
Radiated emission measurement (<1 GHz)	. 16
Radiated emission measurement (>1 GHz)	. 28
Carrier frequency stability	. 29
Bandwidths	. 33
Equipment calibration status	. 38
Measurement uncertainty	. 39
Revision History	. 40
	Test regulations Summary of test results Equipment under Test (EUT) AC power line conducted emissions Radiated emission measurement (<1 GHz) Radiated emission measurement (>1 GHz) Carrier frequency stability Bandwidths Equipment calibration status. Measurement uncertainty Revision History

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 3 of 40

List of pictures

Picture 1: Outline of conducted emission test setup	. 11
Picture 2: Graphic - Conducted emission on mains, phase 1 (without termination)	. 12
Picture 3: Table - Conducted emission on mains, phase 1 (without termination)	. 13
Picture 4: Graphic - Conducted emission on mains, neutral (without termination)	. 14
Picture 5: Table - Conducted emission on mains, neutral (without termination)	. 15
Picture 6: Test setup for radiated emission measurement (< 30 MHz)	. 19
Picture 7: Test setup for radiated emission measurement (< 1 GHz)	. 19
Picture 8: Radiated emission 9 kHz – 30 MHz @ 3m distance	. 21
Picture 9: Radiated emission 30 MHz - 1000MHz @ 3m distance	. 24
Picture 10: Spectrum mask for 13.56 MHz @ 3m distance	. 26
Picture 11: Test setup for carrier frequency stability measurement	. 30
Picture 12: Occupied bandwidth (99 %)	. 35
Picture 13: -20 dB emission bandwidth	. 36

List of tables

Table 1: Equipment calibration status	38
Table 2: Measurement uncertainty	39

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 4 of 40

1 Test regulations

47 CFR Part 2: 10-2016	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
47 CFR Part 15: 03-2017	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.10:2013-06	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
FCC KDB 174176 D01 June 3, 2015	AC power-line conducted emissions Frequently Asked Questions
ICES-003 Issue 6, January 2016	Spectrum Management and Telecommunications Interference-Causing Equipment Standard Information Technology Equipment (ITE) – Limits and methods of measurement
RSS-Gen Issue 4, November 2014	Spectrum Management and Telecommunications Radio Standards Specification General Requirements and Information for the Certification of Radiocommunication Equimpment
RSS-210 Issue 9, August 2016	Spectrum Management and Telecommunications Radio Standards Specification Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 5 of 40

2 Summary of test results

Standard

47 CFR Part 15, sections 15.207 and 15.225

Test result

Passed

RSS-210 Issue 9 Section 4.3 and Annex B6 (with appropriate references to RSS-Gen Issue 4)

Passed

Straubing, June 10, 2017

um

Christian Kiermeier Test engineer EMV TESTHAUS GmbH

Mer (

Rainer Heller Head of EMC department EMV TESTHAUS GmbH

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 6 of 40

3 Equipment under Test (EUT)

Product type:	RFID Reader
Model Name:	TWN4 MultiTech 3
Applicant:	Elatec GmbH
Manufacturer:	Elatec GmbH
Serial number:	ET-16/2017-26
FCC ID:	WP5TWN4F4
IC certification number:	7948A-TWN4F4
Application frequency band:	13.110 to 14.010 MHz
Frequency range:	13.560 MHz
Operating frequency:	13.560 MHz
Number of RF-channels:	1
Modulation:	ASK
Antenna connector:	\Box permanent \Box temporary \boxtimes none
Antenna types:	PCB antenna
	\Box detachable \boxtimes not detachable
Maximum antenna gain:	0 dBi
Maximum conducted power:	2 mW (maximum RF output power of RFID chip)
Power supply:	USB powered nominal: 5.0 VDC ± 15 %
Temperature range:	-20°C to +50°C

Remark: The tests were performed with PC supplied by 120V AC / 60Hz.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 7 of 40

3.1 Photo documentation

For external photos of the EUT see annex B, for internal ones see annex C. For photos taken during testing and including EUT-positions see annex A.

3.2 Short description of the EUT

EUT is a RFID reader employing 3 frequencies. The other frequencies are documented within the following test reports:

170353-AU01+W01 -> 125 kHz 170353-AU01+W02 -> 134 kHz

3.3 Operation mode

During the pre-tests it was observed that the "continuous-tag-reading-mode" is the respective worst- case. Therefore this mode was selected for final testing. The device was configured by manufacturer to activate the RFID reader for continuous transmission via RFID card.

The EUT was tested in 3 orthogonal positions. This is documented in annex A.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 8 of 40

3.4 Configuration

The following peripheral devices and interface cables were connected during the tests:

Device	Model:	Serial or inventory no.
RFID Reader	TWN4 MultiTech 3	ET-16/2017-26
RFID tag	13.56 MHz	
Test-PC	Esprimo P9900	E00351
Notebook	Lifebook A531	E00521
AC power source (120 V / 60 Hz)	Chroma 616062	E00633
DC supply	Statron 3252.1	E00541
Digital multimeter	UT61D	H150188102

3.5 Used cables

Count	Description (type / lengths / remarks)	Serial no.
1	USB cable (1.5 m, shielded)	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

4 AC power line conducted emissions

according to 47 CFR Part 15, section 15.207, and RSS-210, section 3.1 with RSS-Gen, section 8.8

4.1 Test location

Description	Manufacturer	Inventory No.
Shielded room	Siemens - Matsushita	E00107

4.2 Test instruments

	Description	Manufacturer	Inventory No.		
\boxtimes	ESCS 30	Rohde & Schwarz	E00003		
	ESU 26	Rohde & Schwarz	W00002		
	ESCI	Rohde & Schwarz	E00001		
	ESH3-Z2	Rohde & Schwarz	E00028		
\boxtimes	ESH2-Z5	Rohde & Schwarz	E00004		
	ESH2-Z5	Rohde & Schwarz	E00005		
\boxtimes	Cable set shielded room	Huber + Suhner	E00424		

4.3 Limits

Frequency [MHz]	Quasi-peak [dBµV]	Avarage [dBµV]
0.15 – 0.5	66 – 56	56 – 46
0.5 - 5.0	56	46
5 – 30	60	50

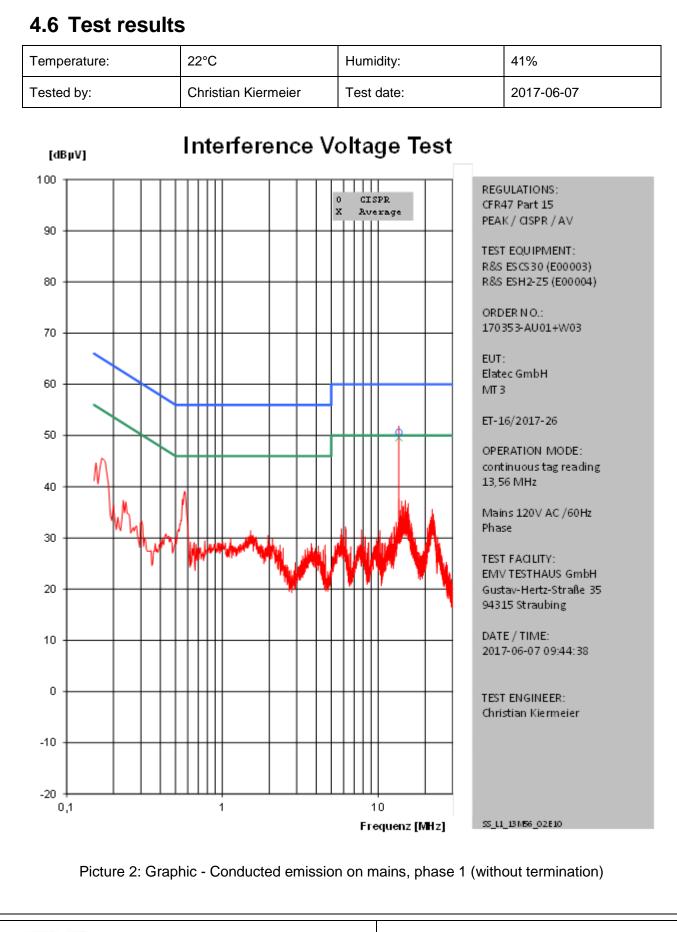
EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 10 of 40

4.4 Test procedure

- 1. The tests of conducted emission were carried out in a shielded room using a line impedance stabilization network (LISN) 50 μ H/50 Ohms and an EMI test receiver.
- 2. The EMI test receiver was connected to the LISN and set to a measurement bandwidth of 9 kHz in the frequency range from 0.15 MHz to 30 MHz.
- 3. The EUT was placed on a wooden table and connected to the LISN.
- 4. To accelerate the measurement the detector of the EMI test receiver was set to peak and the whole frequency range form 0.15 MHz to 30 MHz was scanned.
- 5. After that all peaks values with less margin than 10 dB to quasi-peak limit or exceeding the limit were marked and re-measured with quasi-peak detector.
- 6. If after that all values are under the average limit no addition measurement is necessary. In case there are still values between quasi-peak and average limit then these values were re-measured with average detector.
- 7. These measurements were done on all power lines.

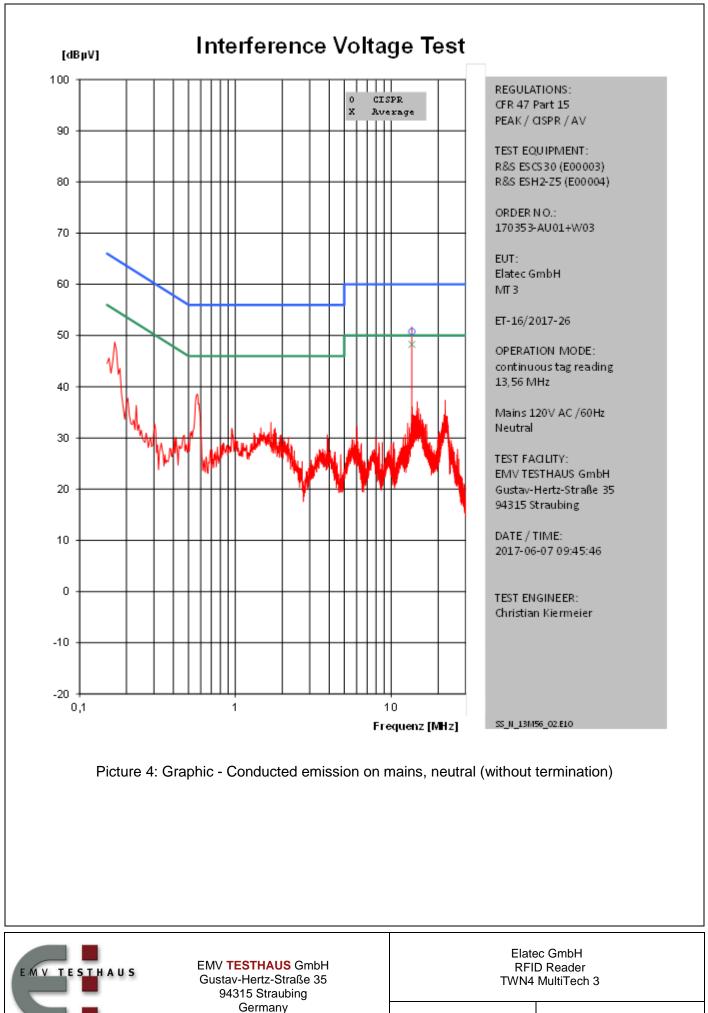

According to ANSI C63.10, section 6.2.2 testing of intentional radiators with detachable antennas shall be done with a dummy load otherwise the tests should be done with connected antenna and if adjustable fully extended.

Shielded room EMI receiver EUT 0 Wooden LISN table Picture 1: Outline of conducted emission test setup All peripheral devices were additionally decoupled by means of a line stabilization Comments: network. Elatec GmbH EMV TESTHAUS GmbH **RFID Reader** EMV TESTHAUS Gustav-Hertz-Straße 35 TWN4 MultiTech 3 94315 Straubing Germany

4.5 Test setup

170353-AU02+W03

Page 11 of 40



EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 12 of 40

		Ir	nterfe	rence	Volt	age 1	ſest		
Freq.	U_CISPR		delta_U	U_AV		delta_U	Corr.	Rema	ark
[MHz] 13,56	[dBμV] 50,7	[dBμ V] 60,0	[dB] 9,3	[₫₿µV] 49,5	[dBμ V] 50,0	[dB] 0,5	[dB] 0,0	SS_11.	13M56_02E10
F	Picture 3: Ta	ble - Co	onducted	emission	on maii	ns, phase	e 1 (with	out te	rmination)
EMV TESTH	A U S	Gusta	FESTHAUS Iv-Hertz-Str I315 Straub	aße 35			Т	RFID	GmbH Reader lultiTech 3
	Germany					170353-	AU02+W	03	Page 13 of 40

170353-AU02+W03

Page 14 of 40

	Interference Voltage Test								
Freq.	U_CISPR		delta_U	U_AV		delta_U	Corr.	Remark	
[MHz] 13,56	[dBµV] 50,8	[dBμV] 60,0	[dB] 9,2	[dBµV] 48,3	[dBµV] 50,0	[dB] 1,8	[dB] 0,0	SS_N_13M56_02.E10	
	Picture 5: T	able - C	onducted	emission	on mai	ns, neutr	al (witho	out termination)	
EMV TESTHAUS Gustav-Hertz-Straße 35 94315 Straubing							T	Elatec GmbH RFID Reader WN4 MultiTech 3	
Germany						170353-	AU02+W	03 Page 15 of 40	

5 Radiated emission measurement (<1 GHz)

according to 47 CFR Part 15, section 15.205(a), 15.209(a), 15.225(a) to (e), and RSS-210, section 4.3 and Annex B6 with RSS-Gen, sections 8.10 and 8.9

5.1 Test Location

- \boxtimes Scan with peak detector in 3 m CDC.
- Final CISPR measurement with quasi peak detector on 3 m open area test site.

Description	Manufacturer	Inventory No.	
CDC	Albatross Projects	E00026	
Open area test site (OATS)	EMV TESTHAUS GmbH	E00354	

5.2 Test instruments

	Description	Manufacturer	Inventory No.
\boxtimes	ESCI (OATS)	Rohde & Schwarz	E00552
\boxtimes	ESCI (CDC)	Rohde & Schwarz	E00001
	ESU 26	Rohde & Schwarz	W00002
\boxtimes	VULB 9163 (OATS)	Schwarzbeck	E00013
\boxtimes	VULB 9160 (CDC)	Schwarzbeck	E00011
\boxtimes	HFH2-Z2	Rohde & Schwarz	E00060
\boxtimes	Cable set CDC	Huber + Suhner	E00060
	Cable set OATS 3 m	Huber + Suhner	E00453, E00456, E00458
	Cable set OATS 10 m	Huber + Suhner	E00453, E00455, E00458

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 16 of 40

5.3 Limits

The field strength of any emissions appearing outside of the 13.110 to 14.010 MHz band including spurious emissions falling into restricted bands as specified in 15.205(a) shall not exceed the general radiated emission limits as specified in 15.209.

Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
266.6 - 4.9	48.5 – 13.8	300
48.98 – 14.08	33.8 – 22.97	30
30	29.54	30
100	40	3
150	43.5	3
200	46	3
500	54	3
	[µV/m] 266.6 – 4.9 48.98 – 14.08 30 100 150 200	[μV/m] [dBμV/m] 266.6 - 4.9 48.5 - 13.8 48.98 - 14.08 33.8 - 22.97 30 29.54 100 40 150 43.5 200 46

As noted in 15.205(d)(7) devices according to 15.225 are exempt from complying with restricted band requirements for the 13.36 to 13.41 MHz band. Instead they have to comply with the limits as specified in 15.225 (a) to (d):

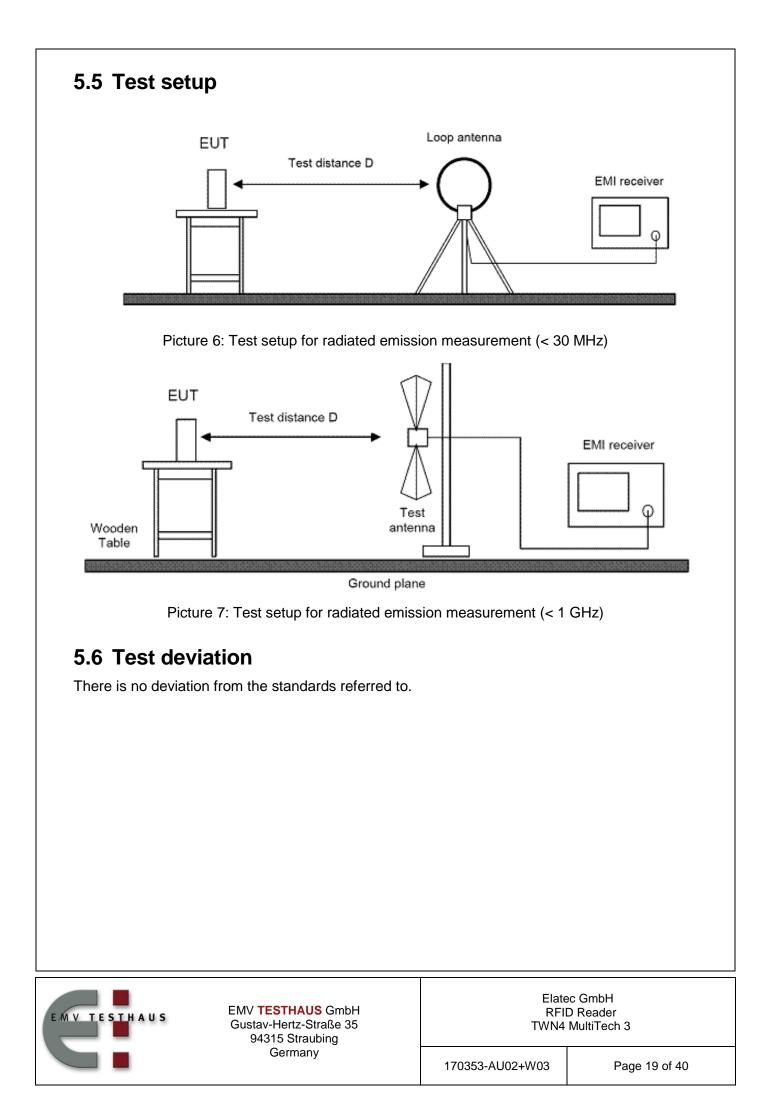
Frequency [MHz]	Field strength Fs [µV/m]	Field strength [dBµV/m]	Measurement distance d [m]
13.553 - 13.567	15,848	84	30
13.410 - 13.553	334	50.47	30
13.567 - 13.710	334	50.47	30
13.110 - 13.410	106	40.51	30
13.710 - 14.010	106	40.51	30
f < 13.110		ardina to limito in \$45.00	0
f > 14.010	acco	ording to limits in §15.20	9

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 17 of 40

5.4 Test procedure


- 1. EUT was configured according to ANSI C63.10. It was placed on the top of the turntable 0.8 meter above ground. The receiving antenna was placed 3 meters from the turntable. The test setup was placed inside a compact diagnostic chamber.
- 2. EUT and all peripherals were powered on.
- 3. The broadband antenna was set to vertical polarization.
- 4. The EMI receiver performed a scan from 30 MHz to 1000 MHz with peak detector peak and measurement bandwidth set to 120 kHz.
- 5. The turn table was rotated to 6 different positions (360° / 6) and the antenna polarization was changed to horizontal.
- 6. Test procedure at step 4 and 5 was repeated.
- 7. The test setup was then placed in an OATS at 3 m distance and all peak values over or with less margin to the limit than 6dB were marked and re-measured with a quasi-peak detector.
- 8. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 9. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization. The highest value was recorded.
- 10. For emissions below 30 MHz measurements were done using a loop antenna. Prescan was performed with peak detector and final measurements with quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 k Hz where average detector applies. Antenna height was not changed during this test. Appropriate CISPR bandwidths of 200 Hz for frequencies up to 150 kHz and 9 or 10 kHz for frequencies above were used.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 18 of 40

5.7 Test results

Temperature:	20°C	Humidity:	41%
Tested by:	Christian Kiermeier	Test date:	2017-06-08

Radiated Emission Measurement 9 kHz - 30 MHz

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{near field} = 47.77 / f_{MHz}$, or

f_{MHz}

= 47.77 / $d_{near field}$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula for determining the recalculation factor:

f _{MHz} (300 m)	≈ 0.159 MHz
f _{MHz} (30 m)	≈ 1.592 MHz
f _{MHz} (3 m)	≈ 15.923 MHz

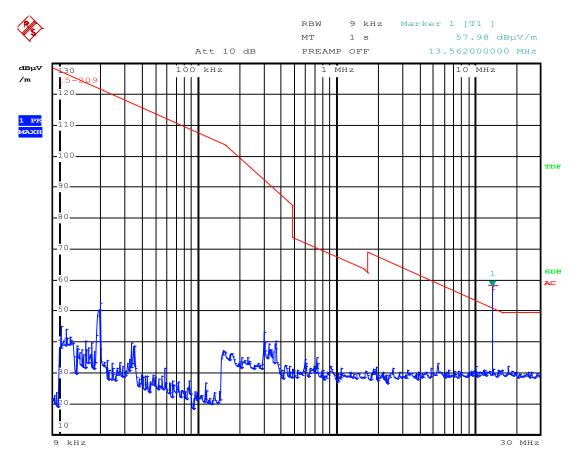
For 9 kHz \leq f \leq 159 kHz and 490 kHz < f \leq 1.592 MHz: Recalculation factor = -40 log(d_{limit} / d_{measure}) For 159 kHz < f \leq 490 kHz and 1.592 MHz < f \leq 15.923 MHz:

Recalculation factor = -40 log($d_{near field}$ / $d_{measure}$) - 20 log(d_{limit} / $d_{near field}$)

For f > 15.923 MHz:

Recalculation factor = -20 log(d_{limit} / d_{measure})

The limits in the graphics and value lists are derived from the general radiated emission limits as specified in 15.209 using the recalculation factor as described above.



EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Frequency range	Step	IF	Detector		Measurer	Preamplifier	
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
9 kHz – 90 kHz	80 Hz	200 Hz	PK	AV	1 ms	1 s	off
90 kHz – 110 kHz	80 Hz	200 Hz	PK	QPK	1 ms	1 s	off
110 kHz – 150 kHz	80 Hz	200 Hz	PK	AV	1 ms	1 s	off
150 kHz – 490 kHz	4 kHz	9 kHz	PK	AV	1 ms	1 s	off
490 kHz – 30 MHz	4 kHz	9 kHz	PK	QPK	1 ms	1 s	off

The following picture shows the worst-case-emissions for the spurious emissions at EUT-position 1, antenna in line.

Frequency [MHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin	Result
13.560	57,98	PK	-21.40	36,58			Carrier
13.560	58,38	QP	-21.40	36,98	84.00	-47.02	Carrier

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

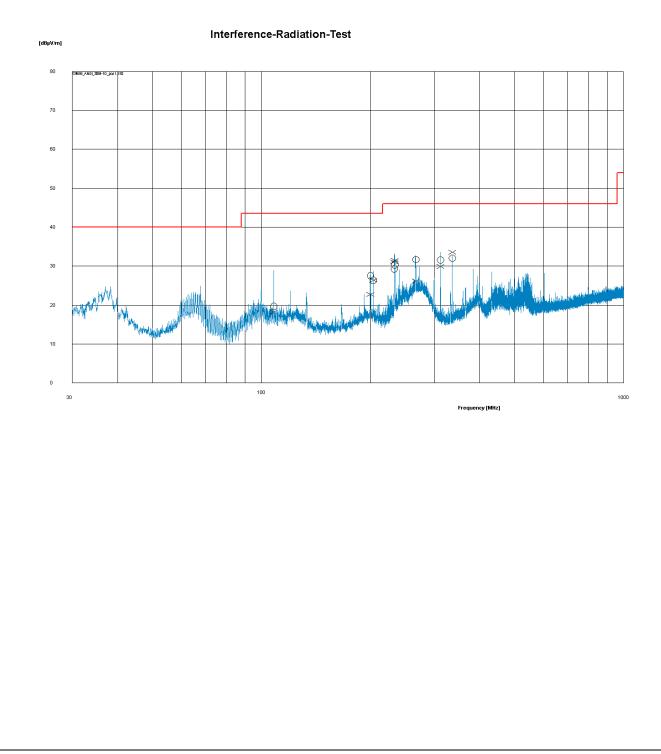
Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{near field} = 47.77 / f_{MHz}$

Recalculation factor = -40 $\log(d_{near field} / d_{measure})$ - 20 $\log(d_{limit} / d_{near field})$

f _{мнz}	d _{near field}	d _{measure}	d _{limit}	Recalculation
[MHz]	[m]	[m]	[m]	factor [dB]
13.56	3.523	3.0	30.0	21.40

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3


170353-AU02+W03

Page 22 of 40

Radiated Emission Measurement 30 MHz - 1000 MHz

Frequency	Polari-	Step			Measurement Time		Pre-	
range	sation	size	width	Prescan	Final scan	Prescan	Final scan	amplifier
30 MHz – 1 GHz	H/V	60 kHz	120 kHz	PK	QPK	1 ms	1 s	20 dB

The following pictures show the worst-case-emissions at EUT-position 1.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 23 of 40

f [MHz]	E _{final} [dBV/m]	Limit [dBµV/m]	Height [cm]	TT [°]	Polarisation	Result
108,06	18,2	43,5	100	286.8	V	Pass
108,06	19,6	43,5	247	232.9	Н	Pass
199,80	22,7	43,5	100	127.2	V	Pass
199,80	27,6	43,5	115	87.5	V	Pass
203,40	26,4	43,5	126	98	V	Pass
203,40	26,3	43,5	267	252.8	Н	Pass
232,38	29,3	46,0	250	10.2	Н	Pass
232,38	31,1	46,0	250	253.2	Н	Pass
233,16	30,3	46,0	253	78.5	Н	Pass
233,16	31,5	46,0	100	213.3	V	Pass
266,52	26,1	46,0	127	233.6	V	Pass
266,52	31,7	46,0	100	117.2	V	Pass
311,88	29,9	46,0	100	126.9	V	Pass
311,88	31,5	46,0	100	117.1	V	Pass
336,00	32,1	46,0	111	272.6	V	Pass
336,00	33,6	46,0	100	1.8	V	Pass

Picture 9: Radiated emission 30 MHz - 1000MHz @ 3m distance

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 24 of 40

Spectrum Mask

Test procedure

The EUT was placed in a fully anechoic chamber and the testing was performed in accordance with ANSI C63.10 and 47 CFR Part 15, section 15.225 (a) to (d). The measurement distance was 3 m. To find the closest margin of the spectrum to the limit mask adapted to the test distance the EUT was rotated by 360 degrees with detector of the test receiver set to peak. The loop antenna placed in a fixed height of 1 meter was rotated by 360 degrees to get the maximum of emission. In case of exceeding the limits the detector is switched to quasi peak for final testing in position of maximum emission.

Test result

Temperature:	20°C	Humidity:	41%
Tested by:	Christian Kiermeier	Test date:	2017-06-08

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{near field} = 47.77 / f_{MHz}$, or

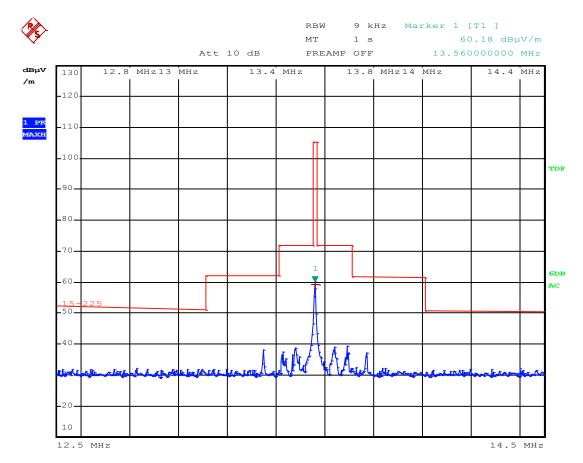
 $f_{MHz} = 47.77 / d_{near field}$

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula for determining the recalculation factor:

f _{MHz} (300 m)	≈ 0.159 MHz
f _{MHz} (30 m)	≈ 1.592 MHz
f _{MHz} (3 m)	≈ 15.923 MHz

For 9 kHz \leq f \leq 159 kHz and 490 kHz < f \leq 1.592 MHz: Recalculation factor = -40 log(d_{limit} / d_{measure}) For 159 kHz < f \leq 490 kHz and 1.592 MHz < f \leq 15.923 MHz: Recalculation factor = -40 log(d_{near field} / d_{measure}) - 20 log(d_{limit} / d_{near field}) For f > 15.923 MHz: Recalculation factor = -20 log(d_{limit} / d_{measure})

The limits in the graphics and value lists are derived from the general radiated emission limits as specified in 15.209 using the recalculation factor as described above.


EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 25 of 40

r							
Frequency range	Step	IF	Detector		Measurer	nent Time	Preamplifier
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
490 kHz – 30 MHz	4 kHz	9 kHz	PK	QPK	1 ms	1 s	off

The following picture shows the worst-case-emissions for spectrum mask at EUT-position 1, antenna in line.

Date: 10.JUN.2017 09:03:02

Picture 10: Spectrum mask for 13.56 MHz @ 3m distance

Frequency [MHz]	Measured value [dBµV/m]	Detector	Recalculation factor [dB]	Field strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result
13.560	60,18	PK	-21.40	38,78			
13.560	59,31	QP	-21.40	37,91	84.00	-46,09	Pass

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 26 of 40

Recalculation factor is determined according to ANSI C63.10, section 6.4.4.2 "Extrapolation from the measurement of a single point":

 $d_{\text{near field}}$

 $= 47.77 / f_{MHz}$

Recalculation factor = -40 $\log(d_{near field} / d_{measure})$ - 20 $\log(d_{limit} / d_{near field})$

f _{мнz}	d _{near field}	d _{measure}	d _{limit}	Recalculation
[MHz]	[m]	[m]	[m]	factor [dB]
13.560	3.523	3.000	30.000	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 27 of 40

6 Radiated emission measurement (>1 GHz)

according to 47 CFR Part 15, section 15.209(a), RSS-210, section 4.3 with RSS-Gen, section 8.9

Remark:

This measurement needs not to be applied because

- the intentional radiator operates below 10 GHz and tenth harmonic of the highest fundamental frequency is lower than 1 GHz (see 47 CFR Part 15, section 15.33(a)(1), and RSS-Gen, section 6.13), and
- the digital part of the device does not generate or use internal frequencies higher than 108 MHz (see 47 CFR Part 15 section 15.33(b)(1), and RSS-Gen, section 2.3.3 with ICES-003, section 6.2).

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 28 of 40

7 Carrier frequency stability

according to CFR 47 Part 15, section 15.225(e), and RSS-210, Annex B6 with RSS-Gen, section 6.11

7.1 Test Location

	Description	Manufacturer	Inventory No.	
	Climatic chamber VC 4100	Vötsch Industrietechnik	C00014	
\boxtimes	Climatic chamber VC ³ 4034	Vötsch Industrietechnik	C00015	

7.2 Test instruments

	Description	Manufacturer	Inventory No.
	ESU 26	Rohde & Schwarz	W00002
\boxtimes	ESCI 3	Rohde & Schwarz	E00552
\boxtimes	RF-R 400-1	Langer EMV-Technik	E00270

7.3 Limits

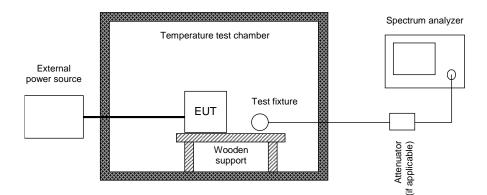
The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ (100 ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery. Alternatively, an external supply voltage can be used and set at the battery nominal voltage, and again at the battery operating end point voltage which must be specified by the equipment manufacturer.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 29 of 40


7.4 Test procedure

 If possible EUT is operating providing an unmodulated carrier. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to the shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point on the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1% of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance allowed is larger than the uncertainty of the measured frequency tolerance.

- 2. The carrier frequency is measured depending on the variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment an external supply voltage can be used and set at the battery nominal voltage, and again at the battery operating end point voltage which must be specified by the equipment manufacturer. Alternatively, tests shall be performed using a new battery.
- 3. The carrier frequency is measured over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage.

7.5 Test setup

Picture 11: Test setup for carrier frequency stability measurement

7.6 Test deviation

There is no deviation from the standards referred to.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 30 of 40

Temperature:	20°C		Humidity:		41%		
Tested by:	Christia	n Kiermeier	Test date:		2017-06-08		
Carrier frequ	uency stabi	lity vs. ten	nperature	ļ			
		Ausg	abebereich				
Frequency	Tolerance	Jpper Limit –	Lower Limit				
150,0 -							
-							
100,0							
Erequency Tolerance (ppm)							
<u>a</u> 50,0							
uce							
	•				•		
- cd							
-50,0 -							
edr							
· -100,0							
-150,0							
-20	-10	±0	+10 +2	20 +30	+40	+50	
			Temperature ((°C)			
				/			
	/	-				40 50 MIL	
Supply voltage:	5 V	Frequ	iency under nor	ninal conditions:		13,56 MH	
Temperature	Frequency	Frequency	/ Tolerance	Upper Limit	Lower Limit	Margin	
(°C)	(MHz)	(Hz)	(ppm)	(ppm)	(ppm)	(ppm)	
-20	13,560010	10	0,7	+100,0	-100,0	<u>99,3</u>	
-10	13,560042	42	3,1	+100,0	-100,0	96,9	
±0	13,560048	48	3,5	+100,0	-100,0	96,5	
+10	13,560015	15	1,1	+100,0	-100,0	98,9	
+20	13,560000	0 -2	0,0 -0,1	+100,0 +100,0	-100,0 -100,0	100,0 99,9	
+30	13,559998						

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 31 of 40

170353-AU02+W03

Page 32 of 40

8 Bandwidths

according to CFR 47 Part 2, section 2.202(a), and RSS-Gen, section 6.6

8.1 Test Location

See clause 5.1 on page 16.

8.2 Test instruments

See clause 5.2 on page 16.

8.3 Limits

The bandwidths are recorded only. There are no limits specified in CFR 47 Part 15, section 15.225, and RSS-210, Annex B6

8.4 Test setup

See clause 5.5 on page 19.

8.5 Test deviation

There is no deviation from the standards referred to.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 33 of 40

8.6 Test results

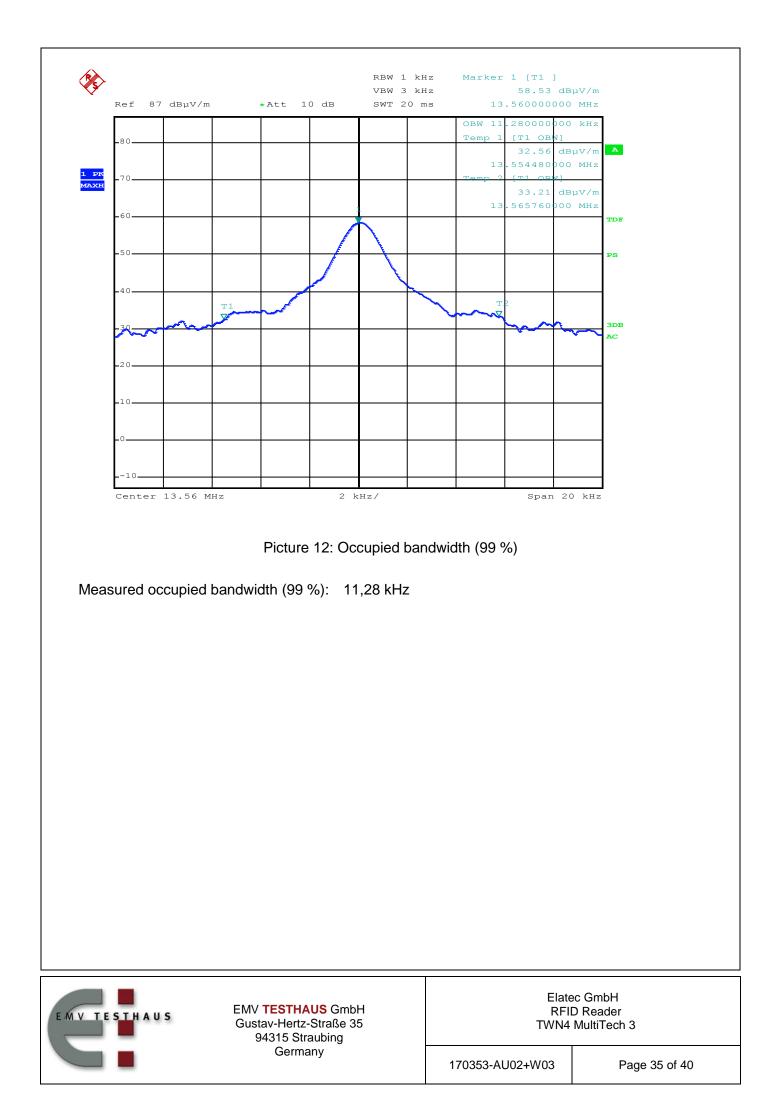
Temperature:	20°C	Humidity:	41%
Tested by:	Christian Kiermeier	Test date:	2017-06-08

Occupied bandwidth (99 %)

Test procedure

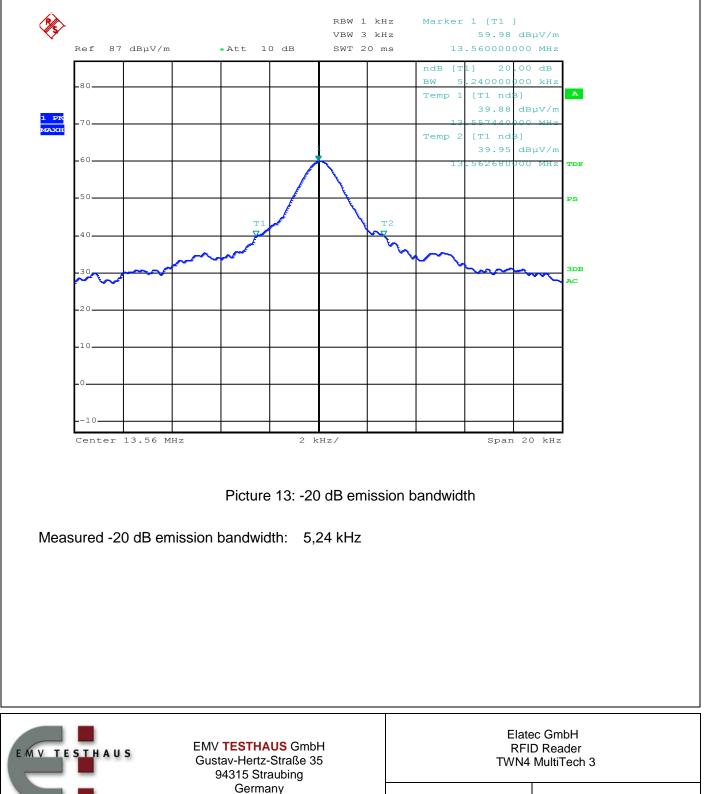
When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.


The trace data points are recovered and directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth. For this purpose the appropriate measurement function of the spectrum analyzer is used.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03


Page 34 of 40

-20 dB emission bandwidth

Test procedure

Where indicated, the -20 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 20 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

170353-AU02+W03

Page 36 of 40

f _{assio} (MH		Index	f _{-20dB} (MHz)	∆f _⊤ (kHz)	∆f _U (kHz)	f _{-20dB(T, U)} (MHz)	Limit (MHz)	Margin (kHz)	Result
		low	13,557440	0.002	0.005	13.557433	13.110000	447.433	Passed
13.56	0000	high	13,562680	0.048	0.016	13.562744	14.010000	447.256	Passed
	Bandwidth 5.240 kHz				5.311 kHz				
with:	f_{-2Odk} f_{assig} $\Delta f_{T(lk}$ $\Delta f_{U(l)}$ $\Delta f_{T(lk)}$ $\Delta f_{U(l)}$ $\Delta f_{U(l)}$	(ow) = (ow) = high) = high) = tt(high) =	upper freque assigned frec maximum ab nominal conc maximum ab conditions ca maximum ab conditions ca maximum ab conditions ca frequency in	ncy in M quency i solute v litions c solute v iused by solute v used by solute v used by MHz wh set caus	Alt whe value of aused b value of aused b value of value of voltag value of voltag value of voltag value of voltag value of voltag voltag	ere emission negative fre oy temperat negative fre oy voltage v positive fre erature varia positive fre e variation i positive fre e variation i nission is at	n is at least equency offs ariation in k quency offs atiation in kHz quency offs n kHz quency offs n kHz quency offs n kHz least 20 dB	30 dB bel set to frequent in kHz set to frequent Hz et to frequent et to frequent below the	uency at lency at nomin lency at nomin lency at nomin
At nor	minal	conditions	ssion bandwid		oply volt	-	40 kHz 11 kHz		
	minal	conditions ariations ir	:	and sup AUS Gmb -Straße 3 aubing		-	11 kHz	Elatec GmbH RFID Reade /N4 MultiTec	er

170353-AU02+W03

Page 37 of 40

9 Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
Test receiver	ESCI 3	100013	E00001	2016-02	2018-02
Test receiver	ESCI 3	100328	E00552	2016-09	2018-09
Test receiver	ESCS 30	825442/0002	E00003	2016-04	2018-04
LISN	ESH2-Z5	893406/009	E00005	2016-02	2018-02
Loop antenna	HFH2-Z2	871398/0050	E00060	2016-09	2018-09
Broadband antenna	VULB 9160	9160-3050	E00011	2015-09	2017-09
Broadband antenna	VULB 9163	9163-114	E00013	2015-09	2017-09
Magnetic field probe	RF-R 400-1	02-2030	E00270	N/A (see	e note 1)
Shielded room	P92007	B83117C1109T211	E00107	N	/A
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502-A69- 2-0006	E00026	N	/Α
Open area test site (OATS)			E00354	2015-10	2017-10
Climatic chamber 340 I	VC ³ 4034	58566123250010	C00015	2016-10	2018-10
Cable set shielded room	Cable no. 30		E00424	2016-07	2018-07
Cable set CDC	Cables no. 37 and 38		E00459 E00460	2017-05	2019-05
Cable set OATS 3 m	Cables no. 19, 34 and 36		E00453 E00456 E00458	2015-11	2017-11

Table 1: Equipment calibration status

Note 1:Used for relative measurements only (see test instruments for "Carrier frequency
stability", clause 7.2)Note 2:Expiration date of measurement facility registration (OATS) by
- FCC (registration number 221458):2017-07

- Industry Canada (test sites number 3472A-1 and 3472A-2): 2018-11 Note 3: Expiration date of test firm accreditation for OATS and SAC:

FCC test firm type "accredited": 2019-05

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 38 of 40

10 Measurement uncertainty

Description	Max. deviation	k=
Conducted emission AMN (9kHz to 30 MHz)	± 3.8 dB	2
Radiated emission open field (3 m) (30 MHz to 300 MHz) (300MHz to 1 GHz)	± 5.4 dB ± 5.9 dB	2
Radiated emission absorber chamber (> 1000 MHz)	± 4.5 dB	2

Table 2: Measurement uncertainty

The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 39 of 40

11 Revision History

Date	Description	Person	Revision
2017-06-10	First edition	Ch. Kiermeier	0

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Elatec GmbH RFID Reader TWN4 MultiTech 3

170353-AU02+W03

Page 40 of 40